CS415 Compilers

Lexical Analysis

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
Announcements

- Homework #2 deadline extension?
- Homework #3 has been posted. Due: Friday, February 23
- My office hours: Not too many students show up. Conflict with other classes?
Lexical Analysis

Read EaC: Chapters 2.1 - 2.5;
Lexical patterns form a regular language

*** any finite language is regular ***

Regular expressions (REs) describe regular languages

Regular Expression (over alphabet Σ)

- ε is a RE denoting the set $\{\varepsilon\}$
- If "a" is in Σ, then a is a RE denoting $\{a\}$
- If x and y are REs denoting $L(x)$ and $L(y)$ then
 - $x \mid y$ is an RE denoting $L(x) \cup L(y)$
 - xy is an RE denoting $L(x)L(y)$
 - x^* is an RE denoting $L(x)^*$
 - (x) is an RE denoting $L(x)$

Ever type "rm *.o a.out"?
Review: NFA

• An NFA accepts a string x iff \exists a path though the transition graph from s_0 to a final state such that the edge labels spell x

• Transitions on ε consume no input

• To “run” the NFA, start in s_0 and guess the right transition at each step
 -> Always guess correctly
 -> If some sequence of correct guesses accepts x then accept

Why study NFAs?

• They are the key to automating the RE \rightarrow DFA construction

• We can paste together NFAs with ε-transitions
DFA is a special case of an NFA

• DFA has no ε transitions
• DFA’s transition function is single-valued
• Same rules will work

DFA can be simulated with an NFA

→ *Obviously*

NFA can be simulated with a DFA

(less obvious)

• Simulate sets of possible states
• Possible exponential blowup in the state space
• Still, one state per character in the input stream
Automating Scanner Construction

To convert a specification into code:
1. Write down the RE for the input language
2. Build a big NFA
3. Build the DFA that simulates the NFA
4. Systematically shrink the DFA
5. Turn it into code

Scanner generators
- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser (define all parts of speech)
- You could build one in a weekend!
Automating Scanner Construction

RE \rightarrow NFA (Thompson’s construction)
- Build an NFA for each term
- Combine them with ε-moves

NFA \rightarrow DFA (subset construction)
- Build the simulation

DFA \rightarrow Minimal DFA
- Hopcroft’s algorithm

DFA \rightarrow RE (Not part of the scanner construction)
- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state

The Cycle of Constructions
Key idea

- NFA pattern for each symbol and each operator
- Each NFA has a single start and accept state
- Join them with ε moves in precedence order

Ken Thompson, CACM, 1968
Example of Thompson’s Construction

Let’s try \(a (b | c)^*\)

1. \(a, b, & c\)

 ![Diagram 1](image1)

2. \(b | c\)

 ![Diagram 2](image2)

3. \((b | c)^*\)

 ![Diagram 3](image3)
Example of Thompson’s Construction (con’t)

4. \(a (b | c)^*\)

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...
Need to build a simulation of the NFA

Two key functions
- $\text{move}(s_i, a)$ is set of states reachable from s_i by a
- ε-closure(s_i) is set of states reachable from s_i by ε

The algorithm (sketch):
- Start state derived from s_0 of the NFA
- Take its ε-closure $S_0 = \varepsilon$-closure(s_0)
- For each state S, compute $\text{move}(S, a)$ for each $a \in \Sigma$, and take its ε-closure
- Iterate until no more states are added

Sounds more complex than it is...
The algorithm:

\[s_0 \leftarrow \varepsilon\text{-closure}(q_0) \]

add \(s_0 \) to \(S \)

while (\(S \) is still changing)

for each \(s_i \in S \)

for each \(a \in \Sigma \)

\[s_? \leftarrow \varepsilon\text{-closure}(\text{move}(s_i,a)) \]

if (\(s_? \notin S \)) then

add \(s_? \) to \(S \) as \(s_j \)

\[T[s_i,a] \leftarrow s_j \]

else

\[T[s_i,a] \leftarrow s_? \]

Let’s think about why this works

The algorithm halts:

1. \(S \) contains no duplicates (test before adding)
2. \(2^\mathcal{Q} \) is finite
3. while loop adds to \(S \), but does not remove from \(S \) (monotone)

\[\Rightarrow \text{the loop halts} \]

\(S \) contains all the reachable NFA states

It tries each symbol in each \(s_i \).

It builds every possible NFA configuration.

\[\Rightarrow S \text{ and } T \text{ form the DFA} \]
Example of a fixed-point computation
- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations
- Canonical construction of sets of LR(1) items
 - Quite similar to the subset construction
- Classic data-flow analysis
 - Solving sets of simultaneous set equations
- DFA minimization algorithm (coming up!)

We will see many more fixed-point computations
NFA → DFA with Subset Construction

a (b | c)^

![NFA Diagram](image)

Applying the subset construction:

<table>
<thead>
<tr>
<th>NFA states</th>
<th>ε-closure (move(s,*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>q_0</td>
</tr>
<tr>
<td>s_1</td>
<td>$q_1, q_2, q_3, q_4, q_6, q_9$</td>
</tr>
<tr>
<td>s_2</td>
<td>$q_5, q_8, q_9, q_3, q_4, q_6$</td>
</tr>
<tr>
<td>s_3</td>
<td>$q_7, q_8, q_9, q_3, q_4, q_6$</td>
</tr>
</tbody>
</table>

Final states
The DFA for $a \ (b \mid c)^*$

- Ends up smaller than the NFA
- All transitions are deterministic
Automating Scanner Construction

- **RE → NFA** (Thompson’s construction)
 - Build an NFA for each term
 - Combine them with ε-moves

- **NFA → DFA** (subset construction)
 - Build the simulation

- **DFA → Minimal DFA**
 - Hopcroft’s algorithm

- **DFA → RE** (not really part of scanner construction)
 - All pairs, all paths problem
 - Union together paths from s_0 to a final state
The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state
The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- \(\forall a \in \Sigma, \text{ transitions on } a \text{ lead to equivalent states} \)
- if \(a \)-transitions to different sets \(\Rightarrow \) two states must be in different sets, i.e., cannot be equivalent
The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- \(\forall a \in \Sigma, \) transitions on \(a \) lead to equivalent states \((DFA) \)
- if \(a \)-transitions to different sets \(\Rightarrow \) two states must be in different sets, i.e., cannot be equivalent

A partition \(P \) of \(S \)

- Each state \(s \in S \) is in exactly one set \(p_i \in P \)
- The algorithm iteratively partitions the DFA’s states
Details of the algorithm
- Group states into maximal size sets, **optimistically**
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Initial partition, P_0, has two sets: \{F\} & \{Q-F\} \quad (D = (Q, \Sigma, \delta, q_0, F))

Splitting a set ("partitioning a set by a")
- Assume $q_a, q_b \in s$, and $\delta(q_a, a) = q_x, \delta(q_b, a) = q_y$
- If q_x, q_y are not in the same set, then s must be split
 $\rightarrow q_a$ has transition on a, q_b does not $\Rightarrow a$ splits s
The algorithm:

\[P \leftarrow \{ F, \{Q-F}\} \]
\[\text{while (} P \text{ is still changing)} \]
\[\quad T \leftarrow \{ \} \]
\[\quad \text{for each set } S \in P \]
\[\quad \quad T \leftarrow T \cup \text{split}(S) \]
\[\quad P \leftarrow T \]

\text{split}(S):
\[\quad \text{for each } a \in \Sigma \]
\[\quad \quad \text{if } a \text{ splits } S \text{ into } S_1, S_2, \ldots \text{ then} \]
\[\quad \quad \quad \text{return } \{S_1, S_2, \ldots\} \]
\[\quad \quad \text{else return } S \]

Why does this work?

- Partition \(P \in 2^Q \)
- Start off with 2 subsets of \(Q \) \{F\} and \{Q-F\}
- While loop takes \(P_i \rightarrow P_{i+1} \) by splitting 1 or more sets
- \(P_{i+1} \) is at least one step closer to the partition with \(|Q|\) sets
- Maximum of \(|Q|\) splits

Note that

- Partitions are never combined

This is a fixed-point algorithm!
Then, apply the minimization algorithm

<table>
<thead>
<tr>
<th>Current Partition</th>
<th>Split on</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>c</td>
</tr>
<tr>
<td>${s_1, s_2, s_3}$</td>
<td>none</td>
</tr>
<tr>
<td>${s_0}$</td>
<td>none</td>
</tr>
<tr>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

To produce the minimal DFA

We observed that a human would design a simpler automaton than Thompson’s construction & the subset construction did.

Minimizing that DFA produces the one that a human would design!
Start with a regular expression

\[r_0 \mid r_1 \mid r_2 \mid r_3 \mid r_4 \mid r_5 \mid r_6 \mid r_7 \mid r_8 \mid r_9 \]
Thompson’s construction produces

The Cycle of Constructions
Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states ...

The Cycle of Constructions
The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

The Cycle of Constructions
More Lexical Analysis

Syntax Analysis

Read EaC: 3.1 - 3.3