Problem 1 – Scheme

As we discussed in class, let does not add anything to the expressiveness of the language, i.e., they are only a convenient notation. For instance,
(let ((x v1) (y v2)) e) can be rewritten as
((lambda (x y) e) v1 v2).

How can you rewrite (let* ((x v1) (y v2) (z v3)) e) in terms of λ-abstractions and function applications?

Problem 2 – Lambda Calculus

Use β -reductions to compute the final answer for the following λ-terms. Note: Assume that integer constants represent their corresponding lambda expressions as discussed in class. Identify each redex for β -reduction steps. Your computation ends with a final result if no more reductions can be applied (normal form). Does the order in which you apply the β -reduction make a different whether you can compute a final result? Justify your answer.

1. (((λx.x) (λx.1)) (λy.y))
2. (((λz. ((λy.z) ((λx.(x x))(λx.(x x)))))) 5)

Problem 3 – Programming in Lambda Calculus

In the lecture, we discussed a possible representations of truth values true and false in the lambda calculus, together with lambda calculus implementations of some logical operators.

1. Compute the value of ((or true) false) using β -reductions.
2. Define the exor (exclusive or) operator in lambda calculus. Prove that your definition is correct, i.e., your lambda term for exor “implements” the logical exor operation.
Problem 4 — Lambda Calculus and Combinators S & K

In the lecture, we introduced the S and K combinators:

- $K \equiv \lambda xy.x$
- $S \equiv \lambda xyz.((xz)(yz))$

Prove that the identify function $I \equiv \lambda x.x$ is equivalent to $(S\ K)\ K$, i.e.,

$I \equiv SKK$