1 Problem — Three simple rewrite systems

Remember our “rewrite game” in the second lecture. We represent arithmetic values > 0 as sequences of “|” symbols. For example, | represents value 1, and |||| represents value 5. The input to your rewrite system is either a single value representation, or two value representations surrounded by a begin ($) and end (#) marker, and separated by a & marker. For example, the single input value 3 is represented by $|||#, and the input pair 2,5 is represented by $||&|||#$. The normal forms produced by the rewrite systems do not contain any markers.

Give rules of rewrite systems that implement different arithmetic operations on our chosen representation. A rewrite system consists of a set of rewrite rules of the form $X \Rightarrow Y$ as discussed in class. You do not have to worry about incorrect input.

1. **Successor function**: $f(x) = x + 1$, $x > 0$

 Example: $|||# will be rewritten to ||||$

 Show the rewrite sequence of your rewrite system for the example input.

2. **Triple function**: $f(x) = 3 \cdot x$, $x > 0$

 Example: $|||# will be rewritten to ||||||$

 Show the rewrite sequence of your rewrite system for the example input.

3. **Subtraction function**: $f(x,y) = x - y$, $x > 0$, $y > 0$, and $x > y$

 Example: $||&|||# will be rewritten to ||$

 Show the rewrite sequence of your rewrite system for the example input.

2 Problem — A rewrite system for modulo 3 addition

An interpreter for a language L maps programs written in L to their answers. Remember that a language is a set of words. Let us define our language $L_{add-mod3}$ inductively as follows:

1. The words 0, 1, and 2 are in $L_{add-mod3}$.

2. Assume that both A and B stand for words in the language $L_{add-mod3}$. Then

 (a) (A+B) are also in $L_{add-mod3}$.
Examples of add-mod3 expressions are: \(((1 + 2) + 0)\) and \((1 + (2 + 2))\). However, \(1 + 1\) is not in the language (parenthesis are missing).

Give a rewrite system that “evaluates” or “computes” the value of expressions in \(L_{\text{add-mod3}}\). The operators + corresponds to the standard modulo 3 addition functions given below:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(x +_{\text{mod3}} y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Define a rewrite system for modulo 3 expressions in \(L_{\text{add-mod3}}\) that produces the final value of the expression. A final value is represented by either \(0\), \(1\) or \(2\). Your rewrite system is basically an interpreter for \(L_{\text{add-mod3}}\).

For example, our two expressions \(((1 + 2) + 0)\) and \((1 + (2 + 2))\) should be rewritten to \(0\) and \(2\), respectively. You can assume that your rewrite system will only be presented with correct \(L_{\text{add-mod3}}\) expressions, so don’t worry about error messages.

2. Show your rewrite system steps that are performed for our two example expressions given above. For each step clearly show the left-hand side of the rule in the current expression that you are rewriting.

3. Is the choice of your next rewrite rule and its left-hand side always unique in your rewrite system? If not, show an example.

3 Problem — Regular expressions

Describe the formal languages denoted by the following regular expressions using the English language (e.g.: “All strings over the alphabet . . . that have the property . . .”):

1. \(((\epsilon | 1) 0^*)^*\)
2. \(0(0|1)*1(0|1)1\)
4 Problem — Regular expressions

Write a regular expression for the following language. You must use the regular language definition introduced in class (see lecture 3). Make the expression as compact (short) as possible.

1. All strings of “a”s, “b”s, and “c”s that contain exactly 2 “a”s
2. All strings of “a”s, “b”s, and “c”s that contain at least 1 “b” or at least 3 “c”s.
3. All strings of “a”s, “b”s, and “c”s that do not contain more than 1 “b” and no more than 3 “c”s.

5 Problem — Regular expressions and finite state machines

You are designing a new language with fixed-point numbers. Every fixed-point number should have a unique representation. This means, no leading or trailing 0’s are allowed, and every number must have a “point”. Examples:

- Allowed: 0.0, 10.0, 45000.007, 0.888
- Not allowed: 0, 10, 10., 10.00, 045000.007, .888

1. Write a regular expression for fixed-point numbers for your language.
2. Give a DFA in the form of a state transition graph that recognizes your language. Note: No need to introduce error states; your DFA can reject the input if it gets “stuck”. Keep your DFA as small as possible.

6 Problem — Regular expressions and finite state machines

Use the discussed “translation” strategy for constructing an ϵ-NFA from a regular expression as discussed in lecture 3 for the regular expression.

letter (letter | digit)*

Show the ϵ-NFA for the above regular expression.