INFORMATION and REMINDERS

• Homework 8 will be posted today

• Project 3 has been posted
 – Deadline: Wednesday, May 3, 11:59pm
 – Required minimum performance improvements will be posted later.

• Review session: Wednesday, May 3, 11:00am - noon, CoRE 301

• FINAL EXAM
 1. Monday, May 8, 4:00-7:00pm, College Ave. Campus
 2. CONFLICTS? Need to know as soon as possible; there are fixed rules to resolve conflicts;
 Deadline: May 1
Dependence Testing

Given

\[
\begin{align*}
\text{do } & \quad i_1 = L_1, U_1 \\
\cdots \quad & \quad \text{do } i_n = L_n, U_n \\
S_1 & \quad A(f_1(i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)) = \ldots \\
S_2 & \quad \cdots = A(g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n))
\end{align*}
\]

A dependence between statement S_1 and S_2, denoted $S_1 \delta S_2$, indicates that S_1, the source, must be executed before S_2, the sink on some iteration of the nest.

Let $\alpha \& \beta$ be a vector of n integers within the ranges of the lower and upper bounds of the n loops.

Does $\exists \alpha \leq \beta$, s.t.

\[
f_k(\alpha) = g_k(\beta) \quad \forall k, \; 1 \leq k \leq m?
\]
Approaches to Dependence Testing

- can we solve this problem exactly?
- what is conservative in this framework?
- restrict the problem to consider index and bound expressions that are linear functions

⇒ solving general system of linear equations in integers is NP-hard

Solution Methods

- inexact methods
 - Greatest Common Divisor (GCD)
 - Banerjee’s inequalities
- cascade of exact, efficient tests
 (fall back on inexact methods if needed)
 - Rice (see posted PLDI’91 paper)
 - Stanford
- exact general tests (integer programming)
Dependence Testing

SIV - Single Induction Variable Test

1. Single loop nest with constant lower (LB) and upper (UB) bounds, and step 1

 for i = LB, UB, 1

 ...

 endfor

 The loop bounds define the iteration space for loop induction variable i.

2. Two array references with array subscript (index) expressions of the form (true dependence)

 for i = LB, UB, 1

 R1: X(a*i + c1) = ... \ write

 R2: ... X(a*i + c2) ... \ read

 endfor

 where a, c1, and c2 are integer constants, R1 and R2 are references to the same array, i is the loop induction variable, and a ≠ 0.

Question:

Is there a true dependence between R1 and R2?
Dependence Testing

There is a dependence between R1 and R2 iff

\[\exists i, i' : i \leq i' \text{ and } (a \times i + c_1) = (a \times i' + c_2) \]

where \(i \) and \(i' \) are two iterations in the iteration space of the loop. This means that in both iterations, the same element of array \(X \) would be accessed.

So let’s just solve the equation:

\[(a \times i + c_1) = (a \times i' + c_2) \iff \]

\[\frac{c_1 - c_2}{a} = i' - i = \Delta d \]

There is a dependence with distance \(\Delta d \) iff

1. \(\Delta d \) is an integer value and
2. \(\text{UB} - \text{LB} \geq \Delta d \geq 0 \)
Dependence Testing Examples

1. for i = LB, UB, 1
 R1: X(i) = ... \ write
 R2: ... X(i - 2) ... \ read
 endfor

 a = 1, c_1 = 0, c_2 = -2 \Rightarrow \Delta d = 2 (dependence)

2. for i = LB, UB, 1
 R1: X(2*i) = ... \ write
 R2: ... X(2*i - 1) ... \ read
 endfor

 a = 2, c_1 = 0, c_2 = -1 \Rightarrow \Delta d = \frac{1}{2} (no dependence)

Assume R1 executes before R2.

Classification of dependences:

- R1 is write, R2 is read \Rightarrow true dependence
- R1 is read, R2 is write \Rightarrow anti dependence
- R1 is write, R2 is write \Rightarrow output dependence
Dependence Testing

ZIV - Zero Induction Variable Test

Two array references with array subscript (index) expressions of the form of a constant:

\[
\text{for } i = \text{LB, UB, 1} \\
\text{R1: } X(c_1) = \ldots \quad \text{\textbackslash \ write} \\
\text{R2: } \ldots X(c_2) \ldots \quad \text{\textbackslash \ read} \\
\text{endfor}
\]

where \(c_1\), and \(c_2\) are integer constants, and R1 and R2 are references to the same array.

There is a dependence between R1 and R2 \textbf{iff}

\[c_1 = c_2 = c.\]

What is the dependence distance \(\Delta d\)?

Since every iteration \(i\) writes \(X(c)\), and every iteration \(i'\) reads \(X(c)\), there is no fixed distance \(\Delta d\). In fact, both references have true, anti, and output dependences:

\[
\Delta d \in \{0, \ldots UB - LB\} \text{ for true} \\
\Delta d \in \{1, \ldots UB - LB\} \text{ for anti and output}
\]
Project and OpenMP

Two important issues while specifying the parallel execution of a `for` loops:

- **safety** – parallel execution has to preserve all dependences

- **profitability** – benefits of parallel execution have to compensate for the overhead penalty
Project and OpenMP

{safety}

Sample code:

```c
#pragma omp parallel for private(i, hash)
    for (j = 0; j < num_hf; j++) {
        for (i = 0; i < wl_size; i++) {
            hash = hf[j] (get_word(wl, i));
            hash %= bv_size;
            bv[hash] = 1;
        }
    }
```

This specifies:

- outermost (j-loop) is parallel
- each thread will get its own copy of variables i and hash, eliminating loop carried anti and output dependences.
Sample code:

```c
#define CHUNK_SIZE 2
int chunk = CHUNK_SIZE
#pragma omp parallel for \\
    schedule (dynamic, chunk) \\
    private(i, hash)
    for (j = 0; j < num_hf; j++) {
        for (i = 0; i < wl_size; i++) {
            hash = hf[j] (get_word(wl, i));
            hash %= bv_size;
            bv[hash] = 1; }
    }
```

This specifies:

- outermost (j-loop) is parallel, with CHUNK_SIZE iterations scheduled as a group; default chunk size=1
- three basic scheduling strategies: static, dynamic, or guided

There are many more options of specifying how to execute for loops in parallel (see the online OpenMP tutorial)
A Simple Vectorizing Compiler

How to vectorize the following loops?

for (i=2; i<100; i++) {
 S1: a[i] = b[i+1] + 1;
 S2: b[i] = a[i] + 5;
}

for (i=2; i<100; i++) {
 S1: a[i] = b[i-1] + a[i-1] + 3;
 S2: b[i] = a[i+1] + 5;
}

Simple vectorizer assumptions:

1. singly-nested loops
2. constant upper and lower bounds, step is always 1
3. body is sequence of assignment statements to array variables
4. simple array index expressions of induction variable (i +/- c or c); can use ZIV or SIV test
5. no function calls
A Simple Vectorizing Source-to-Source Compiler

SKETCH OF BASIC ALGORITHM

Here is a basic vectorization algorithm based on a statement-level dependence graph:

1. Construct statement-level dependence graph considering true, anti, and output dependences; in the final dependence graph, the type of the dependence is not important any more

2. Detect strongly connected components (SCC) over the dependence graph; represent SCC as summary nodes; walk resulting graph in topological order; For each visited node do

 (a) if SCC has more than one statement in it, distribute loop with statements of SCC as its body, and keep the code sequential

 (b) if SCC is a single statement and has no dependence cycle, distribute loop around it and generate vector code; otherwise, mark distributed loop sequential.
Next Lecture

- Loop level source-to-source optimizations
- Q & A