top-down parsing
part 2

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
Announcements

• Second and third homework solutions available on sakai under Resources tab

• Fourth homework due Sunday, March 10, 11:59pm.

• First project new due dates: CODE Wednesday March 6; REPORT Friday March 8; benchmark programs have been posted.
 ~uli/cs415/projects/proj1/benchmarks

• Midterm: Wednesday, March 13, in class;
 closed book, closed notes, 80 minutes
Parsing
(Syntax Analysis)

EAC Chapters 3.1 - 3.3
LL(1), recursive descent

1 input symbol lookahead
construct leftmost derivation (forwards)
input: read left-to-right

\[S \Rightarrow_{lm}^* x A \beta \Rightarrow_{lm} x \delta \beta \Rightarrow_{lm}^* x y \]

? Means that we don’t know yet this part of the parse tree
LL(1), recursive descent

1 input symbol lookahead

construct leftmost derivation (forwards)

input: read left-to-right

input: read left-to-right

rule \(A \rightarrow \delta \)

\[
S \Rightarrow^{*_{lm}} \cdot A \beta \Rightarrow_{lm} \cdot \delta \beta \Rightarrow^{*_{lm}} \cdot y
\]

\[x \]

\[y \]

? Means that we don’t know yet this part of the parse tree
LL(1) Parser Example

Is the following grammar LL(1)?

\[S \rightarrow a \ S \ b \ | \ \epsilon \]

\[
\text{First}(aSb) = \{ a \} \\
\text{First}(\epsilon) = \{ \epsilon \} \\
\text{Follow} (S) = \{ \text{eof, b} \}
\]

\[
\text{First}^+(aSb) = \{ a \} \\
\text{First}^+(\epsilon) = (\text{First}(\epsilon) - \{ \epsilon \}) \cup \text{Follow}(S) = \{ \text{eof, b} \}
\]

LL(1)?
Is the following grammar LL(1)?

\[S \rightarrow a \, S \, b \mid \varepsilon \]

First(aSb) = \{ a \}
First(\varepsilon) = \{ \varepsilon \}
Follow (S) = \{ eof, b \}

First'^+(aSb) = \{ a \}
First'^+(\varepsilon) = (First(\varepsilon) - \{ \varepsilon \}) \cup Follow(S) = \{ eof, b \}

LL(1)? YES, since \{ a \} \cap \{ eof, b \} = \emptyset
LL(1) Parse Table

Table-driven LL(1) parser

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aSb</td>
<td>ε</td>
<td>ε</td>
<td>error</td>
</tr>
</tbody>
</table>

current input symbol

rules for non-terminal

non-terminal on top of the stack
Building the complete table
• Need a row for every NT & a column for every $T + "eof"$
• Need an algorithm to build the table

Filling in $TABLE[X,y]$, $X \in NT$, $y \in T \cup \{eof\}$
• entry is the rule $X \rightarrow \beta$, if $y \in FIRST+(\beta)$
• entry is error otherwise

If any entry is defined multiple times, G is not $LL(1)$

This is the $LL(1)$ table construction algorithm
LL(1) Skeleton Parser

token ← next_token()
push EOF onto Stack
push the start symbol, S, onto Stack
TOS ← top of Stack

loop forever
 if TOS = EOF and token = EOF then
 break & report success
 else if TOS is a terminal then
 if TOS matches token then
 pop Stack
 token ← next_token()
 else report error looking for TOS
 else
 // TOS is a non-terminal
 if TABLE[TOS, token] is $A \rightarrow B_1 B_2 \ldots B_k$ then
 pop Stack
 push $B_k, B_{k-1}, \ldots, B_1$
 // in that order
 else report error expanding TOS
 TOS ← top of Stack
Table-driven LL(1) parser

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aSb</td>
<td>e</td>
<td>e</td>
<td>error</td>
</tr>
</tbody>
</table>

How to parse input a a a b b b ?

Describe action as sequence of states
(PDA stack content, remaining input, next action)

PDA stack content: [X, ... Z], where Z is the TOS
next actions: rule or next input+pop or error or accept
Table-driven LL(1) parser

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aSb</td>
<td>ε</td>
<td>ε</td>
<td>error</td>
</tr>
</tbody>
</table>

- \([\text{eof}, S], aaabbb, aSb) \Rightarrow\)
- \([\text{eof}, b, S, a], aaabbb, \text{next input+pop}) \Rightarrow\)
- \([\text{eof}, b, S], aabbb, aSb) \Rightarrow\)
- \([\text{eof}, b, b, S, a], aabbb, \text{next input+pop}) \Rightarrow\)
- \([\text{eof}, b, b, S], abbb, aSB) \Rightarrow\)
- \([\text{eof}, b, b, b, S, a], abbb, \text{next input+pop}) \Rightarrow\)
- \([\text{eof}, b, b, b, S], bbb, \varepsilon) \Rightarrow\)
- \([\text{eof}, b, b, b], bbb, \text{next input+pop}) \Rightarrow ([\text{eof}, b, b], bb, \text{next input+pop}) \Rightarrow\)
- \([\text{eof}, b, b, b], b, \text{next input+pop}) \Rightarrow ([\text{eof}, \varepsilon, \text{accept})\)
Recursive descent LL(1) parser

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aSb</td>
<td>ε</td>
<td>ε</td>
<td>error</td>
</tr>
</tbody>
</table>

1. Every NT is associated with a parsing procedure.

2. The parsing procedure for $A \in \text{NT}$, proc A, is responsible to parse and consume any (token) string that can be derived from A; it may recursively call other parsing procedures.

3. The parser is invoked by calling proc S for start symbol S.
recursive descent LL(1) parser

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aSb</td>
<td>ε</td>
<td>ε</td>
<td>error</td>
</tr>
</tbody>
</table>

main () {
 token = next_token();
 if (S () and token = eof)
 print “accept”
 else
 print “error”;
}

bool S () {
 switch token {
 case a: token = next_token();
 S();
 if token = b
 {token = next_token(); return true;}
 else
 return false;
 break;
 case b, eof: return true; break;
 default: return false;
 }
}
Recursive descent LL(1) parser

Syntax Table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aSb</td>
<td>ε</td>
<td>ε</td>
<td>error</td>
</tr>
</tbody>
</table>

Code

```c
bool S() {
    switch token {
    case a: token = next_token();
        S();
        if token = b
            {token = next_token(); return true;}
        else
            return false;
    break;
    case b, eof:
        return true;
    break;
    default:
        return false;
    }
}
```

Main Function

```c
main() {
    token = next_token();
    if (S() and token = eof)
        print "accept"
    else
        print "error";
}
```

How to parse input a a a b b b?
• Build FIRST (and FOLLOW) sets
• Massage grammar to have $LL(1)$ condition
 • Remove left recursion
 • Left factor it
• Define a procedure for each non-terminal
 • Implement a case for each right-hand side
 • Call procedures as needed for non-terminals
• Add extra code, as needed
 • Perform context-sensitive checking
 • Build an IR (e.g., simple code generation)
 • ...

Can we automate this process?
Top-down parsers cannot handle left-recursive grammars

Formally,

A grammar is left recursive if $\exists \; A \in NT$ such that

$\exists \; \text{a derivation } A \Rightarrow^+ A\alpha$, for some string $\alpha \in (NT \cup T)^+$

Our expression grammar is left recursive

• This can lead to non-termination in a top-down parser

• For a top-down parser, any recursion must be right recursion

• We would like to convert the left recursion to right recursion

Non-termination is a bad property in any part of a compiler
To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form

\[Fee \rightarrow Fee \alpha \]
\[\quad \mid \beta \]

where neither \(\alpha \) nor \(\beta \) start with \(Fee \)

We can rewrite this as

\[Fee \rightarrow \beta \text{Fie} \]
\[\text{Fie} \rightarrow \alpha \text{Fie} \]
\[\quad \mid \varepsilon \]

where \(\text{Fie} \) is a new non-terminal

This accepts the same language, but uses only right recursion
Eliminating Left Recursion

The expression grammar contains two cases of left recursion

\[
\begin{align*}
\text{Expr} & \rightarrow \text{Expr} + \text{Term} & \text{Term} & \rightarrow \text{Term} \ast \text{Factor} \\
& | \quad \text{Expr} - \text{Term} & & | \quad \text{Term} / \text{Factor} \\
& | \quad \text{Term} & & | \quad \text{Factor}
\end{align*}
\]

Applying the transformation yields

\[
\begin{align*}
\text{Expr} & \rightarrow \text{Term} \text{Expr'} \\
\text{Expr'} & | \quad + \text{Term} \text{Expr'} \\
& | \quad - \text{Term} \text{Expr'} \\
& | \quad \varepsilon
\end{align*}
\]

\[
\begin{align*}
\text{Term} & \rightarrow \text{Factor} \text{Term'} \\
\text{Term'} & | \quad \ast \text{Factor} \text{Term'} \\
& | \quad / \text{Factor} \text{Term'} \\
& | \quad \varepsilon
\end{align*}
\]

These fragments use only right recursion
Eliminating Left Recursion

Substituting them back into the grammar yields

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goal</td>
<td>→ Expr</td>
</tr>
<tr>
<td>2</td>
<td>Expr</td>
<td>→ Term Expr’</td>
</tr>
<tr>
<td>3</td>
<td>Expr’</td>
<td>→ + Term Expr’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Term</td>
<td>→ Factor Term’</td>
</tr>
<tr>
<td>5</td>
<td>Term’</td>
<td>→ * Factor</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Factor</td>
<td>→ number</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This grammar is correct, if somewhat non-intuitive.
- A top-down parser will terminate using it.
- General left recursion removal algorithm, see EAC.
What if my grammar does not have the LL(1) property?

⇒ Sometimes, we can transform the grammar

The Algorithm

\[\forall A \in NT, \]
\[\text{find the longest prefix } \alpha \text{ that occurs in two or more right-hand sides of } A \]
\[\text{if } \alpha \neq \varepsilon \text{ then replace all of the } A \text{ productions,} \]
\[A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \alpha \beta_n \mid \gamma, \]
\[\text{with} \]
\[A \rightarrow \alpha Z \mid \gamma \]
\[Z \rightarrow \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n \]
\[\text{where } Z \text{ is a new element of } NT \]

Repeat until no common prefixes remain
A graphical explanation for the same idea

\[A \rightarrow \alpha \beta_1 \]
| \alpha \beta_2
| \alpha \beta_3

becomes ...

\[A \rightarrow \alpha Z \]
\[Z \rightarrow \beta_1 \]
| \beta_2
| \beta_3

\[A \rightarrow \alpha \beta_1 \]
\[\alpha \beta_2 \]
\[\alpha \beta_3 \]

\[A \rightarrow \alpha Z \]
\[\beta_1 \]
\[\beta_2 \]
\[\beta_3 \]
Consider the following fragment of the expression grammar

\[
\begin{align*}
\text{Factor} & \rightarrow \text{Identifier} \\
& \quad | \text{Identifier} \ [\text{ExprList}] \\
& \quad | \text{Identifier} \ (\text{ExprList})
\end{align*}
\]

After left factoring, it becomes

\[
\begin{align*}
\text{Factor} & \rightarrow \text{Identifier} \ \text{Arguments} \\
\text{Arguments} & \rightarrow \ [\text{ExprList}] \\
& \quad | \ (\text{ExprList}) \\
& \quad | \ \varepsilon
\end{align*}
\]

This form has the same syntax, with the \textit{LL(1)} property

\[
\begin{align*}
\text{FIRST}(\text{rhs}_1) &= \{ \text{Identifier} \} \\
\text{FIRST}(\text{rhs}_2) &= \{ \} \\
\text{FIRST}(\text{rhs}_3) &= \{ \} \\
\text{FIRST}(\text{rhs}_4) &= \text{FOLLOW(Factor)} \\
\Rightarrow \text{It has the LL(1) property}
\end{align*}
\]
Left Factoring (An example)

Graphically

Factor ➔ Identifier
Identifier ➔ [ExprList]
Identifier ➔ (ExprList)

becomes …

Factor ➔ Identifier
Identifier ➔ [ExprList]
Identifier ➔ (ExprList)

No basis for choice

Word determines correct choice
Question

By eliminating left recursion and left factoring, can we transform an arbitrary CFG to a form where it meets the $LL(1)$ condition? (and can be parsed predictively with a single token lookahead?)

Answer

Given a CFG that doesn’t meet the $LL(1)$ condition, it is undecidable whether or not an equivalent $LL(1)$ grammar exists.
Example

\[\{a^n 0 b^n | n \geq 1\} \cup \{a^n 1 b^{2n} | n \geq 1\} \] has no LL(k) grammar

\[
\begin{align*}
G & \rightarrow aAb \\
& \mid aBbB
\end{align*}
\]

\[
\begin{align*}
A & \rightarrow aAb \\
& \mid 0
\end{align*}
\]

\[
\begin{align*}
B & \rightarrow aBbB \\
& \mid 1
\end{align*}
\]

Problem: need an unbounded number of a characters before you can determine whether you are in the A group or the B group.
More Syntax Analysis (bottom-up)

Read EaC: Chapter 3.4