Lexical Analysis
Part 2

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
Announcements

• Grades for first homework are out.

• Third homework has been posted. Due date: Tuesday, February 26

• First project has been posted. Due dates: CODE Monday March 4; REPORT Wednesday March 6

• Midterm: Wednesday, March 13, in class; closed book, closed notes, 80 minutes
Regular expressions can be used to specify the words to be translated to parts of speech (tokens) by a lexical analyzer.

Using results from automata theory and theory of algorithms, we can automatically build recognizers from regular expressions.

⇒ We study REs and associated theory to automate scanner construction!
Goal

- We will show how to construct a finite state automaton to recognize any RE

Overview:
- Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
 - Requires ε-transitions to combine regular subexpressions
- Construct a deterministic finite automaton (DFA) to simulate the NFA
 - Use a set-of-states construction
- Minimize the number of states
 - Hopcroft state minimization algorithm
- Generate the scanner code
 - Additional specifications needed for details
More Regular Expressions Examples

• All strings of 1s and 0s ending in a 1

\[(0 \mid 1)^* 1\]

• All strings over lowercase letters where the vowels (a,e,i,o, & u) occur exactly once, in ascending order

\[\text{Cons} \rightarrow (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)\]
\[\text{Cons}^* \text{ a Cons}^* \text{ e Cons}^* \text{ i Cons}^* \text{ o Cons}^* \text{ u Cons}^*\]

• All strings of 1s and 0s that do not contain three 0s in a row:
More Regular Expressions Examples

• All strings of 1s and 0s ending in a 1

\[(0 | 1)^*1\]

• All strings over lowercase letters where the vowels (a, e, i, o, & u) occur exactly once, in ascending order

Cons → (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)
Cons* a Cons* e Cons* i Cons* o Cons* u Cons*

• All strings of 1s and 0s that do not contain three 0s in a row:

\[(1^* (\varepsilon | 01 | 001)1^*)^* (\varepsilon | 0 | 00)\]
Each RE corresponds to a *deterministic finite automaton* (DFA)

- May be hard to directly construct the right DFA

What about an RE such as \((a | b)^* \text{abb}\)?

This is a little different

- \(S_0\) has a transition on \(\epsilon\)
- \(S_1\) has two transitions on \(a\)

This is a *non-deterministic finite automaton* (NFA)
Non-deterministic Finite Automata

- An NFA accepts a string x iff there exists a path through the transition graph from s_0 to a final state such that the edge labels spell x.
- Transitions on ε consume no input.
- To "run" the NFA, start in s_0 and guess the right transition at each step.
 - Always guess correctly.
 - If some sequence of correct guesses accepts x then accept.

Why study NFAs?
- They are the key to automating the RE → DFA construction.
- We can paste together NFAs with ε-transitions.
DFA is a special case of an NFA

- DFA has no \(\varepsilon \) transitions
- DFA’s transition function is single-valued
- Same rules will work

DFA can be simulated with an NFA

\[\rightarrow \text{Obviously} \]

NFA can be simulated with a DFA

(less obvious)

- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state per character in the input stream
Automating Scanner Construction

To convert a specification into code:
1. Write down the RE for the input language
2. Build a big NFA
3. Build the DFA that simulates the NFA
4. Systematically shrink the DFA
5. Turn it into code

Scanner generators
- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser (define all parts of speech)
- You could build one in a weekend!
Automating Scanner Construction

RE \rightarrow NFA (Thompson’s construction)
- Build an NFA for each term
- Combine them with ϵ-moves

NFA \rightarrow DFA (subset construction)
- Build the simulation

DFA \rightarrow Minimal DFA
- Hopcroft’s algorithm

DFA \rightarrow RE (Not part of the scanner construction)
- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state

The Cycle of Constructions
Key idea
• NFA pattern for each symbol and each operator
• Each NFA has a single start and accept state
• Join them with ε moves in precedence order

NFA for a

NFA for ab

NFA for a | b

NFA for a*

Ken Thompson, CACM, 1968
Example of Thompson’s Construction

Let’s try $a \ (b \ | \ c)^*$

1. $a, b, \ & \ c$

2. $b \ | \ c$

3. $(b \ | \ c)^*$
4. \(a (b \mid c)^* \)

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...
Need to build a simulation of the NFA

Two key functions

- $\text{move}(s_i, a)$ is set of states reachable from s_i by a
- ε-closure(s_i) is set of states reachable from s_i by ε

The algorithm (sketch):

- Start state derived from s_0 of the NFA
- Take its ε-closure $S_0 = \varepsilon$-closure(s_0)
- For each state S, compute $\text{move}(S, a)$ for each $a \in \Sigma$, and take its ε-closure
- Iterate until no more states are added

Sounds more complex than it is...
NFA → DFA with Subset Construction

The algorithm:

\[
s_0 \leftarrow \varepsilon\text{-closure}(q_0)
\]

add \(s_0 \) to \(S \)

while (\(S \) is still changing)

for each \(s_i \in S \)

for each \(a \in \Sigma \)

\[
s_? \leftarrow \varepsilon\text{-closure}(\text{move}(s_i, a))
\]

if (\(s_? \notin S \)) then

add \(s_? \) to \(S \) as \(s_j \)

\(T[s_i, a] \leftarrow s_j \)

else

\(T[s_i, a] \leftarrow s_? \)

Let’s think about why this works

The algorithm halts:

1. \(S \) contains no duplicates
 (test before adding)
2. \(2^\Sigma \) is finite
3. while loop adds to \(S \), but does not remove from \(S \) (monotone)

\(\Rightarrow \) the loop halts

\(S \) contains all the reachable NFA states

It tries each symbol in each \(s_i \).

It builds every possible NFA configuration.

\(\Rightarrow S \) and \(T \) form the DFA
Example of a fixed-point computation
• Monotone construction of some finite set
• Halts when it stops adding to the set
• Proofs of halting & correctness are similar
• These computations arise in many contexts

Other fixed-point computations
• Canonical construction of sets of LR(1) items
 → Quite similar to the subset construction
• Classic data-flow analysis
 → Solving sets of simultaneous set equations
• DFA minimization algorithm (coming up!)

We will see many more fixed-point computations
a \ (b \mid c)^* :

Applying the subset construction:
Applying the subset construction:

<table>
<thead>
<tr>
<th>NFA states</th>
<th>ε-closure (move(s, *))</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0 q_0</td>
<td>$q_1, q_2, q_3, q_4, q_6, q_9$</td>
</tr>
<tr>
<td>s_1 $q_1, q_2, q_3, q_4, q_6, q_9$</td>
<td>none</td>
</tr>
<tr>
<td>s_2 $q_5, q_8, q_9, q_3, q_4, q_6$</td>
<td>none</td>
</tr>
<tr>
<td>s_3 $q_7, q_8, q_9, q_3, q_4, q_6$</td>
<td>none</td>
</tr>
</tbody>
</table>
The DFA for $a (b | c)^*$

• Ends up smaller than the NFA
• All transitions are deterministic
Automating Scanner Construction

RE \rightarrow NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves

NFA \rightarrow DFA (subset construction)
• Build the simulation

DFA \rightarrow Minimal DFA
• Hopcroft’s algorithm

DFA \rightarrow RE (not really part of scanner construction)
• All pairs, all paths problem
• Union together paths from s_0 to a final state

The Cycle of Constructions

cs415, spring 19 Lecture 8 21
The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state
The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:
• \(\forall a \in \Sigma, \) transitions on \(a \) lead to equivalent states \((\text{DFA})\)
• if \(a \text{-transitions to different sets} \Rightarrow \) two states must be in different sets, i.e., cannot be equivalent
DFA Minimization

The Big Picture
- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:
- \(\forall a \in \Sigma, \text{ transitions on } a \text{ lead to equivalent states} \) (DFA)
- if \(a \)-transitions to different sets \(\Rightarrow \) two states must be in different sets, i.e., cannot be equivalent

A partition \(P \) of \(S \)
- Each state \(s \in S \) is in exactly one set \(p_i \in P \)
- The algorithm iteratively partitions the DFA’s states
Details of the algorithm

- Group states into maximal size sets, **optimistically**
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Initial partition, P_0, has two sets: $\{F\} \& \{Q-F\}$ \hspace{4cm} (D=($Q, \Sigma, \delta, q_0, F$))

Splitting a set ("partitioning a set by a")

- Assume $q_a, q_b \in s$, and $\delta(q_a, a) = q_x$, & $\delta(q_b, a) = q_y$
- If q_x & q_y are not in the same set, then s must be split
 $\Rightarrow q_a$ has transition on a, q_b does not $\Rightarrow a$ splits s
The algorithm

\[P \leftarrow \{ F, \{Q - F}\} \]

while (\(P \) is still changing)

\[T \leftarrow \{ \} \]

for each set \(S \in P \)

\[T \leftarrow T \cup \text{split}(S) \]

\[P \leftarrow T \]

\text{split}(S):

for each \(a \in \Sigma \)

if \(a \) splits \(S \) into \(S_1, S_2, \ldots \) then

return \(\{S_1, S_2, \ldots\} \)

else return \(S \)

Why does this work?

- Partition \(P \in 2^Q \)
- Start off with 2 subsets of \(Q \) \{\(F \)\} and \{\(Q - F \)\}
- While loop takes \(P_i \rightarrow P_{i+1} \) by splitting 1 or more sets
- \(P_{i+1} \) is at least one step closer to the partition with \(|Q| \) sets
- Maximum of \(|Q| \) splits

Note that

- Partitions are never combined

This is a fixed-point algorithm!
Then, apply the minimization algorithm

<table>
<thead>
<tr>
<th>Current Partition</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0) ({s_1, s_2, s_3} {s_0})</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

To produce the minimal DFA

We observed that a human would design a simpler automaton than Thompson’s construction & the subset construction did.

Minimizing that DFA produces the one that a human would design!
Wrap-up Lexical Analysis

Syntax Analysis (top-down)

Read EaC: Chapter 3.1 - 3.3