Class Information

REMINDERS

• Deadline extension for second homework: Monday, October 2, 11:59pm. No late submissions.

• Don’t forget to work on your C and Linux skills (ilab).
Top-Down Parsing - LL(1)

Basic Idea:

- The parse tree is constructed from the root, expanding **non-terminal** nodes on the tree’s frontier following a left-most derivation.

- The input program is read from left to right, and input tokens are read (consumed) as the program is parsed.

- The next **non-terminal** symbol is replaced by one of its rules. The particular choice has to be unique, and uses parts of the input (partially parsed program), for instance the first **token** of the remaining input.
Top-Down Parsing - LL(1) (cont.)

How can we parse (automatically construct a left-most derivation) an input string, for example $a a a b b b$, using a PDA (push-down automaton) and only the first symbol of the remaining input?

Example:

$S ::= a \ S \ b \ | \ \epsilon$

INPUT: $a a a b b b \ \text{eof}$
Predictive Parsing

Basic idea:

For any two productions $A ::= \alpha \mid \beta$ with $\alpha \in (T \cup N)^*$ and $\beta \in (T \cup N)^*$, we would like a distinct way of choosing the correct production to expand.

For $\alpha \in (T \cup N)^*$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first token in some string derived from α.

That is

$a \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* a \gamma$ for some $\gamma \in (T \cup N)^*$ and a is a token ($x \in T$), and $\epsilon \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* \epsilon$

For a non-terminal A, define $\text{FOLLOW}(A)$ as the set

$a \in \text{FOLLOW}(A)$ iff $S \Rightarrow^* \alpha A a \gamma$ for some $\alpha, \gamma \in (T \cup N)^*$, $a \in T$, and S the start symbol.

Thus, a non-terminal’s FOLLOW set specifies the tokens that can legally appear after it.

FOLLOW sets are not defined for terminal symbols.

FIRST and FOLLOW sets can be constructed automatically.
Predictive Parsing (cont.)

Key Property:
Whenever two productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, we would like

- $\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset$, and
- if $\alpha \Rightarrow^* \epsilon$ then $\text{FIRST}(\beta) \cap \text{FOLLOW}(A) = \emptyset$
- Analogue case for $\beta \Rightarrow^* \epsilon$. Note: due to first condition, at most one of α or β can derive ϵ.

This would allow the parser to make a correct choice with a lookahead of only one symbol!
LL(1) Grammar

Define $FIRST^+(\delta)$ for rule $A ::= \delta$

- $FIRST(\delta) - \{\epsilon\} \cup \text{Follow}(A)$, if $\epsilon \in FIRST(\delta)$
- $FIRST(\delta)$ otherwise

A grammar is LL(1) iff

$(A ::= \alpha$ and $A ::= \beta)$ implies

$FIRST^+(\alpha) \cap FIRST^+(\beta) = \emptyset$
Back to Our Example

\[
S ::= a \, S \, b \mid \epsilon
\]

\[
FIRST(aSb) = \{a\}
\]

\[
FIRST(\epsilon) = \{\epsilon\}
\]

\[
FOLLOW(S) = \{\text{eof, b}\}
\]

\[
\begin{align*}
FIRST^+(aSb) &= \{a\} \\
FIRST^+(\epsilon) &= (FIRST(\epsilon) - \{\epsilon\}) \cup FOLLOW(S) = \\
&= \{\text{eof, b}\}
\end{align*}
\]

Is the grammar LL(1)?
Table-Driven LL(1) Parser

LL(1) parse table

Example:
$$S ::= a\, S\, b \mid \epsilon$$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aSb</td>
<td>ϵ</td>
<td>ϵ</td>
<td>error</td>
</tr>
</tbody>
</table>

How to parse input a a a b b b ?
Table-driven predictive parsing algorithm

Input: a string \(w \) and a parsing table \(M \) for \(G \)

\[
\begin{align*}
\text{push } & \text{eof} \\
\text{push } & \text{Start Symbol} \\
token & \leftarrow \text{next_token()} \\
X & \leftarrow \text{top_of_stack} \\
\text{repeat} & \\
\quad & \text{if } X \text{ is a terminal then} \\
\quad & \quad \text{if } X = \text{token then} \\
\quad & \quad \quad \text{pop } X \\
\quad & \quad \quad \text{token } \leftarrow \text{next_token()} \\
\quad & \quad \quad \text{else error()} \\
\quad & \quad \text{else /* } X \text{ is a non-terminal */} \\
\quad & \quad \quad \text{if } M[X,\text{token}] = X \rightarrow Y_1Y_2\cdots Y_k \text{ then} \\
\quad & \quad \quad \quad \text{pop } X \\
\quad & \quad \quad \quad \text{push } Y_k, Y_{k-1}, \cdots, Y_1 \\
\quad & \quad \quad \quad \text{else error()} \\
\quad & \quad X \leftarrow \text{top_of_stack} \\
\text{until } & X = \text{eof} \\
\quad & \text{if token } \neq \text{eof} \text{ then error()} \\
\end{align*}
\]

See also Aho, Lam, Sethi, and Ullman, Figure 4.20, page 227
Next Lecture

Syntax-directed translation

Four examples: Interpreter, compiler, type checker, static performance predictor

Things to do:
Start programming in C. Check out the web for tutorials.