CS 314 Principles of Programming Languages

Lecture 22: Parallelism and Dependence Analysis

Zheng (Eddy) Zhang

Rutgers University

April 25, 2018
Bernstein’s Condition: — There is a data dependence from statement (instance) S_1 to statement S_2 (instance) if

- Both statements (instances) access the same memory location(s)
- One of them is a write
- There is a run-time execution path from S_1 to S_2

Example:

S_1: $\pi = 3.14$

S_2: $R = 5$

S_3: $\text{Area} = \pi \times R^2$
Data Dependence Classifications

“\(S_2 \) depends on \(S_1 \)" — \((S_1 \delta S_2) \)

True (flow) dependence
occurs when \(S_1 \) writes a memory location that \(S_2 \) later reads (RAW).

Anti dependence
occurs when \(S_1 \) reads a memory location that \(S_2 \) later writes (WAR).

Output dependence
occurs when \(S_1 \) writes a memory location that \(S_2 \) later writes (WAW).

Input dependence
occurs when \(S_1 \) reads a memory location that \(S_2 \) later reads (RAR).
• Examples:

for (i = 1; i <= 100; i++) {
 S1: A[i] = ...
 S2: ... = A[i - 1]
}

float Z[100];
for (i =0; i < 12; i++) {
 S: Z[i+10] = Z[i];
}

1. Is there dependence?
2. If so, what type of dependence?
3. From which statement (instance) to which statement (instance)?
Review: Dependence Testing

Single Induction Variable (SIV) Test

• Single loop nest with constant lower (LB) and upper (UB) bound, and step 1.

```
for i = LB, UB, 1
  ...
endfor
```

• Two array references as affine function of loop induction variable

```
for i = LB, UB, 1
  R1: X(a*i + c1) = ...
  R2:   ... = X(a*i + c2)
endfor
```

Question: Is there a true dependence between R1 and R2?
There is a dependence between R1 and R2 iff

\[\exists i, i': \text{LB} \leq i \leq i' \leq \text{UB} \text{ and } (a \times i + c_1) = (a \times i' + c_2) \]

where \(i \) and \(i' \) represent two iterations in the iteration space. This means that in both iterations, the same element of array X is accessed.

So let’s just solve the equation:

\[(a \times i + c_1) = (a \times i' + c_2) \quad \Rightarrow \quad (c_1 - c_2)/a = i' - i = \Delta d \]

There is a dependence iff

- \(\Delta d \) is an integer value
- \(\text{UB} - \text{LB} \geq \Delta d \geq 0 \)
Simple Dependence Testing

Examples:

```c
for (i = 1; i <= 100; i++) {
    S1: A[i] = ...  
    S2: ... = A[i - 1]
}
```

```c
float Z[100];
for (i =0; i < 12; i++) {
    S: Z[ i+10 ] = Z[i];
}
```

1. Is there dependence?
2. If so, what type of dependence?
3. From which statement (instance) to which statement (instance)?
Simple Dependence Testing

• Examples:

```c
for (i = 1; i <= 100; i++) {
    S1: A[i] = ...
    S2: ... = A[i - 1]
}

float Z[100];
for (i = 0; i < 12; i++) {
    S: Z[i+10] = Z[i];
}
```

True Dependence (read after write):

- **Wt:** A[i] in S1 →
- **Rd:** A[i’-1] in S2

- **Wt:** Z[i+10] in S →
- **Rd:** Z[i’] in S
More Examples:

1. Is there dependence?
2. If so, what type of dependence?
3. From which statement (instance) to which statement (instance)?

```java
for (i = 1; i <= 100; i++) {
    R1: X(i) = ...
    R2: ... = X(i + 2)
}

for (i = 3; i <= 15, i++) {
    S1: X(2 * i) = ...
    S2: ... = X(2 * i - 1)
}
```
More Examples:

for (i = 1; i <= 100; i++) {
 R1: X[i] = ...
 R2: ... = X[i + 2]
}

for (i = 3; i <= 15, i++) {
 S1: X[2 * i] = ...
 S2: ... = X[2 * i - 1]
}

Anti Dependence (write after read):
Rd: X[i+2] in R2 →
Wt: X[i’] in R1

No dependence!
Review: Automatic Parallelization

We will use **loop analysis** as an example to describe automatic dependence analysis and parallelization.

Assumptions:

1. We only have scalar and subscripted variables (no pointers and no control dependence) for loop dependence analysis.
2. We focus on **affine loops**: both loop bounds and memory references are affine functions of loop induction variables.

A function $f(x_1, x_2, ..., x_n)$ is **affine** if it is in such a form:

$$f = c_0 + c_1*x_1 + c_2*x_2 + ... + c_n*x_n,$$

where c_i are all constants.
Review: Affine Loops

Three spaces

• Iteration space
 ‣ The set of dynamic execution instances
 ‣ i.e. the set of value vectors taken by loop indices
 ‣ A \textit{k-dimensional} space for a \textit{k-level} loop nest

• Data space
 ‣ The set of array elements accessed
 ‣ An \textit{n-dimensional} space for an \textit{n-dimensional} array

• Processor space
 ‣ The set of processors in the system
 ‣ In analysis, we may pretend there are unbounded # of virtual processors
• Example

```plaintext
for (i=0; i<=5; i++)
    for (j=i; j<=7; j++)
        Z[j, i] = 0;
```
Lexicographical Order

- Order of sequential loop executions
- Sweeping through the space in an ascending lexicographic order:

\[(i, j) \leq (i', j')\] iff one of the two conditions is satisfied

1. \(i \leq i'\)
2. \(i = i' \land j \leq j'\)

for \((i = 1; i \leq 5; i++)\)
for \((j = 1; j \leq 6 - i; j++)\)

\[Z[j, i] = 0;\]
A dependence between statement (instance) \(S_1 \) and \(S_2 \), denoted \(S_1 \delta S_2 \), indicates that the \(S_1 \) instance, the source, must be executed before \(S_2 \) instance, the sink on some iteration of the loop nest.

Let \(\alpha \& \beta \) be a vector of \(n \) integers within the ranges of the lower and upper bounds of the \(n \) loops.

Does \(\exists \alpha, \beta \) in the loop iteration space, s.t.
\[
 f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m?
\]

Dependence Test

Given

\[
\begin{align*}
\text{do } i_1 &= L_1, U_1 \\
&\quad \ldots \\
\text{do } i_n &= L_n, U_n \\
S_1 &: \quad A[f_1(i_1, \ldots, i_n), \ldots, f_m(i_1,\ldots, i_n)] = \ldots \\
S_2 &: \quad \ldots = A[g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n)]
\end{align*}
\]

A dependence between statement (instance) \(S_1 \) and \(S_2 \), denoted \(S_1 \delta S_2 \), indicates that the \(S_1 \) instance, the source, must be executed before \(S_2 \) instance, the sink on some iteration of the loop nest.

Let \(\alpha \& \beta \) be a vector of \(n \) integers within the ranges of the lower and upper bounds of the \(n \) loops.

Does \(\exists \alpha, \beta \) in the loop iteration space, s.t.
\[
 f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m?
\]
Dependence Test

Given

\[
\text{do } i_1 = L_1, U_1 \\
\vdots \\
\text{do } i_n = L_n, U_n \\
\quad S_1 : \ A[f_1(i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)] = \ldots \\
\quad S_2 : \ \ldots = A[g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n)]
\]

Example: consider the two memory references \(X[i,j]\) and \(X[i,j-1]\)

\[
\text{for (i=1; i<=100; i++)}
\quad \text{for (j=1; j<=100; j++)}
\quad \text{S1: } \text{X[i,j]} = \text{X[i,j]} + \text{Y[i-1, j]};
\quad \text{S2: } \text{Y[i,j]} = \text{Y[i,j]} + \text{X[i, j-1]};
\]

For \(X[i,j]\): \(f_1(i,j) = i, \) \(f_2(i,j) = j; \)

For \(X[i,j-1]\): \(g_1(i,j) = i, \) \(g_2(i,j) = j - 1; \)
Dependence Test as Integer Linear Programming Problem

Does \(\exists \alpha, \beta \) in the loop iteration space, s.t.
\[
f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m?
\]

for (i=1; i<=100; i++)
for (j=1; j<=100; j++){
 S1: \(X[i,j] = X[i,j] + Y[i-1,j] \);
 S2: \(Y[i,j] = Y[i,j] + X[i,j-1] \);
}

Consider the two memory references:
S1(\(\alpha \)): \(X[i_1,j_1] \), S2(\(\beta \)): \(X[i_2,j_2-1] \)

If there is dependence, then
\[
i_1 = i_2
\]
\[
j_1 = j_2 - 1
\]

And
\[
(i_1,j_1): 1 \leq i_1 \leq 100, \quad 1 \leq j_1 \leq 100,
\]
\[
(i_2,j_2): 1 \leq i_2 \leq 100, \quad 1 \leq j_2 \leq 100,
\]
Dependence Test as Integer Linear Programming Problem

Does \(\exists \alpha, \beta \) in the loop iteration space, s.t.
\[
f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m?
\]

Consider the two memory references:

\(S1(\alpha): X[i_1, j_1], S2(\beta): X[i_2, j_2-1] \)

Do such \((i_1, j_1), (i_2, j_2)\) exist?

access the same memory location

\[
\begin{align*}
i_1 &= i_2 \\
j_1 &= j_2 - 1 \\
1 &\leq i_1 \leq 100 \\
1 &\leq j_1 \leq 100 \\
1 &\leq i_2 \leq 100 \\
1 &\leq j_2 \leq 100
\end{align*}
\]

loop bounds constraint

Does there exist a solution to this integer linear programming (ILP) problem?
for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 S1: X[i, j] = X[i,j] + Y[i-1, j];
 S2: Y[i, j] = Y[i,j] + X[i, j-1];
 }

Dependence in the “i” loop

True Dependence (RAW)
Wt: Y[i, j] in S2
→ Rd: Y[i'-1, j'] in S1

Dependence in the “j” loop

True Dependence (RAW)
Wt: X[i, j] in S1 → Rd: X[i', j'-1] in S2

Access the same memory location
i_1 = i_2
j_1 = j_2 - 1
1 <= i_1 <= 100
1 <= j_1 <= 100
1 <= i_2 <= 100
1 <= j_2 <= 100

Loop bounds constraints

(Only showing the ILP problem for the dependence marked as red text.)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from \(S_2(1,1)\) to \(S_1(2,1)\)

```plaintext
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, \(i\) loop, for \(Y\)
True, \(j\) loop, for \(X\)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from \(S2(1,1) \) to \(S1(2,1) \)

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, \(i \) loop, for \(Y \)

True, \(j \) loop, for \(X \)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from S2(1,1) to S1(2,1)

```
for (i=1; i<=100; i++)
  for (j=1; j<=100; j++){
    S1: X[i,j] = X[i,j] + Y[i-1, j];
    S2: Y[i,j] = Y[i,j] + X[i, j-1];
  }
```

True, j loop, for X
True, i loop, for Y

```
for (i=1; i<=100; i++)
  for (j=1; j<=100; j++){
    S1: X[i,j] = X[i,j] + Y[i-1, j];
    S2: Y[i,j] = Y[i,j] + X[i, j-1];
  }
```

1 2 3 4 5 6

```
S1
```

```
S2
```

i

Dependence from S2(1,1) to S1(2,1)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

Dependence from \(S2(1,1) \) to \(S1(2,1) \)

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, i loop, for Y

True, j loop, for X

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

Dependence from \(S2(1,1) \) to \(S1(2,1) \)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

![Diagram showing dependence and parallelization with loops and arrows indicating the order of execution.](image)

- True, i loop, for Y
- True, j loop, for X
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from S1(1,1) to S2(1,2)

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1, j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```

True, i loop, for Y

True, j loop, for X

Dependence from S1(1,1) to S2(1,2)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from $S1(1,1)$ to $S2(1,2)$

```
for (i=1; i<=100; i++)
  for (j=1; j<=100; j++){
    S1: X[i,j] = X[i,j] + Y[i-1, j];
    S2: Y[i,j] = Y[i,j] + X[i, j-1];
  }
```

True, i loop, for Y

True, j loop, for X

Dependence from $S1(1,1)$ to $S2(1,2)$
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

```
  do i = 1, N
    do j = 1, N
  
  Write in S1(1,1) to Read in S1(1,2)
```

Dependence from S1(1,1) to S1(1,2)

- Write in S1(1,1) to Read in S1(1,2)
- Write: S1(i, j) to Read in S1(i, j+1)

Which loop can be parallelized?
The “i” loop or the “j” loop?
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from \(S_1(1,1) \) to \(S_1(1,2) \)

\[
\text{do } i = 1, N \\
\text{do } j = 1, N \\
\]

Write in \(S_1(1,1) \) to Read in \(S_1(1,2) \)

Write: \(S_1(i, j) \) to Read in \(S_1(i, j+1) \)

Which loop can be parallelized? The “i” loop or the “j” loop?

Answer: the “i” loop

The hyperplane is \(i = \text{“a constant”} \)
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from $S_1(1, 1)$ to $S_1(2, 2)$

```
do i = 1, N
    do j = 1, N
    end do
end do
```

Write in $S_1(1,1)$ to Read in $S_1(2,2)$

Write in $S_1(i, j)$ to Read $S_1(i+1, j+1)$

Can either the “i” loop or the “j” loop be parallelized? (assuming no synchronization is allowed)

The hyperplane is $j - i = “a constant”$
Dependence and Parallelization

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially
- **Iterations on different hyperplanes can execute in parallel**

<table>
<thead>
<tr>
<th>Dependence from $S_1(1, 2)$ to $S_1(2, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>do $I = 1, N$</td>
</tr>
<tr>
<td>do $J = 1, N$</td>
</tr>
</tbody>
</table>

Write in $S_1(1, 2)$ to Read in $S_1(2, 1)$

Write in $S_1(i, j)$ to Read in $S_1(i-1, j+1)$

The hyperplane is $j + i = “a constant”$
Distance Vector

The number of iterations between two accesses to the same memory location, usually represented as a **distance vector**.

```plaintext
do I = 1, N
    do J = 1, N
        S_1: A(I, J) = A(I+1, J-1)
```

Write After Read

Read in \(S_1(1,2) \) to **Write** in \(S_1(2,1) \)

\(S_1(i, j) \) to \(S_1(i+1, j-1) \)

Distance vector: \((1, -1)\)
Processing Space: Affine Partition Schedule

- \(<C, c>\) to represent a partition
 - \(C\) is a \(n \times m\) matrix
 - \(m = d\) (the loop level)
 - \(n\) is the dimension of the processor grid
 - \(c\) is a \(n\)-element constant vector
 - \(p = C\ast i + c\)

Examples

1-d processor grid

\[
\begin{align*}
\text{for } (i=1; i<=N; i++) \\
Y[i] &= Z[i];
\end{align*}
\]

\(C = [1], \ c = [0], \ p = i\)

2-d processor grid

\[
\begin{align*}
\text{for } (i=1; i<=N; i++) \\
\text{for } (j=1; j<=N; j++) \\
Y[i,j] &= Z[i,j];
\end{align*}
\]

\[
C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

\(p = i, \ q = j\)

Notation:

bold fonts for container variables; **normal fonts** for scalar variables.
Synchronization-free Parallelism

• Two memory references as $<F_1, f_1, B_1, b_1>$ and $<F_2, f_2, B_2, b_2>$

• Let $<C_1, c_I>$ and $<C_2, c_2>$ represent their respective processor schedule

• To be synchronization-free

 ‣ For all i_1 in \mathbb{Z}_{d1} (d1-dimension integer vectors) and i_2 in \mathbb{Z}_{d2} such that

 1. $B_1 * i_1 + b_1 \geq 0$, and
 2. $B_2 * i_2 + b_2 \geq 0$, and
 3. $F_1 * i_1 + f_1 = F_2 * i_2 + f_2$, and
 4. It must be the case that $C_1 * i_1 + c_1 = C_2 * i_2 + c_2$.

F_1, f_1 is for memory reference, i.e., $F_1 * x + f_1$

B_1, b_1 is for loop bound constraints, i.e., $B_1 * x + b_1$
Synchronization-free Parallelism

- To be synchronization-free
 - For all i_1 in \mathbb{Z}_{d_1} (d1-dimension integer vectors) and i_2 in \mathbb{Z}_{d_2} such that
 - $B_{1*i_1} + b_1 \geq 0$, and
 - $B_{2*i_2} + b_2 \geq 0$, and
 - $F_{1*i_1} + f_1 = F_{2*i_2} + f_2$, and
 - It must be the case that $C_{1*i_1} + c_1 = C_{2*i_2} + c_2$.

```
for (i=1; i<=100; i++)
    for (j=1; j<=100; j++){
        S1: X[i,j] = X[i,j] + Y[i-1,j];
        S2: Y[i,j] = Y[i,j] + X[i, j-1];
    }
```
for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 S1: X[i,j] = X[i,j] + Y[i-1, j];
 S2: Y[i,j] = Y[i,j] + X[i, j-1];
 }

1<=i_1 <=100, 1<=j_1 <= 100,
1<=i_2 <=100, 1<=j_2<=100,
i_1 = i_2, j_1 = j_2 - 1,

\[
\begin{bmatrix}
C_{11} & C_{12} \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
i_1 \\
j_1
\end{bmatrix}
+ [c_1] =
\begin{bmatrix}
C_{21} & C_{22} \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
i_2 \\
j_2
\end{bmatrix}
+ [c_2]
\]

1<=i_3 <=100, 1<=j_3 <= 100,
1<=i_4 <=100, 1<=j_4<=100,
i_3 - 1 = i_4, j_3 = j_4,

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{12} & C_{22}
\end{bmatrix}
\begin{bmatrix}
i_3 \\
j_3
\end{bmatrix}
+ [c_1] =
\begin{bmatrix}
C_{21} & C_{22} \\
C_{12} & C_{22}
\end{bmatrix}
\begin{bmatrix}
i_4 \\
j_4
\end{bmatrix}
+ [c_2]
\]

S2 to S1 dependence

True, i loop, for Y

\[
\begin{bmatrix}
C_{11} - C_{21} & C_{12} - C_{22}
\end{bmatrix}
\begin{bmatrix}
i_3 \\
j_3
\end{bmatrix}
+ [c_1 - c_2 + C_{21}] = 0
\]

S1 to S2 dependence

True, j loop, for X
Synchronization-free Parallelism

for (i=1; i<=100; i++)
 for (j=1; j<=100; j++) {
 S1: \(X[i,j] = X[i,j] + Y[i-1,j] \);
 S2: \(Y[i,j] = Y[i,j] + X[i,j-1] \);
 }

True, i loop, for Y

True, j loop, for X

\[
\begin{bmatrix}
 C_{11} - C_{21} & C_{12} - C_{22}
\end{bmatrix}
\begin{bmatrix}
 i_1 \\
 j_1
\end{bmatrix}
+ \begin{bmatrix}
 c_1 - c_2 - C_{22}
\end{bmatrix} = 0
\]

\[
\begin{bmatrix}
 C_{11} - C_{21} & C_{12} - C_{22}
\end{bmatrix}
\begin{bmatrix}
 i_3 \\
 j_3
\end{bmatrix}
+ \begin{bmatrix}
 c_1 - c_2 + C_{21}
\end{bmatrix} = 0
\]

\[
C_{11} - C_{21} = 0, \; C_{12} - C_{22} = 0, \; \& \; c_1 - c_2 - C_{22} = 0
\]

\[
C_{11} - C_{21} = 0, \; C_{12} - C_{22} = 0, \; \& \; c_1 - c_2 + C_{21} = 0
\]

\[
C_{11} = C_{21} = -C_{22} = -C_{12} = c_2 - c_1
\]
for (i=1; i<=100; i++)
 for (j=1; j<=100; j++){
 X[i,j] = X[i,j] + Y[i-1, j]; /* S1 */
 Y[i,j] = Y[i,j] + X[i, j-1]; /* S2 */
 }

p(S1): < [C_{11} \ C_{12}], [c_1]>

p(S2): < [C_{21} \ C_{22}], [c_2]>

Affine schedule for S1, p(S1): \[C = [C_{11} \ C_{12}] = [1 \ -1], \ c = c_1 = -1 \]
i.e. (i,j) iteration of S1 to processor p = i-j-1;

Affine schedule for S2, p(S2) \[C = [C_{21} \ C_{22}] = [1 \ -1], \ c = c_2 = 0 \]
i.e. (i,j) iteration of S2 to processor p = i-j.
Affine partition schedule

\begin{align*}
\text{do } & I = 1, N \\
\text{do } & J = 1, N \\
\end{align*}

Read After Write

The hyperplane is \(j - i = \text{“a constant”}\)

Affine schedule for \(S_1 \), \(p(S_1) \):

\[C = [C_{11} \ C_{12}] = [1 \ -1], \quad c = 0 \]

i.e. \((i, j)\) iteration of \(S_1 \) to processor \(p = i-j \) ;
Affine partition schedule

\[
\begin{align*}
\text{do } I &= 1, N \\
\text{do } J &= 1, N \\
S_1: A[I, J] &= A[I+1, J-1]
\end{align*}
\]

Write After Read

Read in \(S_1(1,2)\) to Write in \(S_1(2,1)\)

\[
S_1(i, i) \text{ to } S_1(i+1, i-1)
\]

The hyperplane is \(j + i = \text{“a constant”}\)

Affine schedule for \(S1, \ p(S1)\):

\[
C = [C_{11} \ C_{12}] = [1 \ 1], \quad c = 0
\]

i.e. \((i, j)\) iteration of \(S1\) to processor \(p = i + j\) ;
Next Class

Reading
• ALSU, Chapter 11.1 - 11.7