CS415 Compilers,

Code Generation,

Local Common Subexpression Elimination Optimization

Intermediate Representations

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
Announcements

- Homework 7 deadline tonight
- Homework 8 has been posted, due Wednesday, April 25
- First project grades have been posted
- Second project new due date: Wednesday, April 25
- Third project (local CSE) will be posted later this week, due May 2
- Midterms have been returned
 If you have any concerns with respect to the midterm, please talk to TA and/or instructor by Monday, April 23. No more challenges after that date.
- Thinking about taking 515 in the fall 2018 as an undergrad? Please see our class website for information.
Announcements

Final exam: Tuesday, May 8, noon-3:00pm, Physics Lecture Hall, Busch Campus

Conflicts?

If you have a conflict, please send me the details of your conflict: class, email of instructor, time of scheduled exam
Boolean & Relational Values

How should the compiler represent them?
• Answer depends on the target machine

Two classic approaches
• Numerical representation
• Positional (implicit) representation

Correct choice depends on both context and ISA
Boolean & Relational Values

Numerical representation

- Assign values to TRUE and FALSE
- Use hardware AND, OR, and NOT operations
- Use comparison to get a boolean from a relational expression

Examples

\[
x < y \quad \text{becomes} \quad \text{cmp_LT } r_x, r_y \Rightarrow r_1
\]

\[
\text{if } (x < y) \\
\text{then stmt}_1 \quad \text{becomes} \quad \text{cmp_LT } r_x, r_y \Rightarrow r_1 \\
\text{else stmt}_2 \quad \text{becomes} \quad \text{cbr } r_1 \Rightarrow _\text{stmt}_1, _\text{stmt}_2
\]
Boolean & Relational Values

What if the ISA uses a condition code?
• Must use a conditional branch to interpret result of compare
• Necessitates branches in the evaluation

Example: // r_2 should contain boolean value of “$x<y$” evaluation

```
cmp r_x, r_y \Rightarrow cc_1
\text{cbr}_{\bot}T cc_1 \rightarrow L_T, L_F
```

$x < y \quad \text{becomes} \quad L_T: \; \text{loadl} \; 1 \Rightarrow r_2
\text{br} \quad \rightarrow L_E
L_F: \; \text{loadl} \; 0 \Rightarrow r_2
L_E: \; \ldots \text{other stmts} \ldots$

This “positional representation” is much more complex
The last example actually encodes result in the PC.
If result is used to control an operation, this may be enough.

Example

if (x < y)
 then a ← c + d
else a ← e + f

Variations on the ILOC Branch Structure

<table>
<thead>
<tr>
<th></th>
<th>Straight Condition Codes</th>
<th>Boolean Compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>comp</td>
<td>rₓ, rᵧ =⇒ cc₁</td>
<td>cmp_LT</td>
</tr>
<tr>
<td>cbr_LT</td>
<td>cc₁ → L₁, L₂</td>
<td>cbr</td>
</tr>
<tr>
<td>L₁: add</td>
<td>rₓ, rᵧ =⇒ ra</td>
<td>r₁ → L₁, L₂</td>
</tr>
<tr>
<td>br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L₂: add</td>
<td>rₓ, rᵧ =⇒ ra</td>
<td></td>
</tr>
<tr>
<td>br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_OUT: nop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Condition code version does not directly produce (x < y)

Boolean version does
Still, there is no significant difference in the code produced
Boolean & Relational Values

Conditional move & predication both simplify this code

Example

| if (x < y) then a ← c + d | else a ← e + f |

Other Architectural Variations

<table>
<thead>
<tr>
<th>Conditional Move</th>
<th>Predicated Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>comp x, y → cc₁</td>
<td>cmp_LT rₓ, rᵧ → r₁</td>
</tr>
<tr>
<td>add rₓ, rₙ → r₁</td>
<td>(r₁)? add rₓ, rₙ → r₁</td>
</tr>
<tr>
<td>add rₙ, rₓ → r₂</td>
<td>(¬r₁)? add rₑ, rₓ → r₁</td>
</tr>
<tr>
<td>i2i_< cc₁, r₁, r₂ → rₐ</td>
<td></td>
</tr>
</tbody>
</table>

Both versions avoid the branches
Both are shorter than CCs or Boolean-valued compare
Are they better? What about power?
Consider the assignment \(x \leftarrow a < b \land c < d \)

<table>
<thead>
<tr>
<th>Variations on the ILOC Branch Structure</th>
<th>Straight Condition Codes</th>
<th>Boolean Compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>comp</td>
<td>(r_a, r_b \Rightarrow cc_1)</td>
<td>(r_a, r_b \Rightarrow r_1)</td>
</tr>
<tr>
<td>cbr_L</td>
<td>(cc_1 \rightarrow L_1, L_2)</td>
<td>(r_c, r_d \Rightarrow r_2)</td>
</tr>
<tr>
<td>L_1: comp</td>
<td>(r_c, r_d \Rightarrow cc_2)</td>
<td>and (r_1, r_2 \Rightarrow r_x)</td>
</tr>
<tr>
<td>cbr_L</td>
<td>(cc_2 \rightarrow L_3, L_2)</td>
<td></td>
</tr>
<tr>
<td>L_2: loadl</td>
<td>0 (\Rightarrow r_x)</td>
<td></td>
</tr>
<tr>
<td>br</td>
<td>(\rightarrow L_{OUT})</td>
<td></td>
</tr>
<tr>
<td>L_3: loadl</td>
<td>1 (\Rightarrow r_x)</td>
<td></td>
</tr>
<tr>
<td>br</td>
<td>(\rightarrow L_{OUT})</td>
<td></td>
</tr>
<tr>
<td>L_{OUT}: nop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here, the boolean compare produces much better code.
tries to improve quality of code (may fail in some cases)
optimizer typically consists of multiple passes
different optimization (code improvement) objectives:
 - execution time reduction
 - reduction in resource requirements (memory, registers)
 - (peak) power and energy reduction

criteria for effectiveness of optimizations
 - safety - program semantics must be preserved
 - opportunity - how often can it be applied?
 - profitability - how much improvement?
We will focus on two optimizations:

1. Common subexpression elimination (CSE – local, ILOC level)
2. Vectorization / parallelization (source level) - will do this later if time allows

Local CSE reference: ALSU, chapter 8.5.2
Optimization: **Local Common Subexpression Elimination (CSE)**

Source code: \(a(i) \) (1-based indexing)

\[
\begin{align*}
4. & \quad t1 = \text{addr}(a) - 4 \\
5. & \quad t2 = i \times 4 \\
6. & \quad t3 = t1[t2]
\end{align*}
\]

...
Optimization: **Local Common Subexpression Elimination (CSE)**

Source code: \(a(i) \times a(i) \) (1-based indexing)

\[
\begin{align*}
4. & \quad t1 = \text{addr}(a) - 4 \\
5. & \quad t2 = i \times 4 \\
6. & \quad t3 = t1[t2] \\
7. & \quad t4 = \text{addr}(a) - 4 \\
8. & \quad t5 = i \times 4 \\
9. & \quad t6 = t4[t5] \\
10. & \quad t7 = t3 \times t6 \\
\end{align*}
\]
Optimization: **Local Common Subexpression Elimination (CSE)**

Source code: \(a(i) \times a(i) \) (1-based indexing)

```
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
```

Basic Block DAG Construction

```
[ ]], t3, t6
```

```
\[ t1 = addr[a] - 4 \\
t2 = i * 4 \\
t3 = t1[t2] \\
t4 = addr[a] - 4 \\
t5 = i * 4 \\
t6 = t4[t5] \\
t7 = t3 * t6
```

```
\[ t1 = addr[a] - 4 \\
t2 = i * 4 \\
t3 = t1[t2] \\
t7 = t3 * t3
```

\(* \), \(t7 \)
How to add a subexpression into a partially constructed DAG:

\[A = B + C \]

Is there a node already for \(B + C \)?
- If so, add \(A \) to its list of labels.
- If not:
 - is there a node labeled \(B \) already?

 If not, create a leaf labeled \(B \).
 - Is there a node labeled \(C \) already?

 If not, create a leaf labeled \(C \).
 - Create a node labeled \(A \), for +, with left child \(B \) and right child \(C \).

How to do this? HASHING <op, node(opd1), node(opd2)>
DAG Construction Algorithm

How to add a subexpression into a partially constructed DAG:

\[A = B + C \]

Is there a node already for \(B + C \)? \(<+, \text{node}(B), \text{node}(C)> \) defined?
- If so, add \(A \) to its list of labels.
- If not:
 - is there a node labeled \(B \) already? \(\text{node}(B) \) defined?
 If not, create a leaf labeled \(B \).
 - Is there a node labeled \(C \) already? \(\text{node}(C) \) defined?
 If not, create a leaf labeled \(C \).
 - Create a node labeled \(A \), for \(+\), with left child \(B \) and right child \(C \).

Create node(+) with children \(\text{node}(B), \text{node}(C) \)

How to do this? HASHING \(<\text{op}, \text{node}(\text{opd1}), \text{node}(\text{opd2})> \)
DAG Construction Algorithm

Summary:
- every expression is assigned a value number
 examples: node(a),
 node(4),
 node(<+, valNum1, ValNum2>)
- assignment changes value number associated with LHS variable

- implementation of value numbers
 • use pointers of nodes in DAG
 • use virtual register numbers (code shape encoding!)

You could do this in a single pass in our compiler!
ILOC common subexpressions

Source code: $A(i) + A(i)$

```
loadI 1024 => r0

loadAI r0, 8 => r1  // assume 8 is base address of i
loadI 1 => r2
sub r1, r2 => r3  // first element of A is A(1)
loadI 4 => r4
mult r3, r4 => r5 // offset of A(i) in bytes
loadAO r0, r5 => r6  // A(i)

loadAI r0, 8 => r7  // assume 8 is base address of i
loadI 1 => r8
sub r7, r8 => r9  // first element of A is A(1)
loadI 4 => r10
mult r9, r10 => r11 // offset of A(i) in bytes
loadAO r0, r11 => r12  // A(i)

add r6, r12 => r13  // A(i) + A(i)
```
ILOC common subexpressions

Idea: Use register numbers as value numbers

Source code: A(i) + A(i)

```plaintext
loadI 1024 => r0
loadAI r0, 8 => r1
loadI 1 => r2
sub r1, r2 => r3
loadI 4 => r4
mult r3, r4 => r5
loadAO r0, r5 => r6
loadAI r0, 8 => r7
loadI 1 => r8
sub r7, r8 => r9
loadI 4 => r10
mult r9, r10 => r11
loadAO r0, r11 => r12
add r6, r12 => r13
```

Hash(<loadI, 1024>) = undefined; gen_code; set to r0, return r0

Hash(<loadAI, r0, 8>) = undefined; gen_code; set to r1, return r1

Hash(<loadI, 1>) = undefined; gen_code; set to r2; return r2

Hash(<sub, r1, r2>) = undefined; gen_code; set to r3; return r3

Hash(<loadI, 4>) = undefined; gen_code; set to r4; return r4

Hash(<mult, r3, r4>) = undefined; gen_code; set to r5; return r5

Hash(<loadAO, r0, r5>) = undefined; gen_code; set to r6; return r6

Hash(<loadAI, r0, 8>) = r1; no gen_code; return r1

Hash(<loadI, 1>) = r2; no gen_code; return r2

Hash(<sub, r1, r2>) = r3; no gen_code; return r3

Hash(<loadI, 4>) = r4; no gen_code; return r4

Hash(<mult, r3, r4>) = r5; no gen_code; return r5

Hash(<loadAO, r0, r5>) = r6; no gen_code; return r6

Hash(<add, r6, r6>) = undefined; gen_code; set to r7
ILOC common subexpressions

Source code: A(i) + A(i)

loadI 1024 => r0
loadAI r0, 8 => r1
loadI 1 => r2
sub r1, r2 => r3
loadI 4 => r4
mult r3, r4 => r5
loadAO r0, r5 => r6
add r6, r6 => r7

Idea: Use register numbers as value numbers

Hash(<loadI, 1024>) = undef; gen_code; set to r0, return r0
Hash(<loadAI, r0, 8>) = undef; gen_code; set to r1, return r1
Hash(<loadI, 1>) = undef; gen_code; set to r2; return r2
Hash(<sub, r1, r2>) = undef; gen_code; set to r3; return r3
Hash(<loadI, 4>) = undef; gen_code; set to r4; return r4
Hash(<mult, r3, r4>) = undef; gen_code; set to r5; return r5
Hash(<loadAO, r0, r5>) = undef; gen_code; set to r6; ret. r6
Hash(<loadAI, r0, 8>) = r1; no gen_code; return r1
Hash(<loadI, 1>) = r2; no gen_code; return r2
Hash(<sub, r1, r2>) = r3; no gen_code; return r3
Hash(<loadI, 4>) = r4; no gen_code; return r4
Hash(<mult, r3, r4>) = r5; no gen_code; return r5
Hash(<loadAO, r0, r5>) = r6; no gen_code; return r6
Hash(<add, r6, r6>) = undef; gen_code; set to r7
Source code: \((A(i) + A(i)) \times (A(i) + A(i))\)

loadI 1024 => r0

loadAI r0, 8 => r1
loadI 1 => r2
sub r1, r2 => r3
loadI 4 => r4
mult r3, r4 => r5
loadAO r0, r5 => r6

loadAI r0, 8 => r7
loadI 1 => r8
sub r7, r8 => r9
loadI 4 => r10
mult r9, r10 => r11
loadAO r0, r11 => r12

add r6, r12 => r13

How would the CSE code look like?
Source code: \((A(i) + A(i)) \times (A(i) + A(i))\)

```assembly
loadI 1024 => r0
loadAI r0, 8 => r1
loadI 1 => r2
sub r1, r2 => r3
loadI 4 => r4
mult r3, r4 => r5
loadAO r0, r5 => r6
add r6, r6 => r7
mult r7, r7 => r8
```

How would the CSE code look like?

That's it!
Intermediate Representations
(EaC Chapter 5)

- Front end - produces an intermediate representation (IR)
- Middle end - transforms the IR into an equivalent IR that runs more efficiently
- Back end - transforms the IR into native code

IR encodes the compiler’s knowledge of the program
Middle end usually consists of several passes
Intermediate Representations

• Decisions in IR design affect the speed and efficiency of the compiler

• Some important IR properties
 → Ease of generation
 → Ease of manipulation
 → Size
 → Level of abstraction

• The importance of different properties varies between compilers
 → Selecting an appropriate IR for a compiler is critical
Three major categories

- **Structural**
 - Graphically oriented
 - Heavily used in source-to-source translators
 - Tend to be large

- **Linear**
 - Pseudo-code for an abstract machine
 - Level of abstraction varies
 - Simple, compact data structures
 - Easier to rearrange

- **Hybrid**
 - Combination of graphs and linear code

Examples:
- Structural: Trees, DAGs
- Linear: 3 address code, Stack machine code
- Hybrid: Control-flow graph
The level of detail exposed in an IR influences the profitability and feasibility of different optimizations.

Two different representations of an array reference:

```
l chí 1 => r₁
sub r_j, r₁ => r₂
loadI 10 => r₃
mult r₂, r₃ => r₄
sub r_i, r₁ => r₅
add r₄, r₅ => r₆
loadI @A => r₇
Add r₇, r₆ => r₈
load r₈ => r_{Aij}
```

High level AST:
Good for memory disambiguation

Low level linear code:
Good for address calculation
Level of Abstraction

- Structural IRs are usually considered high-level
- Linear IRs are usually considered low-level
- Not necessarily true:

```
load
+
+
*  
/
-
-
-  10  
|   |
+  
/  
i  1
```

Low level AST

```
loadArray A, i, j
```

High level linear code
An abstract syntax tree is the procedure’s parse tree with the nodes for most non-terminal nodes removed.

\[
\begin{align*}
x - 2 * y
\end{align*}
\]

- Can use linearized form of the tree
 - Easier to manipulate than pointers
 - \[x \ 2 \ y \ * \ -\] in postfix form
 - \[- \ * \ 2 \ y \ x\] in prefix form
- \(S\)-expressions are (essentially) ASTs (remember functional languages such as Scheme or Lisp!)
A directed acyclic graph (DAG) is an AST with a unique node for each value.

- Makes sharing explicit
- Encodes redundancy

The expression $z \leftarrow x - 2 \times y$ and $w \leftarrow x / 2$ appears twice, meaning the compiler might arrange to evaluate it just once!
Stack Machine Code

Originally used for stack-based computers, now Java

- Example:
 \[x - 2 \times y \]

 becomes

 \[
 \begin{align*}
 &\text{push } x \\
 &\text{push } 2 \\
 &\text{push } y \\
 &\text{multiply} \\
 &\text{subtract}
 \end{align*}
 \]

Advantages

- Compact form
- Introduced names are \textit{implicit}, not \textit{explicit}
- Simple to generate and execute code

Useful where code is transmitted over slow communication links (the \textit{net})

Implicit names take up no space, where explicit ones do!
Several different representations of three address code

• In general, three address code has statements of the form:

 \[x \leftarrow y \ op z \]

 With 1 operator (\(\text{op}\)) and, at most, 3 names (\(x, y, z\))

Example:

\[z \leftarrow x - 2 \times y \]

becomes

\[t \leftarrow 2 \times y \]

\[z \leftarrow x - t \]

Advantages:

• Resembles many machines
• Introduces a new set of names
• Compact form
Naïve representation of three address code

- Table of \(k \times 4 \) small integers
- Simple record structure
- Easy to reorder
- Explicit names

\[
\begin{align*}
\text{load} & \quad r1, y \\
\text{loadI} & \quad r2, 2 \\
\text{mult} & \quad r3, r2, r1 \\
\text{load} & \quad r4, x \\
\text{sub} & \quad r5, r4, r3
\end{align*}
\]

RISC assembly code

<table>
<thead>
<tr>
<th>Quadruples</th>
</tr>
</thead>
<tbody>
<tr>
<td>load \ 1 \ Y</td>
</tr>
<tr>
<td>loadI \ 2 \ 2</td>
</tr>
<tr>
<td>mult \ 3 \ 2 \ 1</td>
</tr>
<tr>
<td>load \ 4 \ X</td>
</tr>
<tr>
<td>sub \ 5 \ 4 \ 2</td>
</tr>
</tbody>
</table>

The original FORTRAN compiler used “quads”
Three Address Code: Triples

- Index used as implicit name
- 25% less space consumed than quads
- Much harder to reorder

Implicit names take no space!
Control-flow Graph (CFG)

Models the transfer of control in the procedure

- Nodes in the graph are basic blocks
 - Can be represented with quads or any other linear representation
- Edges in the graph represent control flow

Example

```
if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b
```

Basic blocks — Maximal length sequences of straight-line code
Static Single Assignment Form (SSA)

- The main idea: each name defined exactly once in program
- Introduce ϕ-functions to make it work

Original

$$
x \leftarrow \ldots
$$

$$
y \leftarrow \ldots
$$

while $(x < k)$

$$
x \leftarrow x + 1
$$

$$
y \leftarrow y + x
$$

SSA-form

$$
x_0 \leftarrow \ldots
$$

$$
y_0 \leftarrow \ldots
$$

if $(x_0 > k)$ goto next

loop:

$$
x_1 \leftarrow \phi(x_0, x_2)
$$

$$
y_1 \leftarrow \phi(y_0, y_2)
$$

$$
x_2 \leftarrow x_1 + 1
$$

$$
y_2 \leftarrow y_1 + x_2
$$

if $(x_2 < k)$ goto loop

next:

$$
\ldots
$$

Strengths of SSA-form

- Sharper analysis
- “minimal” ϕ-functions placement is non-trivial
- (sometimes) faster algorithms
Work on the project!

Procedure abstraction
Read EaC: Chapter 6.1 - 6.5