Class Information

• Homework 7 is released.
• Homework 8 (our last homework) will be released this Wednesday.
• Project 2 is due this Thursday.
• Please pick up your midterm exam if you haven’t.
 You can pick them up at my office hour or any TA’s office hour.
A PROCESS or THREAD is a potentially-active execution context. Classic von Neumann model of computing has single thread of control, however parallel programs have more than one. A process or thread can be thought of as an abstraction of a physical PROCESSOR. Processes/Threads can come from multiple CPUs, kernel-level multiplexing of single physical machine, and language or library level multiplexing of kernel-level abstraction. They can run in true parallel, unpredictably interleaved, and run-until-block.
The dependence relation can be modeled as a directed graph such that if $A \rightarrow B$, the result of task A is required for the processing of task B.

Dependence relation: all task-to-task execution orderings that must be preserved if the meaning of the program is to remain the same.

The dependence relation can be modeled as a directed graph such that if $A \rightarrow B$, the result of task A is required for the processing of task B.

Example:

S_1: $\pi = 3.14$

S_2: $R = 5$

S_3: $\text{Area} = \pi \times R^2$

Statement-level dependence graph
Dependence Graph

• Directed acyclic graph (DAG)
• A node represents a task
• A directed edge represents precedence constraint

DAG example 1:
Dependence Graph

- Directed acyclic graph (DAG)
- A node represents a task
- A directed edge represents precedence constraint

DAG example 2:

\[S = \text{sum}(A[1], A[2], ..., A[N]) \]

\[\begin{align*}
+ & \rightarrow + \rightarrow + \rightarrow \cdots \rightarrow + \\
S &
\end{align*} \]
Scheduling a DAG

T_p: time to perform computation with p processors
- T_1: work (total # operations)
- T_∞: critical path or span

\[T_p \geq \frac{T_1}{p}, \quad T_p \geq T_\infty \]

Maximum parallelism: T_1 / T_∞

Linear speedup: \[\frac{T_p}{T_1} = \Theta(p) \]
Scheduling a DAG

\(T_p \): time to perform computation with \(p \) processors

- \(T_1 \): work (total # operations)
- \(T_\infty \): critical path or span

\[
T_p \geq \frac{T_1}{p}, \quad T_p \geq T_\infty
\]

Maximum parallelism: \(T_1 / T_\infty \)

Linear speedup: \(\frac{T_p}{T_1} = \Theta(p) \)

\(T_1 = ? \)
Scheduling a DAG

T_p: time to perform computation with p processors
 - T_1: work (total # operations)
 - T_∞: critical path or span

$$T_p \geq \frac{T_1}{p}, \quad T_p \geq T_\infty$$

Maximum parallelism: T_1 / T_∞

Linear speedup: $\frac{T_p}{T_1} = \Theta(p)$

$T_\infty = ?$
Scheduling a DAG

T_p: time to perform computation with p processors
 - T_1: work (total # operations)
 - T_∞: critical path or span

\[T_p \geq \frac{T_1}{p}, \quad T_p \geq T_\infty \]

Maximum parallelism: T_1 / T_∞

Linear speedup: $\frac{T_p}{T_1} = \Theta(p)$

$T_\infty = ?$
Computing Critical Path

Compute the earliest start time of each node

- Keep a value called $S(n)$ associated with each node n
- For each node n

 $S(n)$ is the maximum of $\{ S(p) + 1 \}$, for all $p \in \text{pred}(n)$

Assuming a task takes 1 unit time
Computing Critical Path

Compute the earliest start time of each node

• Keep a value called $S(n)$ associated with each node n
• For each node n

 $S(n)$ is the maximum of \{ $S(p) + 1$ \}, for all $p \in \text{pred}(n)$

Assuming a task takes 1 unit time

![Diagram of a project network with nodes a, b, c, d, e, f, g, h, i, start, and end, showing dependencies and time units.]
Computing Critical Path

Compute the earliest start time of each node
• Keep a value called $S(n)$ associated with each node n
• For each node n
 $S(n)$ is the maximum of $\{ S(p) + 1 \}$, for all $p \in \text{pred}(n)$

Assuming a task takes 1 unit time
Computing Critical Path

Compute the earliest start time of each node

- Keep a value called $S(n)$ associated with each node n
- For each node n

 $S(n)$ is the maximum of $\{ S(p) + 1 \}$, for all $p \in \text{pred}(n)$

Assuming a task takes 1 unit time

![Graph showing start and end nodes with intermediate nodes and their durations](image-url)
Computing Critical Path

Compute the earliest start time of each node

• Keep a value called $S(n)$ associated with each node n

• For each node n

 $S(n)$ is the maximum of \{ $S(p) + 1$ \}, for all $p \in \text{pred}(n)$

Assuming a task takes 1 unit time
Computing Critical Path

Compute the earliest start time of each node

• Keep a value called $S(n)$ associated with each node n

• For each node n

 $S(n)$ is the maximum of \{ $S(p) + 1$ \}, for all $p \in \text{pred}(n)$

Assuming a task takes 1 unit time
Based on if the dependence constraints have been resolved

- Schedule the nodes that are ready at every time tick
- A completed operation at the end of one time step can lead to more ready operations at next time tick

Four threads T1, T2, T3, T4

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 start</td>
<td>a</td>
<td>b</td>
<td>f</td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>c</td>
<td>e</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>d</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assuming a task takes 1 unit time
We will use **loop analysis** as an example to describe automatic dependence analysis and parallelization.

Assumptions:

1. We only have scalar and subscripted variables (no pointers and no control dependence) for loop dependence analysis.

2. We focus on **affine loops**: both loop bounds and memory references are affine functions of loop induction variables.

A function \(f(x_1, x_2, \ldots, x_n) \) is **affine** if it is in such a form:

\[
f = c_0 + c_1 x_1 + c_2 x_2 + \ldots + c_n x_n,
\]

where \(c_i \) are all constants.
Three spaces

• Iteration space
 ‣ The set of dynamic execution instances
 ‣ i.e. the set of value vectors taken by loop indices
 ‣ A k-dimensional space for a k-level loop nest

• Data space
 ‣ The set of array elements accessed
 ‣ An n-dimensional space for an n-dimensional array

• Processor space
 ‣ The set of processors in the system
 ‣ In analysis, we may pretend there are unbounded # of virtual processors
```
float Z[100];
for (i=0; i<10; i++)
    Z[i+10] = Z[i];
```

Three Spaces

- **Iteration space, data space, and processor space**

Data Space

Iteration space

Processor space

Array Z[]

Assuming one task is one loop iteration, what is the maximum parallelism?

Maximum parallelism: T_1 / T_∞
Dependence Definition

Bernstein’s Condition: — There is a data dependence from statement (instance) S_1 to statement S_2 (instance) if

- Both statements (instances) access the same memory locations
- One of them is a write
- There is a run-time execution path from S_1 to S_2

```c
float Z[100];
for (i=0; i<10; i++)
    Z[i+10] = Z[i];
```

No dependence across any two loop iterations!
Data Dependence Classifications

“S₂ depends on S₁” — (S₁ δ S₂)

True (flow) dependence
occurs when S₁ writes a memory location that S₂ later reads (RAW).

Anti dependence
occurs when S₁ reads a memory location that S₂ later writes (WAR).

Output dependence
occurs when S₁ writes a memory location that S₂ later writes (WAW).

Input dependence
occurs when S₁ reads a memory location that S₂ later reads (RAR).
Simple Dependence Testing

• Examples:

```c
for (i = 1; i <= 100; i++) {
    S1: A[i] = ...
    S2: ...= A[i - 1]
}
```

```c
float Z[100];
for (i =0; i < 12; i++) {
    S: Z[ i+10 ] = Z[i];
}
```

1. Is there dependence?
2. If so, what type of dependence?
3. From which statement (instance) to which statement (instance)?
Dependence Testing

Single Induction Variable (SIV) Test

• Single loop nest with constant lower (LB) and upper (UB) bound, and step 1.

```
for i = LB, UB, 1
    ...
endfor
```

• Two array references as affine function of loop induction variable

```
for i = LB, UB, 1
    R1: X(a*i + c1) = ...
    R2: ... = X(a*i + c2) ...
endfor
```

Question: Is there a true dependence between R1 and R2?
There is a dependence between R1 and R2 iff

\[\exists i, i': \ LB \leq i \leq i' \leq UB \text{ and } (a*i+c_1) = (a*i'+c_2) \]

where \(i \) and \(i' \) represent two iterations in the iteration space. This means that in both iterations, the same element of array \(X \) is accessed.

So let’s just solve the equation:

\[(a * i + c_1) = (a * i' + c_2) \quad \Rightarrow \quad (c_1 - c_2)/a = i' - i = \Delta d \]

There is a dependence iff

- \(\Delta d \) is an integer value
- \(UB - LB \geq \Delta d \geq 0 \)
Simple Dependence Testing

• Examples:

```c
for (i = 1; i <= 100; i++) {
    S1:  A[i] = ...
    S2:  ...= A[i - 1]
}
```

```c
float Z[100];
for (i =0; i < 12; i++) {
    S:  Z[i+10] = Z[i];
}
```

1. Is there dependence?
2. If so, what type of dependence?
3. From which statement (instance) to which statement (instance)?
Lexicographical Order

- Order of sequential loop executions
- Sweeping through the space in an ascending lexicographic order:
 \((i, j) \leq (i', j')\) iff one of the two conditions is satisfied
 1. \(i < i'\)
 2. \(i = i' \land j \leq j'\)

\[
\begin{align*}
&\text{for (i = 1; i \leq 5; i++)} \\
&\quad \text{for (j = 1; j \leq 6 - i; j++)} \\
&\quad Z[j, i] = 0;
\end{align*}
\]
Dependence Testing

• Example:

\[
\begin{align*}
d \text{do } & I = 1, 99 \\
& \text{do } J = 1, 100 \\
& \quad A(I,J) = A(I+1,J) + 1 \\
& \text{end do} \\
& \text{end do}
\end{align*}
\]

1. Is there dependence?
2. If so, what type of dependence?
3. From which statement (instance) to which statement (instance)?
4. Which loop (i or j) can be parallelized?
Next Class

Reading:

• ALSU, Chapter 11.1 - 11.3
Given

\[
\begin{align*}
\text{do } i_1 &= L_1, U_1 \\
\vdots \\
\text{do } i_n &= L_n, U_n \\
S_1 &: A[f_1(i_1, \ldots, i_n), \ldots, f_m(i_1,\ldots, i_n)] = \vdots \\
S_2 &: \ldots = A[g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n)]
\end{align*}
\]

A dependence between statement (instance) \(S_1 \) and \(S_2 \), denoted \(S_1 \delta S_2 \), indicates that the \(S_1 \) instance, the source, must be executed before \(S_2 \) instance, the sink on some iteration of the nest.

Let \(\alpha \& \beta \) be a vector of \(n \) integers within the ranges of the lower and upper bounds of the \(n \) loops.

Does \(\exists \alpha \leq \beta \) in the loop iteration space, s.t.

\[
f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m?
\]