Bernstein’s Condition: — There is a data dependence from statement (instance) S_1 to statement S_2 (instance) if

- Both statements (instances) access the same memory location(s)
- One of them is a write
- There is a run-time execution path from S_1 to S_2

Example:

S_1: $\pi = 3.14$
S_2: $R = 5$
S_3: $\text{Area} = \pi \times R^2$
Data Dependence Classifications

“S_2 depends on S_1” — ($S_1 \delta S_2$)

True (flow) dependence
occurs when S_1 writes a memory location that S_2 later reads (RAW).

Anti dependence
occurs when S_1 reads a memory location that S_2 later writes (WAR).

Output dependence
occurs when S_1 writes a memory location that S_2 later writes (WAW).

Input dependence
occurs when S_1 reads a memory location that S_2 later reads (RAR).
Simple Dependence Testing

• Examples:

```c
for (i = 1; i <= 100; i++) {
    S1: A[i] = ...
    S2: ...= A[i - 1]
}
```

```c
float Z[100];
for (i =0; i < 12; i++) {
    S: Z[ i+10 ] = Z[i];
}
```

1. Is there dependence?
2. If so, what type of dependence?
3. From which statement (instance) to which statement (instance)?
Single Induction Variable (SIV) Test

- Single loop nest with constant lower (LB) and upper (UB) bound, and step 1.

  ```
  for i = LB, UB, 1
  ...
  endfor
  ```

- Two array references as affine function of loop induction variable

  ```
  for i = LB, UB, 1
  R1: X(a*i + c1) = ...
  R2: ... = X(a*i + c2)
  endfor
  ```

Question: Is there a true dependence between R1 and R2?
There is a dependence between R1 and R2 iff

$$\exists \ i, \ i': \ LB \leq i \leq i' \leq UB \ and \ (a*i+c_1) = (a*i'+c_2)$$

where i and i' represent two iterations in the iteration space. This means that in both iterations, the same element of array X is accessed.

So let’s just solve the equation:

$$(a * i + c_1) = (a * i' + c_2) \quad \quad \implies \quad (c_1 - c_2)/a = i' - i = \Delta d$$

There is a dependence iff

$$\Delta d \ is \ an \ integer \ value$$

$$UB - LB \geq \Delta d \geq 0$$
Simple Dependence Testing

• Examples:

```java
for (i = 1; i <= 100; i++) {
    S1: A[i] = ...  
    S2: ...= A[i - 1]
}
```

```java
float Z[100];
for (i =0; i < 12; i++) {
    S: Z[ i+10 ] = Z[i];
}
```

1. Is there dependence?
2. If so, what type of dependence?
3. From which statement (instance) to which statement (instance)?
Simple Dependence Testing

• Examples:

```c
for (i = 1; i <= 100; i++) {
    S1: A[i] = ...
    S2: ...= A[i - 1]
}
```

```c
float Z[100];
for (i =0; i < 12; i++) {
    S: Z[i+10] = Z[i];
}
```

True Dependence (read after write):

True Dependence (read after write):
Wt: Z[i+10] in S → Rd: Z[i’] in S
More Examples:

for (i = 1; i <= 100; i++) {
 R1: X(i) = ...
 R2: ... = X(i + 2)
}

for (i = 3; i <= 15, i++) {
 S1: X(2 * i) = ...
 S2: ... = X(2 * i - 1)
}

1. Is there dependence?
2. If so, what type of dependence?
3. From which statement (instance) to which statement (instance)?
Simple Dependence Testing

• More Examples:

```c
for (i = 1; i <= 100; i++) {
    R1: X[i] = ...
    R2: ... = X[i + 2]
}
```

```c
for (i = 3; i <= 15, i++) {
    S1: X[2 * i] = ...
    S2: ... = X[2 * i - 1]
}
```

Anti Dependence (write after read):
- Rd: X[i+2] in R2 →
- Wt: X[i'] in R1

No dependence!
We will use **loop analysis** as an example to describe automatic dependence analysis and parallelization.

Assumptions:

1. We only have scalar and subscripted variables (no pointers and no control dependence) for loop dependence analysis.
2. We focus on **affine loops**: both loop bounds and memory references are affine functions of loop induction variables.

A function \(f(x_1, x_2, ..., x_n) \) is **affine** if it is in such a form:

\[
f = c_0 + c_1 x_1 + c_2 x_2 + ... + c_n x_n, \text{ where } c_i \text{ are all constants}
\]
Three spaces

• Iteration space
 ‣ The set of dynamic execution instances
 ‣ i.e. the set of value vectors taken by loop indices
 ‣ A k-dimensional space for a k-level loop nest

• Data space
 ‣ The set of array elements accessed
 ‣ An n-dimensional space for an n-dimensional array

• Processor space
 ‣ The set of processors in the system
 ‣ In analysis, we may pretend there are unbounded # of virtual processors
• Example

for (i=0; i<=5; i++)
 for (j=i; j<=7; j++)
 Z[j, i] = 0;

\begin{align*}
 0 &\leq i \leq 5 \\
 i &\leq j \leq 7
\end{align*}
Lexicographical Order

• Order of sequential loop executions
• Sweeping through the space in an ascending lexicographic order:

\[(i, j) \leq (i', j') \text{ iff one of the two conditions is satisfied}
\]
1. \(i \leq i'\)
2. \(i = i' \& j \leq j'\)

\[
\begin{align*}
\text{for (i = 1; i <= 5; i++)} \\
\text{for (j = 1; j <= 6 - i; j++)} \\
Z[j, i] = 0;
\end{align*}
\]
A dependence test involves determining whether a dependence exists between two statements (instances) S_1 and S_2, denoted $S_1 \delta S_2$, indicating that the S_1 instance, the source, must be executed before the S_2 instance, the sink, on some iteration of the loop nest.

Let α and β be a vector of n integers within the ranges of the lower and upper bounds of the n loops.

Does $\exists \alpha, \beta$ in the loop iteration space, s.t.

$$f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m?$$
Dependence Test

Given

\[
\begin{align*}
do\ i_1 &= L_1, U_1 \\
&\quad \ldots \\
&\quad \quad \quad do\ i_n = L_n, U_n \\
&\quad \quad \quad \quad S1: \quad A[f_1(i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)] = \ldots \\
&\quad \quad \quad S2: \quad \cdots = A[g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n)]
\end{align*}
\]

Example: consider the two memory references \(X[i,j]\) and \(X[i, j-1]\)

\[
\begin{align*}
\text{for (i=1; i<=100; i++)} \\
&\quad \text{for (j=1; j<=100; j++)}\{ \\
&\quad \quad S1: X[i,j] = X[i,j] + Y[i-1, j]; \\
&\quad \quad S2: Y[i,j] = Y[i,j] + X[i, j-1]; \\
&\quad \}\end{align*}
\]

For \(X[i,j]\): \(f_1(i,j) = i,\) \(f_2(i,j) = j;\)

For \(X[i,j-1]\): \(g_1(i,j) = i,\) \(g_2(i,j) = j - 1;\)
Does $\exists \alpha, \beta$ in the loop iteration space, s.t.
$$f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m?$$

for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 S1: $X[i,j] = X[i,j] + Y[i-1,j]$;
 }

Consider the two memory references:
S1(α): $X[i_1,j_1]$, S2(β): $X[i_2,j_2-1]$

If there is dependence, then

\[
\begin{align*}
 i_1 &= i_2 \\
 j_1 &= j_2 - 1
\end{align*}
\]

And

\[
\begin{align*}
 (i_1,j_1): \ 1 \leq i_1 \leq 100, \quad 1 \leq j_1 \leq 100, \\
 (i_2,j_2): \ 1 \leq i_2 \leq 100, \quad 1 \leq j_2 \leq 100,
\end{align*}
\]
Dependence Test as Integer Linear Programming Problem

Does $\exists \alpha, \beta$ in the loop iteration space, s.t.

$$f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m?$$

for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 S1: $X[i,j] = X[i,j] + Y[i-1,j]$;
 }

Consider the two memory references:

$S1(\alpha): X[i_1,j_1], S2(\beta): X[i_2,j_2-1]$

access the same memory location

i_1 = i_2
j_1 = j_2 - 1
1 <= i_1 <= 100
1 <= j_1 <= 100
1 <= i_2 <= 100
1 <= j_2 <= 100

Do such $(i_1, j_1), (i_2, j_2)$ exist?

Does there exist a solution to this integer linear programming (ILP) problem?
for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 S1: \(X[i, j] = X[i,j] + Y[i-1, j]\);
 S2: \(Y[i, j] = Y[i,j] + X[i, j-1]\);
 }

Access the same memory location

- \(i_1 = i_2\)
- \(j_1 = j_2 - 1\)
- \(1 \leq i_1 \leq 100\)
- \(1 \leq j_1 \leq 100\)
- \(1 \leq i_2 \leq 100\)
- \(1 \leq j_2\leq100\)

Loop bounds constraints

Dependence in the “i” loop

True Dependence (RAW)
Wt: \(Y[i, j]\) in S2
\(\rightarrow\) Rd: \(Y[i'-1, j']\) in S1

Dependence in the “j” loop

True Dependence (RAW)
Wt: \(X[i, j]\) in S1 \(\rightarrow\) Rd: \(X[i', j'-1]\) in S2

(Only showing the ILP problem for the dependence marked as red text.)
Dependence in affine loops modeled as a hyperplane

- Iterations along the same hyperplane must execute sequentially

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, j loop, for X

True, i loop, for Y

Dependence from \(S2(1,1) \) to \(S1(2,1) \)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from $S2(1,1)$ to $S1(2,1)$

```c
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, j loop, for X

True, i loop, for Y
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

 Dependence from $S_2(1,1)$ to $S_1(2,1)$

for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 S1: $X[i,j] = X[i,j] + Y[i-1,j]$;
 }

True, i loop, for Y

True, j loop, for X

S_1 S_2

Dependence from $S_2(1,1)$ to $S_1(2,1)$
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from \(S2(1,1) \) to \(S1(2,1) \)

```c
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, i loop, for Y

True, j loop, for X

i

j = 1

j = 2

j = 3

j = 4
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

```plaintext
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, i loop, for Y
True, j loop, for X

```
  S1  
  S2
```

Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

```plaintext
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, i loop, for Y
True, j loop, for X

```
  S1  
  S2
```

Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

```plaintext
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, i loop, for Y
True, j loop, for X

```
  S1  
  S2
```

Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

```plaintext
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, i loop, for Y
True, j loop, for X

```
  S1  
  S2
```
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from S1(1,1) to S2(1,2)

for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 S1: X[i,j] = X[i,j] + Y[i-1, j];
 S2: Y[i,j] = Y[i,j] + X[i, j-1];
 }

True, i loop, for Y

True, j loop, for X
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from S1(1,1) to S2(1,2)

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, i loop, for Y

True, j loop, for X

![Diagram showing the dependence from S1(1,1) to S2(1,2)](image)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

```
Dependence from S1(1,1) to S1(1,2)
```

```
do i = 1, N
  do j = 1, N
```

Write in $S_1(1,1)$ to Read in $S_1(1,2)$

Write: $S_1(i, j)$ to Read in $S_1(i, j+1)$

Which loop can be parallelized?
The “i” loop or the “j” loop?
• Dependence in affine loops modeled as a hyperplane
• Iterations along the same hyperplane must execute sequentially

Do all

\[
\text{doall } i = 1, N \\
do j = 1, N \\
\]

Write in \(S_1(1,1)\) to Read in \(S_1(1,2)\)

Write: \(S_1(i, j)\) to Read in \(S_1(i, j+1)\)

Which loop can be parallelized? The “i” loop or the “j” loop?
Answer: the “i” loop

\text{doall} \text{ loop means all iterations in the loop can run in parallel}
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

```
do i = 1, N
    do j = 1, N
    end do
end do
```

Can either the “i” loop or the “j” loop be parallelized? (assuming no synchronization is allowed)

The hyperplane is \(j - i = \text{“a constant”} \)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially
- **Iterations on different hyperplanes can execute in parallel**

Dependence from $S_1(1, 2)$ to $S_1(2, 1)$

```plaintext
do I = 1, N
do J = 1, N
```

Write in $S_1(1,2)$ to Read in $S_1(2,1)$

Write in $S_1(i, j)$ to Read in $S_1(i-1,j+1)$

The hyperplane is $j + i = \text{“a constant”}$
Distance Vector

The number of iterations between two accesses to the same memory location, usually represented as a **distance vector**.

\[
\text{do } I = 1, N \\
\text{do } J = 1, N \\
\text{S}_1: A(I, J) = A(I+1, J-1)
\]

Write After Read

Read in \(S_1(1,2) \) to **Write** in \(S_1(2,1) \)

\(S_1(i, j) \) to \(S_1(i+1, j-1) \)

Distance vector: \((1, -1)\)
• \(<C, c>\) to represent a partition
 • \(C\) is a \(n\) by \(m\) matrix
 • \(m = d\) (the loop level)
 • \(n\) is the dimension of the processor grid
 • \(c\) is a \(n\)-element constant vector
 • \(p = C \cdot i + c\)

Examples

1-d processor grid

\[
\text{for (}i=1; \ i<=N; \ i++) \\
\text{Y}[i] = Z[i]; \\
\]

\(C = [1], \ c = [0], \ p = i\)

2-d processor grid

\[
\text{for (}i=1; \ i<=N; \ i++) \\
\text{for (}j=1; \ j<=N; \ j++) \\
\text{Y}[i,j] = Z[i,j]; \\
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\]

\(p = i, \ q = j\)

Notation:

bold fonts for container variables; *normal fonts* for scalar variables.
Synchronization-free Parallelism

- Two memory references as \(<F_1, f_1, B_1, b_1>\) and \(<F_2, f_2, B_2, b_2>\)
- Let \(<C_1, c_1>\) and \(<C_2, c_2>\) represent their respective processor schedule
- To be synchronization-free
 - For all \(i_1\) in \(Z_{d1}\) (d1-dimension integer vectors) and \(i_2\) in \(Z_{d2}\) such that
 1. \(B_1 \times i_1 + b_1 \geq 0\), and
 2. \(B_2 \times i_2 + b_2 \geq 0\), and
 3. \(F_1 \times i_1 + f_1 = F_2 \times i_2 + f_2\), and
 4. It must be the case that \(C_1 \times i_1 + c_1 = C_2 \times i_2 + c_2\).

\(F_1, f_1\) is for memory reference, i.e., \(F_1 \times x + f_1\)
\(B_1, b_1\) is for loop bound constraints, i.e., \(B_1 \times x + b_1\)
Synchronization-free Parallelism

- To be synchronization-free
 - For all \(\mathbf{i}_1 \) in \(\mathbb{Z}_{d_1} \) (d1-dimension integer vectors) and \(\mathbf{i}_2 \) in \(\mathbb{Z}_{d_2} \) such that
 - \(\mathbf{B}_1 \mathbf{i}_1 + \mathbf{b}_1 \geq 0 \), and
 - \(\mathbf{B}_2 \mathbf{i}_2 + \mathbf{b}_2 \geq 0 \), and
 - \(\mathbf{F}_1 \mathbf{i}_1 + \mathbf{f}_1 = \mathbf{F}_2 \mathbf{i}_2 + \mathbf{f}_2 \), and
 - It must be the case that \(\mathbf{C}_1 \mathbf{i}_1 + \mathbf{c}_1 = \mathbf{C}_2 \mathbf{i}_2 + \mathbf{c}_2 \).

```plaintext
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1,j];
        S2: Y[i,j] = Y[i,j] + X[i,j-1];
    }
```
Synchronization-free Parallelism

for (i=1; i<=100; i++)
 for (j=1; j<=100; j++)
 S1: $X[i,j] = X[i,j] + Y[i-1,j]$;

$1 <= i_1 <= 100, \quad 1 <= j_1 <= 100,$
$1 <= i_2 <= 100, \quad 1 <= j_2 <= 100,$
$i_1 = i_2, \quad j_1 = j_2 - 1,$

$[C_{11} \ C_{12}]^{i_1}_{j_1} + [c_1] = [C_{21} \ C_{22}]^{i_2}_{j_2} + [c_2]$,

$[C_{11} - C_{21} \ C_{12} - C_{22}]^{i_1}_{j_1} + [c_1 - c_2 - C_{22}] = 0$

S1 to S2 dependence

$1 <= i_3 <= 100, \quad 1 <= j_3 <= 100,$
$1 <= i_4 <= 100, \quad 1 <= j_4 <= 100,$
$i_3 - 1 = i_4, \quad j_3 = j_4,$

$[C_{11} \ C_{12}]^{i_3}_{j_3} + [c_1] = [C_{21} \ C_{22}]^{i_4}_{j_4} + [c_2]$,

$[C_{11} - C_{21} \ C_{12} - C_{22}]^{i_3}_{j_3} + [c_1 - c_2 + C_{21}] = 0$

S2 to S1 dependence

True, j loop, for X

True, i loop, for Y

S1

S2
Synchronization-free Parallelism

for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 S1: X[i,j] = X[i,j] + Y[i-1, j];
 S2: Y[i,j] = Y[i,j] + X[i, j-1];
 }

True, i loop, for Y

True, j loop, for X

\[
\begin{bmatrix}
C_{11} - C_{21} & C_{12} - C_{22}
\end{bmatrix}
\begin{bmatrix}
i_1 \\
j_1
\end{bmatrix}
+ \begin{bmatrix}
c_1 - c_2 - C_{22}
\end{bmatrix} = 0
\rightarrow
C_{11} - C_{21} = 0, \ C_{12} - C_{22} = 0, \ \& \ c_1 - c_2 - C_{22} = 0
\]

\[
\begin{bmatrix}
C_{11} - C_{21} & C_{12} - C_{22}
\end{bmatrix}
\begin{bmatrix}
i_3 \\
j_3
\end{bmatrix}
+ \begin{bmatrix}
c_1 - c_2 + C_{21}
\end{bmatrix} = 0
\rightarrow
C_{11} - C_{21} = 0, \ C_{12} - C_{22} = 0, \ \& \ c_1 - c_2 + C_{21} = 0
\]

\[
C_{11} = C_{21} = -C_{22} = -C_{12} = c_2 - c_1
\]
for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 X[i,j] = X[i,j] + Y[i-1, j]; /* S1 */
 Y[i,j] = Y[i,j] + X[i, j-1]; /* S2 */
 }

p(S1): < [C_{11} \ C_{12}], [c_1] >

p(S2): < [C_{21} \ C_{22}], [c_2] >

Affine schedule for S1, p(S1): \[C = [C_{11} \ C_{12}] = [1 -1], \quad c = c_1 = -1 \]
i.e. (i,j) iteration of S1 to processor p = i-j-1;

Affine schedule for S2, p(S2): \[C = [C_{21} \ C_{22}] = [1 -1], \quad c = c_2 = 0 \]
i.e. (i,j) iteration of S2 to processor p = i-j.
Affine partition schedule

```
do I = 1, N
  do J = 1, N
```

Read After Write

The hyperplane is $j - i = \text{“a constant”}$

Affine schedule for S_1, $p(S_1)$: $C = [C_{11} \ C_{12}] = [1 \ -1]$, $c = 0$

i.e. (i, j) iteration of S_1 to processor $p = i - j$;
More Examples

Affine partition schedule

\[
\begin{align*}
do & \ I = 1, N \\
do & \ J = 1, N \\
\end{align*}
\]

Write After Read

Read in \(S_1(1,2) \) to Write in \(S_1(2,1) \)

\(S_1(i, i) \) to \(S_1(i+1, i-1) \)

The hyperplane is \(j + i = \text{“a constant”} \)

Affine schedule for \(S_1 \), \(p(S_1): \ C = [C_{11} \ C_{12}] = [1 \ 1], \ c = 0 \)

i.e. \((i, j) \) iteration of \(S_1 \) to processor \(p = i + j \);
Next Class

Reading
• ALSU, Chapter 11.1 - 11.7