Class Information

REMINDERS

• Second homework deadline: Friday, February 10, 11:59pm. No late submissions.

• Don’t forget to work on your Linux skills (ilab)
Abstract versus Concrete Syntax

Concrete Syntax:
representation of a construct in a particular language, including placement of keywords and delimiters

Abstract Syntax:
structure of meaningful components of each language construct
Abstract versus Concrete Syntax

Same abstract syntax, different concrete syntax:

Pascal
\[\text{while } x <> A[i] \text{ do} \]
\[\quad i := i + 1 \]
\[\text{end} \]

C
\[\text{while (x != A[i])} \]
\[\quad i = i + 1; \]
<S> ::= <E>
<E> ::= <E> - <T> | <T>
<T> ::= <T> * id | id

Consider A*B-C:
Top-Down Parsing - LL(1)

Basic Idea:

- The parse tree is constructed from the root, expanding **non-terminal** nodes on the tree’s frontier following a left-most derivation.
- The input program is read from left to right, and input tokens are read (consumed) as the program is parsed.
- The next **non-terminal** symbol is replaced by one of its rules. The particular choice has to be unique, and uses parts of the input (partially parsed program), for instance the first **token** of the remaining input.
Top-Down Parsing - LL(1) (cont.)

How can we parse (automatically construct a left-most derivation) an input string, for example $aaa bbbb$, using a PDA (push-down automaton) and only the first symbol of the remaining input?

Example:

$S ::= a S | b S | \epsilon$

INPUT: \texttt{aaa bbbb eof}

Example:

$S ::= a S b | \epsilon$

INPUT: \texttt{aaa bbbb eof}
Predictive Parsing

Basic idea:

For any two productions $A ::= \alpha \mid \beta$ with $\alpha \in (T \cup N)^*$ and $\beta \in (T \cup N)^*$, we would like a distinct way of choosing the correct production to expand.

For $\alpha \in (T \cup N)^*$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first token in some string derived from α.

That is

$\begin{align*}
 x \in \text{FIRST}(\alpha) &\iff \alpha \Rightarrow^* x\gamma \text{ for some } \gamma \in (T \cup N)^* \text{ and } x \text{ is a token (} x \in T \text{), and} \\
 \epsilon \in \text{FIRST}(\alpha) &\iff \alpha \Rightarrow^* \epsilon
\end{align*}$

For a non-terminal A, define $\text{FOLLOW}(A)$ as the set of terminals that can appear immediately to the right of A in some sentential form.

Thus, a non-terminal’s FOLLOW set specifies the tokens that can legally appear after it.

A terminal symbol has no FOLLOW set

FIRST and FOLLOW sets can be constructed automatically
Predictive Parsing (cont.)

Key Property:
Whenever two productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, we would like

- $\textit{FIRST}(\alpha) \cap \textit{FIRST}(\beta) = \emptyset$, and
- if $\alpha \Rightarrow^* \epsilon$ then $\textit{FIRST}(\beta) \cap \textit{FOLLOW}(A) = \emptyset$
- Analogue case for $\beta \Rightarrow^* \epsilon$. Note: due to first condition, at most one of α or β can derive ϵ.

This would allow the parser to make a correct choice with a lookahead of only one symbol!
LL(1) Grammar

Define $FIRST^+(\delta)$ for rule $A ::= \delta$

- $FIRST(\delta) - \{\epsilon\} \cup \text{Follow}(A)$, if $\epsilon \in FIRST(\delta)$
- $FIRST(\delta)$ otherwise

A grammar is LL(1) iff

$(A ::= \alpha \text{ and } A ::= \beta)$ implies

$FIRST^+(\alpha) \cap FIRST^+(\beta) = \emptyset$
Back to Our Example

\[S ::= a\ S \ b \mid \epsilon \]

\[FIRST(aSb) = \{a\} \]
\[FIRST(\epsilon) = \{\epsilon\} \]
\[FOLLOW(S) = \{eof, b\} \]

\[FIRST^+(aSb) = \{a\} \]
\[FIRST^+(\epsilon) = (FIRST(\epsilon) - \{\epsilon\}) \cup FOLLOW(S) = \{eof, b\} \]

Is the grammar LL(1)?
Table-Driven LL(1) Parser

LL(1) parse table

Example:
S ::= a S b | ε

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aSb</td>
<td>ε</td>
<td>ε</td>
<td>error</td>
</tr>
</tbody>
</table>

How to parse input a a a b b b?
Table-driven predictive parsing algorithm

Input: a string \(w \) and a parsing table \(M \) for \(G \)

push eof
push Start Symbol

token ← next_token()

\(X ← \) top-of-stack
repeat
 if \(X \) is a terminal then
 if \(X = \) token then
 pop \(X \)
 token ← next_token()
 else error()
 else /* \(X \) is a non-terminal */
 if \(M[X, \text{token}] = X \rightarrow Y_1Y_2\cdots Y_k \) then
 pop \(X \)
 push \(Y_k, Y_{k-1}, \cdots, Y_1 \)
 else error()
 \(X ← \) top-of-stack
until \(X = \) eof

if \(\text{token} \neq \) eof then error()

See also Aho, Lam, Sethi, and Ullman, Figure 4.20, page 227
Predictive Parsing

Now, a predictive parser looks like:

Rather than writing code, we build tables.

Building tables can be automated!
Generating a Table-Driven Parser

A parser generator system often looks like:

This is true for both top down and bottom up parsers

LL(1): left to right, leftmost derivation, lookahead(1)

LR(1): left to right, reverse rightmost derivation, lookahead(1)
Things to do:
Start programming in C. Check out the web for tutorials.

Next time:

• Recursive descent parsing
• Examples of syntax directed translation: interpreter, compiler, type checker, static performance predictor