CS314 Principles of Programming Languages

GPUs and CUDA programming

Most of these slides were taken from a NVIDIA corporation tutorial for CUDA programming in C
The “Power” of GPUs

Rocket Sled Demo

NVIDIA Corporation

https://www.youtube.com/watch?v=HjIzoGnkCZs

https://youtu.be/HjIzoGnkCZs
My View of the World

GPGPU

CPU

GPU
CUDA C/C++ BASICS

NVIDIA Corporation 2013
What is CUDA?

- **CUDA Architecture**
 - Expose GPU parallelism for general-purpose computing
 - Retain performance

- **CUDA C/C++**
 - Based on industry-standard C/C++
 - Small set of extensions to enable heterogeneous programming
 - Straightforward APIs to manage devices, memory etc.

- This lecture introduces CUDA C/C++
• What will you learn in this session?
 → Start from “Hello World!”
 → Write and launch CUDA C/C++ kernels
 → Manage GPU memory
 → Manage communication and synchronization
Prerequisites

- You (probably) need experience with C or C++
- You don’t need GPU experience
- You don’t need parallel programming experience
- You don’t need graphics experience
CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
HELLO WORLD!
Heterogeneous Computing

 Terminology:

- **Host** The CPU and its memory (host memory)
- **Device** The GPU and its memory (device memory)
#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__
void stencil_1d(
 int *in,
 int *out) {
 __shared__
 int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS; offset <= RADIUS; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

void fill_ints(
 int *x,
 int n) {
 fill_n(x, n, 1);
}

int main(
 void) {
 int *in, *out;

 // host copies of a, b, c
 int *d_in, *d_out;

 // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values
 in = (int*)malloc(size); fill_ints(in, N + 2*RADIUS);
 out = (int*)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies
 cudaMalloc((void**)&d_in, size);
 cudaMalloc((void**)&d_out, size);

 // Copy to device
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
 d_out + RADIUS);

 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
 return 0;
}
1. Copy input data from CPU memory to GPU memory
1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
```c
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

- Standard C that runs on the host

- NVIDIA compiler (nvcc) can be used to compile programs with no `device` code

Output:
```
$ nvcc hello_world.cu
$ a.out
Hello World! $ 
```
```
__global__ void mykernel(void) {
}

int main(void) {
    mykernel<<<1,1>>>()
    printf("Hello World!\n");
    return 0;
}
```

- Two new syntactic elements...
```c
__global__ void mykernel(void) {
}
```

- **CUDA C/C++ keyword** `__global__` indicates a function that:
 - Runs on the device
 - Is called from host code

- **`nvcc` separates source code into host and device components**
 - Device functions (e.g. `mykernel()`) processed by NVIDIA compiler
 - Host functions (e.g. `main()`) processed by standard host compiler
 - `gcc, cl.exe`
mykernel<<<1,1>>>()

- Triple angle brackets mark a call from host code to device code
 - Also called a “kernel launch”
 - We’ll return to the parameters (1,1) in a moment

- That’s all that is required to execute a function on the GPU!
__global__ void mykernel(void) {
}

int main(void) {
 mykernel<<<1,1>>>();
 printf("Hello World!\n");
 return 0;
}

• mykernel() does nothing, somewhat anticlimactic!

Output:

$ nvcc hello.cu
hello.cu
$ a.out
Hello World!
$
• But wait... GPU computing is about massive parallelism!

• We need a more interesting example...

• We’ll start by adding two integers and build up to vector addition
• A simple kernel to add two integers

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• As before `__global__` is a CUDA C/C++ keyword meaning
 → `add()` will execute on the device
 → `add()` will be called from the host
Addition on the Device

• Note that we use pointers for the variables

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• `add()` runs on the device, so `a`, `b` and `c` must point to device memory

• We need to allocate memory on the GPU
Memory Management

- Host and device memory are separate entities
 - \textit{Device} pointers point to GPU memory
 - May be passed to/from host code
 - May \textit{not} be dereferenced in host code
 - \textit{Host} pointers point to CPU memory
 - May be passed to/from device code
 - May \textit{not} be dereferenced in device code

- Simple CUDA API for handling device memory
 - \texttt{cudaMalloc()}, \texttt{cudaFree()}, \texttt{cudaMemcpy()}
 - \textit{Similar to the C equivalents} \texttt{malloc()}, \texttt{free()}, \texttt{memcpy()}

\(\text{© NVIDIA 2013}\)
• Returning to our `add()` kernel

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• Let’s take a look at `main()`...
int main(void) {
 int a, b, c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = sizeof(int);

 // Allocate space for device copies of a, b, c
 cudaMalloc((void **)d_a, size);
 cudaMalloc((void **)d_b, size);
 cudaMalloc((void **)d_c, size);

 // Setup input values
 a = 2;
 b = 7;
Addition on the Device: \textbf{main()}

// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
}
RUNNING IN PARALLEL

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
• **GPU computing is about massive parallelism**
 → So how do we run code in parallel on the device?

\[
\text{add}<<<1, 1>>>();
\]

\[
\text{add}<<<N, 1>>>();
\]

• **Instead of executing \text{add}() once, execute \(N\) times in parallel**
• With `add()` running in parallel we can do vector addition.

• Terminology: each parallel invocation of `add()` is referred to as a block:
 → The set of blocks is referred to as a `grid`
 → Each invocation can refer to its block index using `blockIdx.x`

```c
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• By using `blockIdx.x` to index into the array, each block handles a different index.
Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

• On the device, each block can execute in parallel:

Block 0 Block 1 Block 2 Block 3
\[\begin{align*}
 c[0] &= a[0] + b[0]; \\
 c[1] &= a[1] + b[1]; \\
\end{align*} \]
• Returning to our parallelized `add()` kernel

```c
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• Let’s take a look at `main()`...
#define N 512
int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);
Vector Addition on the Device: main()

 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks
 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;

• Difference between host and device
 → Host CPU
 → Device GPU

• Using __global__ to declare a function as device code
 → Executes on the device
 → Called from the host

• Passing parameters from host code to a device function
• Basic device memory management
 → cudaMalloc()
 → cudaMemcpy()
 → cudaFree()

• Launching parallel kernels
 → Launch N copies of add() with add<<<N,1>>>(...);
 → Use blockIdx.x to access block index
INTRODUCING THREADS

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
CUDA Threads

• Terminology: a block can be split into parallel threads

• Let's change `add()` to use parallel threads instead of parallel blocks

```c
__global__ void add(int *a, int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

• We use `threadIdx.x` instead of `blockIdx.x`

• Need to make one change in `main()`...
#define N 512
int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);
Vector Addition Using Threads: main()

 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N threads
 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;

}
COMBINING THREADS AND BLOCKS

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
We’ve seen parallel vector addition using:
- Many blocks with one thread each
- One block with many threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that...

First let’s discuss data indexing...
• No longer as simple as using `blockIdx.x` and `threadIdx.x`

 Consider indexing an array with one element per thread (8 threads/block)

  ```
  blockIdx.x = 0  blockIdx.x = 1  blockIdx.x = 2  blockIdx.x = 3
  ```

• With \(M \) threads/block a unique index for each thread is given by:

  ```c
  int index = threadIdx.x + blockIdx.x * M;
  ```
Indexing Arrays: Example

- Which thread will operate on the red element?

```c
int index = threadIdx.x + blockIdx.x * M;
= 5 + 2 * 8;
= 21;
```
• Use the built-in variable blockDim.x for threads per block

  ```c
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  ```

• Combined version of `add()` to use parallel threads and parallel blocks

  ```c
  __global__ void add(int *a, int *b, int *c) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    c[index] = a[index] + b[index];
  }
  ```

• What changes need to be made in `main()`?
```
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
int main(void) {
    int *a, *b, *c; // host copies of a, b, c
    int *d_a, *d_b, *d_c; // device copies of a, b, c
    int size = N * sizeof(int);

    // Alloc space for device copies of a, b, c
    cudaMalloc((void **)&d_a, size);
    cudaMalloc((void **)&d_b, size);
    cudaMalloc((void **)&d_c, size);

    // Alloc space for host copies of a, b, c and setup input values
    a = (int *)malloc(size); random_ints(a, N);
    b = (int *)malloc(size); random_ints(b, N);
    c = (int *)malloc(size);
```
Addition with Blocks and Threads:

```c
int main()
{
    // Copy inputs to device
    cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
    cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

    // Launch add() kernel on GPU
    add<<<N/THREADS_PER_BLOCK , THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

    // Copy result back to host
    cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

    // Cleanup
    free(a); free(b); free(c);
    cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
    return 0;
}
```
Handling Arbitrary Vector Sizes

• Typical problems are not friendly multiples of `blockDim.x`

• Avoid accessing beyond the end of the arrays:

```c
__global__ void add(int *a, int *b, int *c, int n) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index < n)
        c[index] = a[index] + b[index];
}
```

• Update the kernel launch:

```
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);
```
Why Bother with Threads?

- Threads seem unnecessary
 - They add a level of complexity
 - What do we gain?

- Unlike parallel blocks, threads have mechanisms to:
 - Communicate
 - Synchronize

- To look closer, we need a new example...
• Launching parallel kernels
 → Launch N copies of add() with add<<<N/M,M>>>(…);
 → Use blockIdx.x to access block index
 → Use threadIdx.x to access thread index within block

• Allocate elements to threads:

 int index = threadIdx.x + blockIdx.x * blockDim.x;
COOPERATING THREADS

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads()
- Asynchronous operation
- Handling errors
- Managing devices
• Consider applying a 1D stencil to a 1D array of elements
 → Each output element is the sum of input elements within a radius

• If radius is 3, then each output element is the sum of 7 input elements:
Implementing Within a Block

• Each thread processes one output element
 \(\rightarrow\) \(blockDim.x \) elements per block

• Input elements are read several times
 \(\rightarrow\) With radius 3, each input element is read seven times
• Terminology: within a block, threads share data via *shared* memory

• Extremely fast on-chip memory, user-managed

• Declare using `__shared__`, allocated per block

• Data is not visible to threads in other blocks
• **Cache data in shared memory**

 - Read \((\text{blockDim}.x + 2 \times \text{radius})\) input elements from global memory to shared memory

 - **Compute** \(\text{blockDim}.x\) output elements

 - **Write** \(\text{blockDim}.x\) output elements to global memory

 - Each block needs a **halo** of radius elements at each boundary

[Diagram showing halo on left and right, and blockDim.x output elements]
__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x; // global index
 int lindex = threadIdx.x + RADIUS; // local index

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }
}
// Apply the stencil
 result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

// Store the result
out[gindex] = result;
The stencil example will not work...

Suppose thread 15 reads the halo before thread 0 has fetched it...

```c
int result = 0;
result += temp[lindex + 1];
```

```c
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
    temp[lindex - RADIUS] = in[gindex - RADIUS];
    temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}
```

```
Load from temp[19]

Store at temp[18]
```

Skipped, threadIdx > RADIUS
• **__syncthreads();**

• Synchronizes all threads within a block
 – Used to prevent RAW / WAR / WAW hazards

• All threads must reach the barrier
 – In conditional code, the condition must be uniform across the block
__global__ void stencil_1d(int *in, int *out) {
 int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + radius;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();
}
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

// Store the result
out[gindex] = result;
• Launching parallel threads
 → Launch N blocks with M threads per block with kernel$<<<N,M>>>$(...);
 → Use blockIdx.x to access block index within grid
 → Use threadIdx.x to access thread index within block

• Allocate elements to threads:

  ```
  int index = threadIdx.x + blockIdx.x * blockDim.x
  ```
• Use __shared__ to declare a variable/array in shared memory
 → Data is shared between threads in a block
 → Not visible to threads in other blocks

• Use __syncthreads() as a barrier
 → Use to prevent data hazards
MANAGING THE DEVICE

CONCEPTS

- Heterogeneous Computing
- Blocks
- Threads
- Indexing
- Shared memory
- __syncthreads() (Asynchronous operation)
- Handling errors
- Managing devices
• Kernel launches are asynchronous
 → Control returns to the CPU immediately

• CPU needs to synchronize before consuming the results

\begin{itemize}
 \item \texttt{cudaMemcpy()} \\
 Blocks the CPU until the copy is complete
 Copy begins when all preceding CUDA calls have completed
 \item \texttt{cudaMemcpyAsync()} \\
 Asynchronous, does not block the CPU
 \item \texttt{cudaDeviceSynchronize()} \\
 Blocks the CPU until all preceding CUDA calls have completed
\end{itemize}
• All CUDA API calls return an error code (\texttt{cudaError_t})
 → Error in the API call itself
 OR
 → Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:
 \texttt{cudaError_t cudaGetLastError(void)}

• Get a string to describe the error:
 \texttt{char *cudaGetErrorString(cudaError_t)}

\begin{verbatim}
printf("%s\n",
 cudaGetErrorString(cudaGetLastError()));
\end{verbatim}
Device Management

- Application can query and select GPUs
 - `cudaGetDeviceCount(int *count)`
 - `cudaSetDevice(int device)`
 - `cudaGetDevice(int *device)`
 - `cudaGetDeviceProperties(cudaDeviceProp *prop, int device)`

- Multiple threads can share a device

- A single thread can manage multiple devices
 - `cudaSetDevice(i)` to select current device
 - `cudaMemcpy(...)` for peer-to-peer copies†

† requires OS and device support
• What have we learned?
 → Write and launch CUDA C/C++ kernels
 - __global__, blockIdx.x, threadIdx.x, <<<>>>
 → Manage GPU memory
 - cudaMalloc(), cudaMemcpy(), cudaFree()
 → Manage communication and synchronization
 - __shared__, __syncthreads()
 - cudaMemcpy() vs cudaMemcpyAsync(), cudaDeviceSynchronize()