CS415 Compilers
Instruction Scheduling &
Lexical Analysis

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
Announcements

• Second homework has been posted (bottom-up allocation & instruction scheduling); due on Friday, February 15, 11:59pm

• First project will be on list scheduling. Will be posted this week.
Instruction Scheduling

EaC Chapter 12
12.1 - 12.3

Part of the compiler’s back end

Instruction Selection → Register Allocation → Instruction Scheduling → Machine code

Errors

m register k register
Dependences ⇒ defined on memory locations / registers

Statement/instruction \(b \) depends on statement/instruction \(a \) if there exists:

- **true** of flow dependence
 \(a \) writes a location/register that \(b \) later reads \hspace{1cm} (RAW conflict)

- **anti** dependence
 \(a \) reads a location/register that \(b \) later writes \hspace{1cm} (WAR conflict)

- **output** dependence
 \(a \) writes a location/register that \(b \) later writes \hspace{1cm} (WAW conflict)

Dependences define ORDER CONSTRAINTS that need to be respected in order to generate correct code.
To capture properties of the code, build a **precedence graph** G

- **Nodes** $n \in G$ are operations with $\text{type}(n)$ and $\text{delay}(n)$
- **An edge** $e = (n_1, n_2) \in G$ if n_2 depends on n_1

```
  a: loadAl r0,@w ⇒ r1
  b: add    r1,r1 ⇒ r1
  c: loadAl r0,@x ⇒ r2
  d: mult   r1,r2 ⇒ r1
  e: loadAl r0,@y ⇒ r3
  f: mult   r1,r3 ⇒ r1
  g: loadAl r0,@z ⇒ r2
  h: mult   r1,r2 ⇒ r1
  i: storeAl r1 ⇒ r0,@w
```

The Precedence/Dependence Graph

All other dependences (output & anti) are covered, i.e., are satisfied through the dependencies shown.
Example latencies

Machine model (ISA) with different latencies/delays

<table>
<thead>
<tr>
<th>Operation</th>
<th>Cycles (latency/delay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>load</td>
<td>3</td>
</tr>
<tr>
<td>loadl</td>
<td>1</td>
</tr>
<tr>
<td>loadAl</td>
<td>3</td>
</tr>
<tr>
<td>store</td>
<td>3</td>
</tr>
<tr>
<td>storeAl</td>
<td>3</td>
</tr>
<tr>
<td>add</td>
<td>1</td>
</tr>
<tr>
<td>mult</td>
<td>2</td>
</tr>
<tr>
<td>fadd</td>
<td>1</td>
</tr>
<tr>
<td>fmult</td>
<td>2</td>
</tr>
<tr>
<td>shift</td>
<td>1</td>
</tr>
</tbody>
</table>
A **correct schedule** S maps each $n \in N$ into a non-negative integer representing its **cycle number** such that

1. $S(n) \geq 0$, for all $n \in N$, obviously
2. If $(n_1, n_2) \in E$, $S(n_1) + \text{delay}(n_1) \leq S(n_2)$
3. For each type t, there are no more operations of type t in any cycle than the target machine can issue;
 (Note: we only use a single type here - single pipeline)

The **length** of a schedule S, denoted $L(S)$, is

$$L(S) = \max_{n \in N} (S(n) + \text{delay}(n))$$

The goal is to find the shortest possible correct schedule. S is **time-optimal** if $L(S) \leq L(S_1)$, for all other schedules S_1

Note: we are trying to minimize execution time here.
Local (Forward) List Scheduling

\[
\begin{align*}
\text{Cycle} & \leftarrow 0 \\
\text{Ready} & \leftarrow \text{leaves of } P \\
\text{Active} & \leftarrow \emptyset \\
\text{while } (\text{Ready} \cup \text{Active} \neq \emptyset) \quad & \text{\quad \quad \quad \quad \quad \quad \text{Removal in priority order}} \\
& \quad \text{if } (\text{Ready} \neq \emptyset) \text{ then} \\
& \quad \quad \text{remove an op from Ready} \\
& \quad \quad S(op) \leftarrow \text{Cycle} \\
& \quad \quad \text{Active} \leftarrow \text{Active} \cup \text{op} \\
\text{Cycle} & \leftarrow \text{Cycle} + 1 \\
\text{for each } & \text{op } \in \text{Active} \\
& \quad \text{if } (S(op) + \text{delay}(op) \leq \text{Cycle}) \text{ then} \\
& \quad \quad \text{remove op from Active} \\
& \quad \quad \text{for each successor s of op in P} \\
& \quad \quad \text{if } (s \text{ is ready}) \text{ then} \\
& \quad \quad \quad \text{Ready} \leftarrow \text{Ready} \cup s \\
\end{align*}
\]
Scheduling Example

<table>
<thead>
<tr>
<th>Operation</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>load</td>
<td>3</td>
</tr>
<tr>
<td>loadI</td>
<td>1</td>
</tr>
<tr>
<td>loadAI</td>
<td>3</td>
</tr>
<tr>
<td>store</td>
<td>3</td>
</tr>
<tr>
<td>storeAI</td>
<td>3</td>
</tr>
<tr>
<td>add</td>
<td>1</td>
</tr>
<tr>
<td>mult</td>
<td>2</td>
</tr>
<tr>
<td>fadd</td>
<td>1</td>
</tr>
<tr>
<td>fmult</td>
<td>2</td>
</tr>
<tr>
<td>shift</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Loads & stores may or may not block**
 - Non-blocking \(\Rightarrow\) fill those issue slots
- **Branches typically have delay slots**
 - Fill slots with operations unrelated to branch condition evaluation
 - Percolates branch upward
- **Branch Prediction may hide branch latencies** (hardware feature)

Build a simple local scheduler (basic block)
- non-blocking loads & stores
- different latencies load/store vs. arith. etc. operations
- different heuristics
- forward / backward scheduling
1. Build the dependence graph

The Code

\[
\begin{align*}
S(n): & \\
0 & a: \text{loadAI} \quad r_0, @w & \rightarrow r_1 \\
3 & b: \text{add} \quad r_1, r_1 & \rightarrow r_1 \\
4 & c: \text{loadAI} \quad r_0, @x & \rightarrow r_2 \\
7 & d: \text{mult} \quad r_1, r_2 & \rightarrow r_1 \\
8 & e: \text{loadAI} \quad r_0, @y & \rightarrow r_3 \\
11 & f: \text{mult} \quad r_1, r_3 & \rightarrow r_1 \\
12 & g: \text{loadAI} \quad r_0, @z & \rightarrow r_2 \\
15 & h: \text{mult} \quad r_1, r_2 & \rightarrow r_1 \\
17 & i: \text{storeAI} \quad r_1 & \rightarrow r_0, @w \\
20 & & \\
\end{align*}
\]

⇒ 20 cycles

The Dependence Graph
1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

The Code

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r3
f: mult r1,r3 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Dependence Graph
1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

The Code

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a:</td>
<td>loadAI</td>
<td>r0,@w ⇒ r1</td>
</tr>
<tr>
<td>b:</td>
<td>add</td>
<td>r1,r1 ⇒ r1</td>
</tr>
<tr>
<td>c:</td>
<td>loadAI</td>
<td>r0,@x ⇒ r2</td>
</tr>
<tr>
<td>d:</td>
<td>mult</td>
<td>r1,r2 ⇒ r1</td>
</tr>
<tr>
<td>e:</td>
<td>loadAI</td>
<td>r0,@y ⇒ r3</td>
</tr>
<tr>
<td>f:</td>
<td>mult</td>
<td>r1,r3 ⇒ r1</td>
</tr>
<tr>
<td>g:</td>
<td>loadAI</td>
<td>r0,@z ⇒ r2</td>
</tr>
<tr>
<td>h:</td>
<td>mult</td>
<td>r1,r2 ⇒ r1</td>
</tr>
<tr>
<td>i:</td>
<td>storeAI</td>
<td>r1 ⇒ r0,@w</td>
</tr>
</tbody>
</table>

The Dependence Graph

Note: Here we assume that an operation has to finish to satisfy an anti dependence. Our ILOC simulator takes only one cycle to satisfy an anti dependence since read-stage is executed before write stage (EaC).
1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

The Code

a: loadAI r0,@w ⇒ r1
b: add r1,r1 ⇒ r1
c: loadAI r0,@x ⇒ r2
d: mult r1,r2 ⇒ r1
e: loadAI r0,@y ⇒ r3
f: mult r1,r3 ⇒ r1
g: loadAI r0,@z ⇒ r2
h: mult r1,r2 ⇒ r1
i: storeAI r1 ⇒ r0,@w

The Dependence Graph

Note: Here we assume that an operation has to finish to satisfy an anti dependence. Our ILOC simulator takes only one cycle to satisfy an anti dependence since read-stage is executed before write stage (EaC).
Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling (forward)

a: loadAI r0,@w \Rightarrow r1
b: add r1,r1 \Rightarrow r1
c: loadAI r0,@x \Rightarrow r2
d: mult r1,r2 \Rightarrow r1
e: loadAI r0,@y \Rightarrow r3
f: mult r1,r3 \Rightarrow r1
g: loadAI r0,@z \Rightarrow r2
h: mult r1,r2 \Rightarrow r1
i: storeAI r1 \Rightarrow r0,@w

The Dependence Graph

We assume full latency for anti-dependences here
1. Build the dependence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling (forward)

The Dependence Graph

We assume full latency for anti-dependences here
More on Scheduling

Forward list scheduling
- start with available ops
- work forward
- ready ⇒ all operands available

Backward list scheduling
- start with no successors
- work backward
- ready ⇒ latency covers operands

Different heuristics (forward) based on Dependence Graph
1. Longest latency weighted path to root (⇒ critical path)
2. Highest latency instructions (⇒ more overlap)
3. Most immediate successors (⇒ create more candidates)
4. Most descendents (⇒ create more candidates)
5. ...

Interactions with register allocation (Note: we are not doing this)
- perform dynamic register renaming (⇒ may require spill code)
- move life ranges around (⇒ may remove or require spill code)
- ...

The purpose of the front end is to deal with the input language

- Perform a membership test: \(\text{code} \in \text{source language?} \)
- Is the program well-formed (semantically)?
- Build an IR version of the code for the rest of the compiler

The front end is not monolithic
The Front End

Scanner

- Maps stream of characters into words
 - Basic unit of syntax
 - \(x = x + y \) becomes
 \[\langle \text{id}, x \rangle \langle \text{eq,=} \rangle \langle \text{id,} x \rangle \langle \text{pl,}+ \rangle \langle \text{id,} y \rangle \langle \text{sc,}; \rangle \]
- Characters that form a word are its **lexeme**
- Its **part of speech** (or **syntactic category**) is called its **token type**
- Scanner discards white space & (often) comments

Speed is an issue in scanning
⇒ use a specialized recognizer
The Front End

Parser

- Checks stream of classified words (parts of speech) for grammatical correctness
- Determines if code is syntactically well-formed
- Guides checking at deeper levels than syntax
- Builds an IR representation of the code

We’ll get to parsing in the next lectures
The Big Picture

• Language syntax is specified with *parts of speech*, not *words*
• Syntax checking matches *parts of speech* against a grammar
• Here is an example context free grammar (CFG) G:

G in BNF form

1. $goal \rightarrow expr$
2. $expr \rightarrow expr \ op \ term$
3. $\mid \ term$
4. $term \rightarrow number$
5. $\mid \ id$
6. $op \rightarrow +$
7. $\mid -$

$S = goal$
$T = \{ \text{number, id, +, -} \}$
$N = \{ goal, expr, term, op \}$
$P = \{ 1, 2, 3, 4, 5, 6, 7 \}$

$G = (S, T, N, P)$
Why study lexical analysis?
• We want to avoid writing scanners by hand

Goals:
→ To simplify specification & implementation of scanners
→ To understand the underlying techniques and technologies

Specifications written as “regular expressions”
Represent words as indices into a global table

Source code → Scanner Generator → Scanner → parts of speech & words (tokens)

Specifications

“Regular expressions”
Lexical patterns form a **regular language**

*** any finite language is regular ***

Regular expressions (REs) describe regular languages.

Regular Expression (over alphabet \(\Sigma \))

- \(\varepsilon \) is a RE denoting the set \(\{ \varepsilon \} \)
- If “a” is in \(\Sigma \), then \(a \) is a RE denoting \(\{a\} \)
- If \(x \) and \(y \) are REs denoting \(L(x) \) and \(L(y) \) then
 - \(x | y \) is an RE denoting \(L(x) \cup L(y) \)
 - \(xy \) is an RE denoting \(L(x)L(y) \)
 - \(x^* \) is an RE denoting \(L(x)^* \)
 - \((x) \) is an RE denoting \(L(x) \)

Ever type “rm *.o a.out” ?

Precedence is closure, then concatenation, then alternation
Set Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union of L and M</td>
<td>(L \cup M = { s \mid s \in L \text{ or } s \in M })</td>
</tr>
<tr>
<td>Written L \cup M</td>
<td></td>
</tr>
<tr>
<td>Concatenation of L and M</td>
<td>(LM = { st \mid s \in L \text{ and } t \in M })</td>
</tr>
<tr>
<td>Written LM</td>
<td></td>
</tr>
<tr>
<td>Kleene closure of L</td>
<td>(L^* = \bigcup_{0 \leq i \leq \infty} L^i)</td>
</tr>
<tr>
<td>Written L^*</td>
<td></td>
</tr>
<tr>
<td>Positive Closure of L</td>
<td>(L^+ = \bigcup_{1 \leq i \leq \infty} L^i)</td>
</tr>
<tr>
<td>Written L^+</td>
<td></td>
</tr>
</tbody>
</table>

These definitions should be well known
Examples of Regular Expressions

Identifiers:

\[
\begin{align*}
\text{Letter} & \rightarrow (a|b|c| \ldots |z|A|B|C| \ldots |Z) \\
\text{Digit} & \rightarrow (0|1|2| \ldots |9) \\
\text{Identifier} & \rightarrow \text{Letter} (\text{Letter} | \text{Digit})^* \\
\end{align*}
\]

Numbers:

\[
\begin{align*}
\text{Integer} & \rightarrow (\pm|\varepsilon)(0|1|2|3| \ldots |9)(\text{Digit}^*) \\
\text{Decimal} & \rightarrow \text{Integer} \cdot \text{Digit}^* \\
\text{Real} & \rightarrow (\text{Integer} | \text{Decimal})E(\pm|\varepsilon)\text{Digit}^* \\
\text{Complex} & \rightarrow (\text{Real} \pm \text{Real}) \\
\end{align*}
\]

Numbers can get much more complicated!
Regular expressions can be used to specify the words to be translated to parts of speech by a lexical analyzer.

Using results from automata theory and theory of algorithms, we can automatically build recognizers from regular expressions.

⇒ We study REs and associated theory to automate scanner construction!
Consider the problem of recognizing ILOC register names

\[\text{Register} \to r \ (0|1|2| ... | 9) \ (0|1|2| ... | 9)^* \]

- Allows registers of arbitrary number
- Requires at least one digit

RE corresponds to a recognizer (or DFA)

Recognizer for Register

Transitions on other inputs go to an error state, \(s_e \)
DFA operation

- Start in state S_0 & take transitions on each input character
- DFA accepts a word x iff x leaves it in a final state (S_2)

So,

- $r17$ takes it through s_0, s_1, s_2 and accepts
- r takes it through s_0, s_1 and fails
- a takes it straight to error state s_e (not shown here)
To be useful, recognizer must turn into code

Char ← next character
State ← s_0

while (Char ≠ EOF)
 State ← δ(State, Char)
 Char ← next character

if (State is a final state) then report success
else report failure

<table>
<thead>
<tr>
<th>δ</th>
<th>r</th>
<th>0,1,2,3,4,5,6,7,8,9</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_1</td>
<td>s_e</td>
<td>s_2</td>
<td>s_e</td>
</tr>
<tr>
<td>s_2</td>
<td>s_e</td>
<td>s_2</td>
<td>s_e</td>
</tr>
<tr>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
</tbody>
</table>

Skeleton recognizer

Table encoding RE

Example (continued)
To be useful, recognizer must turn into code

Char ← next character
State ← s_0

while (Char ≠ EOF)
 State ← δ(State, Char)
 perform specified action
 Char ← next character

if (State is a final state)
 then report success
else report failure

Char ← next character
State ← s_0

while (Char ≠ EOF)
 State ← δ(State, Char)
 perform specified action
 Char ← next character

if (State is a final state)
 then report success
else report failure

<table>
<thead>
<tr>
<th>δ</th>
<th>r</th>
<th>0,1,2,3,4,5,6,7,8,9</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1 start</td>
<td>s_e error</td>
<td>s_e error</td>
</tr>
<tr>
<td>s_1</td>
<td>s_e error</td>
<td>s_2 add</td>
<td>s_e error</td>
</tr>
<tr>
<td>s_2</td>
<td>s_e error</td>
<td>s_2 add</td>
<td>s_e error</td>
</tr>
<tr>
<td>s_e</td>
<td>s_e error</td>
<td>s_e error</td>
<td>s_e error</td>
</tr>
</tbody>
</table>

Skeleton recognizer

Table encoding RE
r Digit Digit* allows arbitrary numbers

• Accepts r00000
• Accepts r99999
• What if we want to limit it to r0 through r31?

Write a tighter regular expression

→ Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))
→ Register → r0|r1|r2| ... |r31|r00|r01|r02| ... |r09

Produces a more complex DFA

• Has more states
• Same cost per transition
• Same basic implementation
The DFA for

\[\text{Register} \rightarrow r \ ((0\mid 1\mid 2) \ (\text{Digit} \mid \varepsilon) \ | \ (4\mid 5\mid 6\mid 7\mid 8\mid 9) \ | \ (3\mid 30\mid 31)) \]

- Accepts a more constrained set of registers
- Same set of actions, more states
Tighter register specification (continued)

<table>
<thead>
<tr>
<th>δ</th>
<th>r</th>
<th>0,1</th>
<th>2</th>
<th>3</th>
<th>4-9</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_1</td>
<td>s_e</td>
<td>s_2</td>
<td>s_2</td>
<td>s_5</td>
<td>s_4</td>
<td>s_e</td>
</tr>
<tr>
<td>s_2</td>
<td>s_e</td>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
<td>s_e</td>
</tr>
<tr>
<td>s_3</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_4</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_5</td>
<td>s_e</td>
<td>s_6</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_6</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
<tr>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
<td>s_e</td>
</tr>
</tbody>
</table>

Table encoding RE for the tighter register specification

Runs in the same skeleton recognizer
The scanner is the first stage in the front end
- Specifications can be expressed using regular expressions
- Build tables and code from a DFA
Goal

• We will show how to construct a finite state automaton to recognize any RE

• Overview:
 → Direct construction of a nondeterministic finite automaton (NFA) to recognize a given RE
 ▪ Requires ε-transitions to combine regular subexpressions
 → Construct a deterministic finite automaton (DFA) to simulate the NFA
 ▪ Use a set-of-states construction
 → Minimize the number of states
 ▪ Hopcroft state minimization algorithm
 → Generate the scanner code
 ▪ Additional specifications needed for details
More Regular Expressions

- All strings of 1s and 0s ending in a 1
 \((0 | 1)^*1\)

- All strings over lowercase letters where the vowels (a,e,i,o, & u) occur exactly once, in ascending order
 \[\text{Cons} \rightarrow (\text{b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z})\]
 \[\text{Cons}^* \text{ a Cons}^* \text{ e Cons}^* \text{ i Cons}^* \text{ o Cons}^* \text{ u Cons}^*\]

- All strings of 1s and 0s that do not contain three 0s in a row:
More Regular Expressions

• All strings of 1s and 0s ending in a 1
 \[(0 \mid 1)^*1\]

• All strings over lowercase letters where the vowels (a,e,i,o, & u) occur exactly once, in ascending order
 \[Cons \rightarrow (b\mid c\mid d\mid f\mid g\mid h\mid j\mid k\mid l\mid m\mid n\mid p\mid q\mid r\mid s\mid t\mid v\mid w\mid x\mid y\mid z)\]
 \[Cons^* \ a \ Cons^* \ e \ Cons^* \ i \ Cons^* \ o \ Cons^* \ u \ Cons^*\]

• All strings of 1s and 0s that do not contain three 0s in a row:
 \[(1^* (\varepsilon \mid 01 \mid 001) 1^*)^* (\varepsilon \mid 0 \mid 00)\]
Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)

• May be hard to directly construct the right DFA

What about an RE such as \((a \mid b)^* \text{abb}\)?

This is a little different

• \(S_0\) has a transition on \(\varepsilon\)
• \(S_1\) has two transitions on \(a\)

This is a non-deterministic finite automaton (NFA)
Non-deterministic Finite Automata

- An NFA accepts a string x iff \exists a path though the transition graph from s_0 to a final state such that the edge labels spell x
- Transitions on ε consume no input
- To “run” the NFA, start in s_0 and \textit{guess} the right transition at each step
 \begin{itemize}
 \item Always guess correctly
 \item If some sequence of correct guesses accepts x then accept
 \end{itemize}

Why study NFAs?
- They are the key to automating the RE\toDFA construction
- We can paste together NFAs with ε-transitions
DFA is a special case of an NFA

• DFA has no \(\varepsilon \) transitions
• DFA’s transition function is single-valued
• Same rules will work

DFA can be simulated with an NFA

\[\rightarrow \text{Obviously} \]

NFA can be simulated with a DFA

(less obvious)

• Simulate sets of possible states
• Possible exponential blowup in the state space
• Still, one state per character in the input stream
Automating Scanner Construction

To convert a specification into code:
1. Write down the RE for the input language
2. Build a big NFA
3. Build the DFA that simulates the NFA
4. Systematically shrink the DFA
5. Turn it into code

Scanner generators
- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser (define all parts of speech)
- You could build one in a weekend!
Automating Scanner Construction

RE → NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves

NFA → DFA (subset construction)
• Build the simulation

DFA → Minimal DFA
• Hopcroft’s algorithm

DFA → RE (Not part of the scanner construction)
• All pairs, all paths problem
• Take the union of all paths from s_0 to an accepting state

The Cycle of Constructions
Key idea

- NFA pattern for each symbol and each operator
- Each NFA has a single start and accept state
- Join them with ε moves in precedence order

Ken Thompson, CACM, 1968
More Lexical Analysis
Lexical Analysis

Read EaC: Chapters 2.1 – 2.5;