Class Information

- Homework 7 due today. Project 2 due this Sunday.
- Midterm grades released.
 Average: 172.5; Median: 178.5; 25%: 200.5; 75%: 145.75.
- Changed policy to calculate exam grade.
 Take the better of the two – midterm grade or final grade.
 Detailed distribution for midterm is listed below:

```
Histogram of Midterm [250 pts total]
```

![Histogram of Midterm Grades](image)
Why do we care about concurrency?

► Today, concurrency is nearly everywhere (peta-flops supercomputers to smart phones).
► Necessary to keep “Moore’s Law” alive due to power/heat dissipation limits.
► Some form of parallel programming will be required, i.e., automatic tools have not been able to hide all aspects of concurrency.

⇒ Need to understand the basics of parallel programming
Classic von Neumann model of computing has single thread control, however, parallel programs have more than one.

How to decompose a task into multiple independent sub-tasks?

Data-centric view: partition the data that can be worked on in parallel (data-level parallelism);
⇒ your work is determined by the data that you are assigned to work on.

Task-centric view: partition the work that can be done concurrently (task-level parallelism);
⇒ your data is determined by the work that you have to do
Flynn’s Classical Taxonomy

- One of the most widely used classifications, in use since 1966.
- Single Instruction, Single Data (SISD) – Non-parallel
- Single Instruction, Multiple Data (SIMD)
- Multiple Instruction, Single Data (MISD)
- Multiple Instruction, Multiple Data (MIMD)
Dependence and Parallelization

Dependence analysis is fundamental to task decomposition.

- Divide a task into indivisible sequential units of computation
- A task decomposition can be modeled as a directed graph such that if $A \rightarrow B$ the result of task A is required for the processing of task B.

Example:

\begin{align*}
C &= 4; \\
D &= 2; \\
B &= 5 + D; \\
A &= B + C;
\end{align*}
Loop-level Parallelism

We will use loop analysis as example to describe dependence analysis and parallelization.

Typically, scientific codes:

- Have loops that contain most of the computation in the program. Tens of lines of code might comprise up to 90% computation.
- Use arrays as their main data structures.

As a result, many optimizing transformations concentrate on loop level optimizations. Most loop level optimizations are source–to–source, i.e., reshape loops at the source level.
Loop Level Parallelism

Dependence relation: all *statement–to–statement execution orderings* for a sequential program that must be preserved if the meaning of the program is to remain the same.

<table>
<thead>
<tr>
<th>data dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1) (\pi = 3.14)</td>
</tr>
<tr>
<td>(S_2) (r = 5.0)</td>
</tr>
<tr>
<td>(S_3) (\text{area} = \pi \times r^{**2})</td>
</tr>
</tbody>
</table>

How to preserve the meaning of these programs during parallelization?

Semantics is preserved if dependence is preserved
Theorem
Any reordering transformation that preserves every dependence (i.e., visits first the source, and then the sink of the dependence) in a program preserves the meaning of that program.

Note: We start with the notion of a sequential execution, i.e., starts with a sequential program.
Bernstein’s Condition: — There is a data dependence from statement S_1 to statement S_2 ($S_1 \delta S_2$) if

1. Both statements access the same memory location, and
2. One of them is a write.
3. There is a run–time execution path from S_1 to S_2.
Data dependence classification

“S_2 depends on S_1” — $S_1 \delta S_2$

True (flow) dependence occurs when S_1 writes a memory location that S_2 later reads

Anti dependence occurs when S_1 reads a memory location that S_2 later writes

Output dependence occurs when S_1 writes a memory location that S_2 later writes

Input dependence occurs when S_1 reads a memory location that S_2 later reads. Note: Input dependences do not restrict statement (load/store) order!
Dependence — Where do we need it?

Assume we only have scalar and subscripted variables (no pointers and no control dependence) for data dependence analysis.

Exercise: which loop is parallelizable?

\begin{align*}
\text{do } I & = 1, 100 \\
\text{do } J & = 1, 100 \\
A(I,J) & = A(I,J) + 1 \\
\text{enddo} & \\
\text{endo} & \\
\text{do } I & = 1, 99 \\
\text{do } J & = 1, 100 \\
A(I,J) & = A(I+1,J) + 1 \\
\text{enddo} & \\
\text{endo} & \\
\end{align*}

Zheng Zhang 12 eddy.zhengzhang@cs.rutgers.edu
Dependence — Where do we need it?

Assume we only have scalar and subscripted variables (no pointers and no control dependence) for data dependence analysis.

Exercise: which loop is parallelizable?

```plaintext
do I = 1, 100
  do J = 1, 100
    A(I,J) = A(I,J) + 1
  enddo
enddo
```

```plaintext
do I = 1, 99
  do J = 1, 100
    A(I,J) = A(I+1,J) + 1
  enddo
enddo
```

`parallelization`

```plaintext
doall I = 1, 100
  doall J = 1, 100
    A(I,J) = A(I,J) + 1
  enddo
  implicit barrier sync.
enddo
```

```plaintext
doall I = 1, 99
  doall J = 1, 100
    A(I,J) = A(I+1,J) + 1
  enddo
  implicit barrier sync.
enddo
```

Zheng Zhang eddy.zhengzhang@cs.rutgers.edu
Dependence Analysis

Question

Do two variable references never/maybe/always access the same memory location and one of them is a write?

Benefits

▶ improves alias analysis
▶ enables loop transformations
▶ enables parallelization (especially automatic parallelization)

Motivation

▶ classic optimizations
▶ instruction scheduling
▶ data locality (register/cache reuse)
▶ vectorization, parallelization
A **loop-independent** dependence exists regardless of the loop structure. The source and sink of the dependence occur on the same loop iteration.

A **loop-carried** dependence is induced by the iterations of a loop. The source and sink of the dependence occur on different loop iterations. *Loop-carried dependences can inhibit parallelization and loop transformations*.

do I = 1, 100
 A(I) = ...
 ...= A(I-1)
enddo

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& I & & \\
\end{array} \]
Dependence Testing

Given

\[
\begin{align*}
&\text{do } i_1 = L_1, U_1 \\
&\quad \ldots \\
&\quad \text{do } i_n = L_n, U_n \\
S_1 &\quad A(f_1(i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)) = \ldots \\
S_2 &\quad \ldots = A(g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n))
\end{align*}
\]

A \textit{dependence} between statement S_1 and S_2, denoted $S_1 _resume S_2$, indicates that S_1, the \textit{source}, must be executed before S_2, the \textit{sink} on some iteration of the nest.

Let $\alpha \& \beta$ be a vector of n integers within the ranges of the lower and upper bounds of the n loops.

Does $\exists \alpha \leq \beta$, s.t.

\[
f_k(\alpha) = g_k(\beta) \quad \forall k, 1 \leq k \leq m?
\]
Next time:

- More on dependence testing and parallelization
- Reading: ALSU Chapter 11.1 – 11.3