Bottom-up Parsing

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
• Fourth homework due Sunday, March 10, 11:59pm. Will post sample solution on Monday, March 11.

• First project new due dates: CODE Thursday March 7; REPORT Saturday March 9; benchmark programs have been posted.
 ~uli/cs415/projects/proj1/benchmarks

Late submission policy: 20% penalty for every started 24 hours period late; weekend counts as a single 24 hour period. Examples: Submit code on Friday at 9:30pm, 20% penalty; submit on Sunday before 11:59pm, 40% penalty.

• Midterm: Wednesday, March 13, in class; closed book, closed notes, 80 minutes
Bottom-up Parsing
(Syntax Analysis)

EAC Chapters 3.4
LR(1), operator precedence

1 input symbol lookahead
construct rightmost derivation (backwards)
input: read left-to-right

Rule: \(B ::= γ \)

\[S \Rightarrow^*_{rm} αB \Rightarrow_{rm} αγ \Rightarrow^*_{rm} x \ y \]

\[S \]

\[α \]

\[γ \]

? Means that we don’t know yet this part of the parse tree

\[x \ y \]
LR(1), operator precedence

1 input symbol lookahead
construct rightmost derivation (backwards)
input: read left-to-right

rule \(B ::= \gamma \)

\[
S \Rightarrow_{rm}^* \alpha \ B \ y \Rightarrow_{rm} \ alpha \ \gamma \ y \Rightarrow_{rm}^* \ x \ y
\]

upper fringe

? Means that we don’t know yet this part of the parse tree
Is the following grammar LL(1), L(2), or LR(1)?

\[S ::= a \ b \mid a \ b \ c \]

Is the following grammar LR(1) or even LR(0)?

\[S ::= a \ S \ b \mid c \]

Basic idea:

shift symbols from input onto the stack until top of the stack is a RHS of a rule; if so, “apply” rule backwards (*reduce*) by replacing top of the stack by the LHS non-terminal.

Challenge: When to shift, and when to reduce
Consider the simple grammar

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goal</td>
<td>\to</td>
<td>a A B e</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>\to</td>
<td>A b c</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>\to</td>
<td>d</td>
</tr>
</tbody>
</table>

And the input string **abbcde**

<table>
<thead>
<tr>
<th>Sentential Form</th>
<th>Next Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prod’n</td>
</tr>
<tr>
<td>abbcde</td>
<td>3</td>
</tr>
<tr>
<td>a A bcde</td>
<td>2</td>
</tr>
<tr>
<td>a A de</td>
<td>4</td>
</tr>
<tr>
<td>a A B e</td>
<td>1</td>
</tr>
<tr>
<td>Goal</td>
<td>—</td>
</tr>
</tbody>
</table>

The trick is scanning the input and finding the next reduction. The mechanism for doing this must be efficient.
The parser must find a substring β of the tree’s frontier that matches some production $A \rightarrow \beta$ that occurs as one step in the rightmost derivation.

Informally, we call this substring β a handle.

Formally, a handle of a right-sentential form γ is a pair $<A \rightarrow \beta, k>$ where $A \rightarrow \beta \in P$ and k is the position in γ of β’s rightmost symbol.

If $<A \rightarrow \beta, k>$ is a handle, then replacing β at k with A produces the right sentential form from which γ is derived in the rightmost derivation.

Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols.

\Rightarrow the parser doesn’t need to scan past the handle (only lookahead).

\Rightarrow The right end of the handle will be on top of the stack, not within the stack. Need lookahead to determine whether we reached the handle.
Critical Insight (Theorem)

If G is unambiguous, then every right-sentential form has a unique handle.

If we can find those handles, we can build a derivation!

Sketch of Proof:

1. G is unambiguous \Rightarrow rightmost derivation is unique
2. \Rightarrow a unique production $A \rightarrow \beta$ applied to derive γ_i from γ_{i-1}
3. \Rightarrow a unique position k at which $A \rightarrow \beta$ is applied
4. \Rightarrow a unique handle $\langle A \rightarrow \beta, k \rangle$

This all follows from the definitions
Revisit previous example

Consider the simple grammar

1	Goal	→	a A B e
2	A	→	A b c
3	l	→	b
4	B	→	d

And the input string **abbcde**

<table>
<thead>
<tr>
<th>Sentential Form</th>
<th>Next Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbcde</td>
<td>Prod’n</td>
</tr>
<tr>
<td>a A bcde</td>
<td>3</td>
</tr>
<tr>
<td>a A de</td>
<td>2</td>
</tr>
<tr>
<td>a A B e Goal</td>
<td>4</td>
</tr>
<tr>
<td>Goal</td>
<td>1</td>
</tr>
</tbody>
</table>

The trick is scanning the input and finding the next reduction
The mechanism for doing this must be efficient
LR(0) items and LR(0) canonical collection

S0: \{[\text{Goal} \rightarrow \cdot a A B e]\}
S1: \{[\text{Goal} \rightarrow a \cdot A B e], [A \rightarrow \cdot A b c], [A \rightarrow \cdot b]\}
S2: \{[\text{Goal} \rightarrow a A \cdot B e], [A \rightarrow A \cdot b c], [B \rightarrow \cdot d] \}
S3: \{[A \rightarrow b \cdot] \}
S4: \{[\text{Goal} \rightarrow a A B \cdot e] \}
S5: \{[A \rightarrow A b \cdot c] \}
S6: \{[B \rightarrow d \cdot] \}
S7: \{[A \rightarrow A b c \cdot] \}
S8: \{[\text{Goal} \rightarrow a A B e \cdot] \}
More Syntax Analysis (bottom-up)

Review session for midterm