CS 314 Principles of Programming Languages

Lecture 23

Zheng Zhang

Department of Computer Science
Rutgers University

Friday 2nd December, 2016
Class Information

- Project 2 deadline extended to 12/7 Wednesday, 11:55pm EST.
- Project 3 will be posted 12/8 Thursday.
- For those who are taking CS 214 at the same time, the CS 214 instructors will arrange a makeup exam due to the exact time conflict.
Review: Dependence and Parallelization

Programming with Concurrency:

- A PROCESS or THREAD is an independent execution context.
- Classic von Neumann model of computing has single thread control, however, parallel programs have more than one.

Question:

How to decompose a sequential task into multiple independent subtasks?
Review: Dependence and Parallelization

- Dependence analysis is key to task decomposition.
- A task decomposition problem can be modeled as a directed graph such that if $A \rightarrow B$ the result of task A is required for the processing of task B.

Example:

\[
\begin{align*}
C &= 4; \\
D &= 2; \\
B &= 5 + D; \\
A &= B + C;
\end{align*}
\]
Statement Level Parallelism

Dependence relation: all statement–to–statement execution orderings for a sequential program that must be preserved if the meaning of the program is to remain the same.

<table>
<thead>
<tr>
<th>S1</th>
<th>pi = 3.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>r = 5.0</td>
</tr>
<tr>
<td>S3</td>
<td>area = pi * r**2</td>
</tr>
</tbody>
</table>

Parallelization is a type of program reordering transformation.

For any type of program reordering:

Semantics is preserved if dependence is preserved.
Dependence — Overview

Bernstein’s Condition: — There is a data dependence from statement \(S_1 \) to statement \(S_2 \) \((S_1 \delta S_2) \) if

1. Both statements access the same memory location, and
2. One of them is a write.
3. There is a run–time execution path from \(S_1 \) to \(S_2 \).
Data dependence classification

“S_2 depends on S_1” — $S_1 \delta S_2$

True dependence occurs when S_1 writes a memory location that S_2 later reads.

Anti dependence occurs when S_1 reads a memory location that S_2 later writes.

Output dependence occurs when S_1 writes a memory location that S_2 later writes.

Input dependence occurs when S_1 reads a memory location that S_2 later reads.

Note: Input dependences do not restrict statement (load/store) order!
Loop-level Parallelism

We will use loop analysis as example to describe dependence analysis and parallelization.

Typically, scientific codes:

- Have loops that comprise most of the computation in the program. Tens of lines of code might comprise up to 90% computation.
- Use arrays as their main data structures.
- Amenable to automatic parallelization.

As a result, many optimizing transformations concentrate on loop level optimizations. Most loop level optimizations are source–to–source, i.e., reshape loops at the source level.
Exercise: Loop Dependence

Assume we only have scalar and subscripted variables (no pointers and no control dependence) for data dependence analysis.

Which loop is parallelizable?

\[
\begin{align*}
&\text{do } I = 1, 100 \\
&\quad \text{do } J = 1, 100 \\
&\quad \quad A(I,J) = A(I,J) + 1 \\
&\quad \quad \text{enddo} \\
&\quad \text{enddo} \\
&\text{do } I = 1, 99 \\
&\quad \text{do } J = 1, 100 \\
&\quad \quad A(I,J) = A(I+1,J) + 1 \\
&\quad \quad \text{enddo} \\
&\quad \text{enddo} \\
\end{align*}
\]
Exercise: Loop Dependence

Assume we only have scalar and subscripted variables (no pointers and no control dependence) for data dependence analysis.

Which loop is parallelizable?

\[
\begin{align*}
&\text{do I = 1, 100} \\
&\quad \text{do J = 1, 100} \\
&\quad \quad A(I,J) = A(I,J) + 1 \\
&\quad \text{enddo} \\
&\text{enddo} \\
\end{align*}
\]

\[
\begin{align*}
&\text{do I = 1, 99} \\
&\quad \text{do J = 1, 100} \\
&\quad \quad A(I,J) = A(I+1,J) + 1 \\
&\quad \text{enddo} \\
&\text{enddo} \\
\end{align*}
\]

parallelization

\[
\begin{align*}
&\text{doall I = 1, 100} \\
&\quad \text{doall J = 1, 100} \\
&\quad \quad A(I,J) = A(I,J) + 1 \\
&\quad \text{enddo} \\
&\text{implicit barrier sync.} \\
&\text{enddo} \\
\end{align*}
\]

\[
\begin{align*}
&\text{doall I = 1, 99} \\
&\quad \text{doall J = 1, 100} \\
&\quad \quad A(I,J) = A(I+1,J) + 1 \\
&\quad \text{enddo} \\
&\text{implicit barrier sync.} \\
&\text{enddo} \\
\end{align*}
\]
Loop Iteration Space

- Lexicographical (sequential) order for the above iteration space:

 \[(1,1), (1,2), \ldots, (1,6)\]

 \[(2,2), (2,3), \ldots (2,6)\]

 \[
 \ldots

 \[(5,5), (5,6)\]

 do \(I = 1, 5\)

 do \(J = I, 6\)

 \[
 \ldots

 \]

 enddo

 enddo

 \(1 \leq I \leq 5\)

 \(I \leq J \leq 6\)

- Given \(I = (i_1, \ldots, i_n)\) and \(I' = (i'_1, \ldots, i'_n)\),

 \(I < I'\) iff \((i_1, i_2, \ldots i_k) = (i'_1, i'_2, \ldots i'_k)\) \& \(i_{k+1} < i'_{k+1}\)
Dependence Testing

Given

\[
\begin{align*}
\text{do } & i_1 = L_1, U_1 \\
& \quad \cdots \\
\text{do } & i_n = L_n, U_n \\
S_1 & \quad A(f_1(i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)) = \ldots \\
S_2 & \quad \ldots = A(g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n))
\end{align*}
\]

A dependence between statement \(S_1 \) and \(S_2 \), denoted \(S_1 \delta S_2 \), indicates that \(S_1 \), the source, must be executed before \(S_2 \), the sink on some iteration of the nest.

Let \(\alpha \& \beta \) be a vector of \(n \) integers within the ranges of the lower and upper bounds of the \(n \) loops.

Does \(\exists \alpha \leq \beta \), s.t.

\[
f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m
\]
Dependence Testing

SIV - Single Induction Variable Test

1. Single loop nest with constant lower (LB) and upper (UB) bounds, and step 1

 for i = LB, UB, 1
 ...
 endfor

 The loop bounds define the iteration space for loop induction variable i.

2. Two array references with array subscript (index) expressions of the form (true dependence)

 for i = LB, UB, 1
 R1: X(a*i + c1) = ... \write
 R2: ... = X(a*i + c2) ... \read
 endfor

 where a, c1, and c2 are integer constants, R1 and R2 are references to the same array, i is the loop induction variable, and a \neq 0.

Question: Is there a true dependence between R1 and R2?
Dependence Testing

There is a dependence between R1 and R2 iff

\[\exists i, i' : i \leq i' \ and \ (a \ast i + c_1) = (a \ast i' + c_2) \]

where \(i \) and \(i' \) are two iterations in the iteration space of the loop. This means that in both iterations, the same element of array \(X \) would be accessed.

So let’s just solve the equation:

\[(a \ast i + c_1) = (a \ast i' + c_2) \equiv \]

\[\frac{c_1 - c_2}{a} = i' - i = \Delta d \]

There is a dependence with distance \(\Delta d \) iff

1. \(\Delta d \) is an integer value and
2. \(\text{UB} - \text{LB} \geq \Delta d \geq 0 \)
Dependence Testing Examples

1. for i = LB, UB, 1
 R1: X(i) = ... \ write
 R2: ... = X(i - 2) ... \ read
 endif

 a=1, c₁=0, c₂=-2 \(\Rightarrow \) \(\Delta d = 2 \) (dependence)

2. for i = LB, UB, 1
 R1: X(2*i) = ... \ write
 R2: ... = X(2*i - 1) ... \ read
 endif

 a=2, c₁=0, c₂=-1 \(\Rightarrow \) \(\Delta d = \frac{1}{2} \) (no dependence)

Assume R1 executes before R2.

Classification of dependences:

- R1 is write, R2 is read \(\Rightarrow \) \textbf{true} dependence
- R1 is read, R2 is write \(\Rightarrow \) \textbf{anti} dependence
- R1 is write, R2 is write \(\Rightarrow \) \textbf{output} dependence
Next time:

- Matrix Matrix Multiplication and Locality Optimization