CS415 Compilers

Lexical Analysis
Part 3

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
Announcements

- First quiz has been posted on sakai. You have two tries. Last one counts. Quiz is 50 minutes long. Open book, open notes. Deadline: 02/19 @ 11:55pm

- Second homework deadline extension: Sunday, 02/11

- First project deadline extension: Tuesday (03/02) for code, and Friday (03/05) for report.
Regular expressions can be used to specify the words to be translated to parts of speech (tokens) by a lexical analyzer.

Using results from automata theory and theory of algorithms, we can automatically build recognizers from regular expressions.

⇒ We study REs and associated theory to automate scanner construction!
Consider the problem of recognizing ILOC register names

\[\text{Register} \rightarrow r \ (0|1|2| \ldots | 9) \ (0|1|2| \ldots | 9)^* \]

- Allows registers of arbitrary number
- Requires at least one digit

RE corresponds to a recognizer (or DFA)

Example

![Diagram](image)

Recognizer for *Register*

Transitions on other inputs go to an error state, \(s_e \)
DFA operation

- Start in state S_0 & take transitions on each input character
- DFA accepts a word x iff x leaves it in a final state (S_2)

So,

- r_{17} takes it through s_0, s_1, s_2 and accepts
- r takes it through s_0, s_1 and fails
- a takes it straight to error state s_e (not shown here)
To be useful, recognizer must turn into code

Char \leftarrow *next character*
State $\leftarrow s_0$

while (Char \neq EOF)
 State $\leftarrow \delta$(State,Char)
 Char \leftarrow *next character*
if (State is a final state)
 then report success
else report failure

Skeleton recognizer

<table>
<thead>
<tr>
<th>δ</th>
<th>r</th>
<th>0,1,2,3,4,5,6,7,8,9</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_1</td>
<td>s_e</td>
<td>s_2</td>
<td>s_e</td>
</tr>
<tr>
<td>s_2</td>
<td>s_e</td>
<td>s_2</td>
<td>s_e</td>
</tr>
<tr>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
</tbody>
</table>

Table encoding RE

Example (continued)
To be useful, recognizer must turn into code

Char \leftarrow next character
State $\leftarrow s_0$

while (Char \neq EOF)
 State $\leftarrow \delta$(State,Char)
 perform specified action
 Char \leftarrow next character

if (State is a final state)
 then report success
else report failure

Table encoding RE

<table>
<thead>
<tr>
<th>δ</th>
<th>r</th>
<th>0,1,2,3,4,5,6,7,8,9</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1 start</td>
<td>s_e error</td>
<td>s_e error</td>
</tr>
<tr>
<td>s_1</td>
<td>s_e error</td>
<td>s_2 add</td>
<td>s_e error</td>
</tr>
<tr>
<td>s_2</td>
<td>s_e error</td>
<td>s_2 add</td>
<td>s_e error</td>
</tr>
<tr>
<td>s_e</td>
<td>s_e error</td>
<td>s_e error</td>
<td>s_e error</td>
</tr>
</tbody>
</table>

Skeleton recognizer

Lecture 10
r Digit Digit* allows arbitrary numbers
• Accepts r00000
• Accepts r99999
• What if we want to limit it to r0 through r31?

Write a tighter regular expression
→ Register → r ((0|1|2) (Digit | e) | (4|5|6|7|8|9) | (3|30|31))
→ Register → r0|r1|r2| ... |r31|r00|r01|r02| ... |r09

Produces a more complex DFA
• Has more states
• Same cost per transition
• Same basic implementation
The DFA for
\[\text{Register} \rightarrow r \ ((0|1|2) \ (\text{Digit} \mid \varepsilon) \ | \ (4|5|6|7|8|9) \ | \ (3|30|31)) \]

- Accepts a more constrained set of registers
- Same set of actions, more states
Tighter register specification (continued)

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>(r)</th>
<th>0,1</th>
<th>2</th>
<th>3</th>
<th>4-9</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>(s_1)</td>
<td>(s_e)</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(s_e)</td>
<td>(s_2)</td>
<td>(s_2)</td>
<td>(s_5)</td>
<td>(s_4)</td>
<td>(s_e)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_e)</td>
<td>(s_3)</td>
<td>(s_3)</td>
<td>(s_3)</td>
<td>(s_3)</td>
<td>(s_e)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>(s_e)</td>
</tr>
<tr>
<td>(s_4)</td>
<td>(s_e)</td>
</tr>
<tr>
<td>(s_5)</td>
<td>(s_e)</td>
<td>(s_6)</td>
<td>(s_e)</td>
<td>(s_e)</td>
<td>(s_e)</td>
<td>(s_e)</td>
</tr>
<tr>
<td>(s_6)</td>
<td>(s_e)</td>
</tr>
<tr>
<td>(s_e)</td>
</tr>
</tbody>
</table>

Table encoding RE for the tighter register specification

 Runs in the same skeleton recognizer
Constructing a Scanner - Quick Review

- The scanner is the first stage in the front end
- Specifications can be expressed using regular expressions
- Build tables and code from a DFA
Goal

- We will show how to construct a finite state automaton to recognize any RE
- Overview:
 - Direct construction of a **nondeterministic finite automaton (NFA)** to recognize a given RE
 - Requires ε-transitions to combine regular subexpressions
 - Construct a **deterministic finite automaton (DFA)** to simulate the NFA
 - Use a set-of-states construction
 - Minimize the number of states
 - Hopcroft state minimization algorithm
 - Generate the scanner code
 - Additional specifications needed for details
• All strings of 1s and 0s ending in a 1

\[(0 \mid 1)^*1\]

• All strings over lowercase letters where the vowels (a,e,i,o, & u) occur exactly once, in ascending order

\[Cons \rightarrow (b\mid c\mid d\mid f\mid g\mid h\mid j\mid k\mid l\mid m\mid n\mid p\mid q\mid r\mid s\mid t\mid v\mid w\mid x\mid y\mid z)\]

• All strings of 1s and 0s that do not contain three 0s in a row:
More Regular Expressions

- All strings of 1s and 0s ending in a 1
 \[(0 | 1)^* 1\]

- All strings over lowercase letters where the vowels (a,e,i,o, \& u) occur exactly once, in ascending order
 \[Cons \rightarrow (b | c | d | f | g | h | j | k | l | m | n | p | q | r | s | t | v | w | x | y | z)\]
 \[Cons^* a Cons^* e Cons^* i Cons^* o Cons^* u Cons^*\]

- All strings of 1s and 0s that do not contain three 0s in a row:
More Regular Expressions

- All strings of 1s and 0s ending in a 1

 \((0 | 1)^* 1\)

- All strings over lowercase letters where the vowels (a,e,i,o,& u) occur exactly once, in ascending order

 \(Cons \rightarrow (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)\)

 Cons* a Cons* e Cons* i Cons* o Cons* u Cons*

- All strings of 1s and 0s that do not contain three 0s in a row:

 \((1^* (\epsilon | 01 | 001) 1^*)^* (\epsilon | 0 | 00)\)
Each RE corresponds to a *deterministic finite automaton* (DFA)
- May be hard to directly construct the right DFA

What about an RE such as \((a | b)^* abb\) ?

This is a little different
- \(S_0\) has a transition on \(\varepsilon\)
- \(S_1\) has two transitions on \(a\)

This is a *non-deterministic finite automaton* (NFA)
Non-deterministic Finite Automata

• An NFA accepts a string \(x \) iff \(\exists \) a path though the transition graph from \(s_0 \) to a final state such that the edge labels spell \(x \)
• Transitions on \(\varepsilon \) consume no input
• To “run” the NFA, start in \(s_0 \) and guess the right transition at each step
 → Always guess correctly
 → If some sequence of correct guesses accepts \(x \) then accept

Why study NFAs?
• They are the key to automating the RE→DFA construction
• We can paste together NFAs with \(\varepsilon \)-transitions

\[
\text{NFA} \xrightarrow{\varepsilon} \text{NFA} \quad \text{becomes an} \quad \text{NFA}
\]
DFA is a special case of an NFA

- DFA has no ε transitions
- DFA’s transition function is single-valued
- Same rules will work

DFA can be simulated with an NFA

→ Obviously

NFA can be simulated with a DFA

(less obvious)

- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state per character in the input stream
To convert a specification into code:
1. Write down the RE for the input language
2. Build a big NFA
3. Build the DFA that simulates the NFA
4. Systematically shrink the DFA
5. Turn it into code

Scanner generators
- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser
- You could build one in a weekend!
Automating Scanner Construction

RE → NFA (Thompson’s construction)
- Build an NFA for each term
- Combine them with ε-moves

NFA → DFA (subset construction)
- Build the simulation

DFA → Minimal DFA
- Hopcroft’s algorithm

DFA → RE (Not part of the scanner construction)
- All pairs, all paths problem
- Take the union of all paths from \(s_0 \) to an accepting state
Key idea

- NFA pattern for each symbol and each operator
- Each NFA has a single start and accept state
- Join them with ε moves in precedence order

Ken Thompson, CACM, 1968
Example of Thompson’s Construction

Let’s try $a \ (b \ | \ c)^*$

1. a, b, & c

2. $b \ | \ c$

3. $(b \ | \ c)^*$
Example of Thompson’s Construction (cont’)

4. $a(b | c)^*$

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...
NFA \rightarrow DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions

- $move(s_i, a)$ is set of states reachable from s_i by a
- ε-closure(s_i) is set of states reachable from s_i by ε

The algorithm (sketch):
- Start state derived from s_0 of the NFA
- Take its ε-closure $S_0 = \varepsilon$-closure(s_0)
- For each state S, compute $move(S, a)$ for each $a \in \Sigma$, and take its ε-closure
- Iterate until no more states are added

Sounds more complex than it is...
NFA \rightarrow DFA with Subset Construction

The algorithm:

\[s_0 \leftarrow \varepsilon\text{-closure}(q_0) \]
\[\text{add } s_0 \text{ to } S \]
\[\text{while (} S \text{ is still changing) } \]
\[\text{for each } s_i \in S \]
\[\text{for each } a \in \Sigma \]
\[s_? \leftarrow \varepsilon\text{-closure(move}(s_i, a)) \]
\[\text{if (} s_? \notin S \text{) then} \]
\[\text{add } s_? \text{ to } S \text{ as } s_j \]
\[T[s_i, a] \leftarrow s_j \]
\[\text{else} \]
\[T[s_i, a] \leftarrow s_? \]

Let’s think about why this works

The algorithm halts:

1. \(S \) contains no duplicates (test before adding)
2. \(2^\mathcal{Q} \) is finite
3. while loop adds to \(S \), but does not remove from \(S \) (monotone)
\[\Rightarrow \text{the loop halts} \]
\[S \text{ contains all the reachable NFA states} \]
\[\text{It tries each symbol in each } s_i. \]
\[\text{It builds every possible NFA configuration.} \]
\[\Rightarrow S \text{ and } T \text{ form the DFA} \]
NFA → DFA with Subset Construction

Example of a fixed-point computation
- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations
- Canonical construction of sets of LR(1) items
 - Quite similar to the subset construction
- Classic data-flow analysis
 - Solving sets of simultaneous set equations
- DFA minimization algorithm (coming up!)

We will see many more fixed-point computations
Applying the subset construction:

\(a (b \cup c)^*:\)
a (b | c)*:

Applying the subset construction:

<table>
<thead>
<tr>
<th></th>
<th>NFA states</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀</td>
<td>q₀</td>
<td>q₁, q₂, q₃, q₄, q₆, q₉</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>s₁</td>
<td>q₁, q₂, q₃, q₄, q₆, q₉</td>
<td>none</td>
<td>q₅, q₈, q₉, q₃, q₄, q₆</td>
<td>q₇, q₈, q₉, q₃, q₄, q₆</td>
</tr>
<tr>
<td>s₂</td>
<td>q₅, q₈, q₉, q₃, q₄, q₆</td>
<td>none</td>
<td>s₂</td>
<td>s₃</td>
</tr>
<tr>
<td>s₃</td>
<td>q₇, q₈, q₉, q₃, q₄, q₆</td>
<td>none</td>
<td>s₂</td>
<td>s₃</td>
</tr>
</tbody>
</table>

Final states
The DFA for \(a (b \mid c)^* \)

- Ends up smaller than the NFA
- All transitions are deterministic
Wrap-up Lexical Analysis

Syntax Analysis (top-down)

Read EaC: Chapter 3.1 – 3.3