Problem 1 – Attribute Grammars and Syntax-Directed Translation Schemes

Assume the following partial grammar:

\[
\begin{align*}
\text{varcl} & \ ::= \ \text{idlist} : \text{type} \\
\text{idlist} & \ ::= \ \text{idlist}, \text{ID} \mid \text{ID} \\
\text{type} & \ ::= \ \text{integer} \mid \text{real} \mid \text{double}
\end{align*}
\]

1. Write an attribute grammar that computes the attribute type for each identifier, i.e., for each occurrence of an ID node in a subtree with \(\text{varcl}\) as its root. State for each attribute that you are using whether it is synthesized or inherited.

2. Show the parse tree for the input string
 \[
 a, b, c, d : \text{double}
 \]
 with all attribute instances and the final values of these attributes, i.e., show the decorated tree.

3. Is your attribute grammar S-attributed or L-attributed?

4. Write a syntax-directed translation scheme that stores the types of the variables in a symbol table. You may use pseudo code in your embedded actions. Assume that each ID has a pre-defined synthesized attribute \text{name} that contains its lexeme. The routine \text{insert(id, type)} inserts an identifier of a particular type into the symbol table. Use YACC-like notation (e.g., \$\$\text{name} or \$1.type).

Problem 2 – Type Systems

Assume a type system with the following inference rules

\[
\begin{align*}
\text{Rule}_{A1} & : \quad E \vdash e_1 : \text{integer} \quad E \vdash e_2 : \text{integer} \quad \frac{}{E \vdash (e_1 + e_2) : \text{integer}} \\
\text{Rule}_{A2} & : \quad E \vdash e : \text{integer} \quad \frac{}{E \vdash *e : \text{pointer} \text{(integer)}} \\
\text{Rule}_{A3} & : \quad E \vdash e : \text{pointer} \text{(integer)} \quad \frac{}{E \vdash &e : \text{integer}}
\end{align*}
\]

Assuming that variable \(a\) and constant \(3\) are of type integer, use the inference rules to determine the types of the following expressions. Note: if a proof does not exist, the type system reports a type error.
1. &a
2. (&a + 3)
3. *a
4. &3
5. (*&a + 3)
6. &&a