• **Homeworks**: First homework will be posted by tomorrow. Due date is Friday, February 3, at 11:59pm.

 Electronic submission, PDF format ONLY. No exceptions! No late submissions!

• **Special permission numbers.**
 I am currently working on SP numbers for students who have all pre-reqs. Students who need to switch into another section are next.
 I have to apply for more SP numbers!

• **Recitation starts TODAY.**

• **Office hours will be posted next week.**
Review - Syntax & Semantics of Prog. Langs.

Syntax:
Describes what a legal program looks like

Semantics:
Describes what a correct (legal) program means

A formal language is a (possibly infinite) set of sentences (finite sequences of symbols) over a finite alphabet Σ of (terminal) symbols: $L \subseteq \Sigma^*$

Examples:

- $L = \{ \text{identifiers of length 2} \}$ with $\Sigma = \{a, b, c\}$
- $L = \{ \text{strings of only 1s or only 0s} \}$
- $L = \{ \text{strings starting with } \$ \text{ and ending with } \# \text{, and any combination of 0s and 1s inbetween} \}$
- $L = \{ \text{all syntactically correct Java programs} \}$

Claim: The larger the language, the harder it is to formally specify the language. In other words, it get’s harder for each i: $L_1 \subset L_2 \subset L_3 \ldots \subset L_i \subset \ldots$. True or false?
Syntax and Semantics: How does it work?

Syntactic representation of “values”

What do the following syntactic expressions have in common?

XI
1011
B
\(\lambda f. x. (f(x))))))))))))))))))\)

#

3 + 20 – (2 × 6)

Answer: They are possible representations of the integer value “11” (written as a decimal number)

What is computation?

Possible answer: A (finite) sequence of syntactic manipulations of value representations ending in a “normal form” which is called the result. Normal forms cannot be manipulated any further.
Syntax and Semantics: How does it work?

Here is a “game” (rewrite system):

input: Sequence of characters starting with $ and ending with #, and any combination of 0s and 1s inbetween.

rules: You may replace a character pattern X at any position within the character sequence on the left-hand-side by the pattern Y on the right-hand-side: $X \Rightarrow Y$:

rule 1 $\ 1 \Rightarrow 1 \ &$
rule 2 $\ 0 \Rightarrow 0 \$ $
rule 3 $\ & 1 \Rightarrow 1 \$ $
rule 4 $\ & 0 \Rightarrow 0 \ &$
rule 5 $\ \# \Rightarrow \rightarrow \ A$
rule 6 $\ & \# \Rightarrow \rightarrow \ B$

Replace patterns using the rules as often as you can. When you cannot replace a pattern any more, stop.
Syntax and Semantics: How does it work?

example input:
$ 0 0 #
$0 0 # is rewritten as 0$0 # by rule 2
0$0 # is rewritten as 00$ # by rule 2
0 0$# is rewritten as 0 0 $→ A by rule 6
no more rules can be applied (STOP)

More examples:

$ 0 1 1 0 1 #
$ 1 0 1 0 0 #
$ 1 1 0 0 1 #

Questions

• Can we get different “results” for the same input string?

• Does all this have a meaning (semantics), or are we just pushing symbols?
Syntax without Semantics?

Syntax without semantics is not useful!

There will be rewrite systems problems in the first homework.
Front end of a compiler

Parser: syntax & semantic analyzer, \textit{il} code generator (syntax-directed translator)

Front End Responsibilities:

- recognize legal programs
- report errors
- produce \textit{il}
- preliminary storage map
- shape the code for the back end

\textit{Much of front end construction can be automated}
Syntax and Semantics of Prog. Languages

The syntax of programming languages is often defined in two layers: *tokens* and *sentences*.

- **tokens** – basic units of the language
 Question: How to spell a token (word)?
 Answer: regular expressions

- **sentences** – legal combination of tokens in the language
 Question: How to build correct sentences with tokens?
 Answer: (context-free) grammars (CFG)

 E.g., Backus-Naur form (BNF) is a formalism used to express the syntax of programming languages.
Formalisms for Lexical and Syntactic Analysis

1. Lexical Analysis: Converts source code into sequence of tokens.

2. Syntax Analysis: Structures tokens into parse tree.

Two issues in Formal Languages:

- **Language Specification** → formalism to describe what a valid program (sentence) looks like.

- **Language Recognition** → formalism to describe a machine and an algorithm that can verify that a program is valid or not.

For (2. Syntax Analysis), we use context-free grammars to specify programming languages. Note: recognition, i.e., parsing algorithms using PDAs (push-down automata) will be covered in CS415.

For (1. Lexical Analysis), we use regular grammars/expressions for specification and finite (state) automata for recognition.
Lexical Analysis (Scott 2.1, 2.2)

character sequence

\[\text{if } \text{ id } \text{ <= } \text{ then } \text{ id } \text{ := } \text{ l} \]

scanner

token sequence

Tokens (Terminal Symbols of CFG, Words of Lang.)

- Smallest “atomic” units of syntax
- Used to build all the other constructs
- Example, Pascal:

 keywords: program begin if then ...

 = * / - < > = <= >= <>

 () [] ; := . , ...

 number (Example: 3.14 28 ...)

 identifier (Example: b square addEntry ...)

CS 314

spring’17 lecture 2, page 10
Lexical Analysis (cont.)

Identifiers
- Names of variables, etc.
- Sequence of terminals of restricted form;
 Example, Pascal: A31, but not 1A3
- Upper/lower case sensitive?

Keywords
- Special identifiers which represent tokens in the language
- May be reserved (reserved words) or not
 - E.g., Pascal: “if” is reserved.
 - E.g., FORTRAN: “if” is not reserved.

Delimiters – When does character string for token end?
- Example: identifiers are longest possible character sequence that does not include a delimiter
- Few delimiters in Fortran (not even ‘ ‘)
 - DO I = 1.5 same as DOI=1.5
- Most languages have more delimiters such as ‘ ‘, new line, keywords, …
Regular Expressions

A syntax (notation) to specify regular languages.

<table>
<thead>
<tr>
<th>Regular Expression</th>
<th>Language $L(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${a}$</td>
</tr>
<tr>
<td>ϵ</td>
<td>${\epsilon}$</td>
</tr>
<tr>
<td>$r \mid s$</td>
<td>$L(r) \cup L(s)$</td>
</tr>
<tr>
<td>rs</td>
<td>${rs \mid r \in L(r), s \in L(s)}$</td>
</tr>
<tr>
<td>r^+</td>
<td>$L(r) \cup L(rr) \cup L(rrr) \cup \ldots$ (any number of r’s concatenated)</td>
</tr>
<tr>
<td>r^*</td>
<td>${\epsilon} \cup L(r) \cup L(rr) \cup L(rrr) \cup \ldots$ $(r^* = r^+</td>
</tr>
<tr>
<td>(s)</td>
<td>$L(s)$</td>
</tr>
</tbody>
</table>

(all left-associative in order of increasing precedence.)

⇒ **Note**: Inductive definition!
Examples of Expressions

<table>
<thead>
<tr>
<th>RE</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>bc</td>
</tr>
<tr>
<td>(a</td>
<td>b)c</td>
</tr>
<tr>
<td>aε</td>
<td></td>
</tr>
<tr>
<td>a*</td>
<td>b</td>
</tr>
<tr>
<td>ab*</td>
<td></td>
</tr>
<tr>
<td>ab*</td>
<td>c+</td>
</tr>
<tr>
<td>(a</td>
<td>b)*</td>
</tr>
<tr>
<td>(0</td>
<td>1)*1</td>
</tr>
</tbody>
</table>
Examples of Expressions - Solution

RE Language

\[a|bc \rightarrow \{a, bc\} \]

\[(a|b)c \rightarrow \{ac, bc\} \]

\[a\epsilon \rightarrow \{a\} \]

\[a^*|b \rightarrow \{\epsilon, a, aa, aaa, aaaa, \ldots\} \cup \{b\} \]

\[ab^* \rightarrow \{a, ab, abb, abbb, abbbb, \ldots\} \]

\[ab^*|c^+ \rightarrow \{a, ab, abb, abbb, abbbb, \ldots\} \cup \{c, cc, ccc, \ldots\} \]

\[(a|b)^* \rightarrow \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\} \]

\[(0|1)^*1 \rightarrow \text{binary numbers ending in 1} \]
Next Lecture

Finite state machines to recognize regular expression languages

CFGs, BNF, derivations, parse tree, ambiguity, top-down parsing

Things to do:

- First homework will be posted tomorrow. Please check our web site;
- read Scott, Ch. 2.2 - 2.5 (skip 2.3.3 Bottom-up Parsing)