Availability of Slides

Go to nbcs.rutgers.edu/~jt
to see the powerpoint slides and/or podcasts for this lecture

Starting definition

Input + Processing \rightarrow Output
A Computer is:

- a device that takes information (input),
- processes that info to create new information and
- gives the new information back (output)

Two Computer Elements

- Hardware

The physical components that make up a computer system.

Two Computer Elements

- Hardware

Two Computer Elements

- Hardware
- Software

Two Computer Elements

- Hardware
- Software

The instructions, or steps controlling what the computer does.

Jt Scratch Lesson 1 • Summer 2012 • slide 7

Algorithm

An algorithm is any well-defined computational procedure that takes some value or set of values as input and produces some value or set of values as output.

Machine vs High-level Language

- Machine language uses 0's and 1's and can be directly understood by the computer's hardware
- High-level programming languages uses certain words, symbols and numbers that a programmer can understand but hardware cannot.
- High-level code has to be converted to machine language in order for it to run

Hardware Running Software

When written in a computer's machine language - made up of 0 's and 1 's - the computer's hardware can perform the actual steps - or the algorithm - that the code is trying to implement.

Programming Languages

Later we will see algorithms can be implemented on a computer system by using a variety of programming language to precisely encode the procedures or steps that need to be done

Back to Algorithms

- Programming languages are used to implement algorithms
- We will start talking about programming languages including Scratch in a little while
- However, before trying to design software using some language, one needs to know how to precisely convert a problem into an algorithm

Designing an Algorithm

- First, you have to understand the problem.
- After understanding, then make a plan.
- Carry out the plan.
- Look back on your work. How could it be better?

Understanding the Problem

- What are you asked to find or show?
- Can you restate the problem in your own words?
- Can you think of a picture or a diagram that might help you understand the problem?
- Is there enough information to enable you to find a solution?
- Do you understand all the words used in stating the problem?
- Do you need to ask a question to get the answer?

Algorithm: Add the following test
scores:
- Start $\quad 90,78,87,67$
- sum $=0 \quad$ Input the first testscore -90
- Add first testscore to sum \rightarrow sum $=90$

Algorithm: Add the following test scores:

- Start

90,78,87,67

- sum = 0
- Input the first testscore - 90
- Add first testscore to sum \rightarrow sum $=90$
\lrcorner Input the second testscore - 78
- Add to sum \rightarrow sum $=168$

Algorithm: Add the following test scores:

- Start 90,78,87,67
- sum = 0
- Input the first testscore - 90
- Add first testscore to sum \rightarrow sum $=90$
\lrcorner Input the second testscore - 78
- Add to sum \rightarrow sum $=168$
- Input the third testscore - 87

```
    Algorithm: Add the following test
                scores:
                    90,78,87,67
- Start
90,78,87,67
- sum \(=0\)
- Input the first testscore - 90
- Add first testscore to sum \(\rightarrow\) sum \(=90\)
- Input the second testscore - 78
- Add to sum \(\rightarrow\) sum \(=168\)
- Input the third testscore - 87
- Add to sum \(\rightarrow\) sum \(=255\)
```

Algorithm: Add the following test

- Start 90,78,87,67
- sum $=0$
- Input the first testscore - 90
- Add first testscore to sum \rightarrow sum $=90$
- Input the second testscore - 78
- Add to sum \rightarrow sum $=168$
- Input the third testscore - 87
- Add to sum \rightarrow sum $=255$
- Input the fourth testscore - 67
Algorithm: Add the following test
scores:
- Start $\quad 90,78,87,67$
- sum $=0 \quad$ Input the first testscore -90
- Add first testscore to sum \rightarrow sum $=90$
Input the second testscore -78
- Add to sum \rightarrow sum $=168$
- Input the third testscore -87
- Add to sum \rightarrow sum $=255$
- Input the fourth testscore -67
Add to sum \rightarrow sum $=322$
Algorithm: Add the following test
scores:
- Start $\quad 90,78,87,67$
- sum $=0$
Input the first testscore -90
- Add first testscore to sum \rightarrow sum $=90$
Input the second testscore -78
- Add to sum \rightarrow sum $=168$
- Input the third testscore -87
Add to sum \rightarrow sum $=255$
- Input the fourth testscore -67
Add to sum \rightarrow sum $=322$
- Output sum

[^0]
Carpet Example

- Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ / square yard, padding is $\$ 6.50$ /square yard. Price includes installation.
$\lrcorner \mathbb{I N P U T : ~}$
- PROCESSING:
- OUTPUT:

Carpet Example

- Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ / square yard, padding is $\$ 6.50$ /square yard. Price includes installation.

INPUT: need room sizes

- Living room $18 \mathrm{ft} \times 20 \mathrm{ft}$
- Dining room 12ft X 12 ft
- Family room 13ft x 20 ft
- Carpet price $\$ 26.75$ / square yard
- Padding price $\$ 6.50$ /square yard
- PROGESSING:
- OUTPUT:

It Scratch Lesson 1 - Summer 2012 • slide 29

Carpet Example

- Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ / square yard, padding is $\$ 6.50$ /square yard. Price includes installation.
$-\operatorname{INPUT}:$
\lrcorner PROCESSING:
- Living room $18 \mathrm{ft} \times 20 \mathrm{ft}=360 \mathrm{sq} \mathrm{ft}$
- Dining room 12 ft X $12 \mathrm{ft}=144 \mathrm{sq} \mathrm{ft}$
- Family room $13 \mathrm{ft} \times 20 \mathrm{ft}=260 \mathrm{sq} \mathrm{ft}$
$-764 \mathrm{sq} \mathrm{ft}=$??? Sq yd
- OUITPUT:

Carpet Example

- Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ / square yard, padding is $\$ 6.50$ /square yard. Price includes installation.
INPUT:
PROCESSING:
- Living room $18 \mathrm{ft} \times 20 \mathrm{ft}=360 \mathrm{sq} \mathrm{ft}$
- Dining room 12 ft X $12 \mathrm{ft}=144 \mathrm{sq} \mathrm{ft}$
- Family room $13 \mathrm{ft} \times 20 \mathrm{ft}=260 \mathrm{sq} \mathrm{ft}$
- $764 \mathrm{sq} \mathrm{ft}=\sim 85 \mathrm{Sq}$ yd
- Carpet price $=85 * 26.75=2273.75$
\rightarrow Padding price $=85 * 6.50=552.50$
- OUITPUT:

Carpet Example

- Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ / square yard, padding is $\$ 6.50$ /square yard. Price includes installation.
- INPUT:

PROCESSING:

- Living room $18 \mathrm{ft} \times 20 \mathrm{ft}=360 \mathrm{sq} \mathrm{ft}$
- Dining room 12 ft X $12 \mathrm{ft}=144 \mathrm{sq} \mathrm{ft}$
- Family room $13 \mathrm{ft} \times 20 \mathrm{ft}=260 \mathrm{sq} \mathrm{ft}$
- 764 sq ft $=\sim 85$ Sq yd
- Carpet price $=85 * 26.75=2273.75$
- Padding price $=85 * 6.50=552.50$
- Tax? $2826.25 * 0.07=197.84$
- ©UIPUT: Price to customer Jt Scratch Lesson 1 • Summer 2012 • slide 33

Carpet Example

- Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ / square yard, padding is $\$ 6.50$
/square yard. Price includes installation.
- INPUT:
\lrcorner PROCESSING:
- Living room $18 \mathrm{ft} \times 20 \mathrm{ft}=360 \mathrm{sq} \mathrm{ft}$
- Dining room 12 ft X $12 \mathrm{ft}=144 \mathrm{sq} \mathrm{ft}$
- Family room $13 \mathrm{ft} \times 20 \mathrm{ft}=260 \mathrm{sq} \mathrm{ft}$
- 764 sq ft $=\sim 85$ Sq yd
- Carpet price $=85 * 26.75=2273.75$
- Padding price $=85 * 6.50=552.50$
- Tax? $2826.25 * 0.07=197.84$
- OUTIPUT:

IPO Example:

- Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ / square yard, padding is $\$ 6.50$ /square yard. Price includes installation.
- INPUT: lengthRoom1, widthRoom1
\square INPUT: lengthRoom2, widthRoom2
$\lrcorner \mathbb{I N P U T : ~ l e n g t h R o o m 3 , ~ w i d t h R o o m 3 ~}$
- INPUT: carpetPrice, paddingPrice
- INPUT: taxRate
- OUTPUT: totalCost of carpeting three rooms

Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ I square yard, padding is $\$ 6.50$ /square yard. Price includes installation.	
installation. Example IPO	
- PROCESSING	- room3Size =
- sum = 0	lengthRoom 3 *
- roomlSize $=$	widthRoom3
lengthRooml * widthRooml	- Add to sum: sum = sum + room3Size
- Add to sum: sum = sum + room1Size	$\begin{aligned} & \text { - } \operatorname{sum}=\operatorname{sum} / 9(\text { total } s q \\ & y d) \end{aligned}$
- room 2 Size $=$	- price $=$
lengthRoom2*	sum * carpetPrice +
widthRoom2	sum*paddingPrice
- Add to sum: sum =	- tax $=$ price * taxRate
	- totalCostesmpricent ${ }^{\text {atax }}$ slide 36

Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ / square yard, padding is $\$ 6.50$ /square yard. Price includes installation.

Algorithm

- Solving the problem
- Start
- sum $=0$
- Input length, width of room 1 (usually this is given in ft)
- Calculate sq ft in rooml - Add to sum
- Input length, width of room2
- Calculate sq ft in room2 - Add to sum
- Input length, width of
- Calculate sq ft in room3
- Add to sum (total sqft)
- Sum $=\operatorname{sum} / 9$ (total $s q y d)$
- Input CarpetPrice, PaddingPrice
- price $=$ sum $*$ carpetPrice + sum*paddingPrice
- Input taxRate
- tax $=$ price * taxRate
- price $=$ price + tax
- Output price
- Stop

Flowcharts

- A flowchart is a diagram made up of boxes, diamonds and other shapes, connected by arrows - each shape represents a step in the process, and the arrows show the order in which they occur. Flowcharting combines symbols and flowlines, to show figuratively the operation of an algorithm.

Calculate the cost of carpet for three rooms. The carpet price is $\$ 26.75$ / square yard, padding is $\$ 6.50$ /square yard. Price includes installation.

- Solving the problem
- Start
- sum = 0
- Input length, width of room 1 (usually this is given in ft)
- Calculate sq ft in rooml
- Add to sum
\rightarrow Input length, width of room2
- Calculate sq ft in room2
- Add to sum
- Input length, width of
- Calculate sq ft in room3
- Add to sum (total sq ft)
- Sum $=$ sum $/ 9$ (total sq yd)
- Input CarpetPrice,

PaddingPrice

- price $=$ sum * carpetPrice + sum*paddingPrice
- Input taxRate
- tax = price * taxRate
- totalPrice $=$ price + tax
- Output price
- Stop

Programming Languages

- IPOs and Flowcharts are useful to think through an algorithm
- But to get them to work on a computer, you need to encode them using a programming language
- Which ultimately is converted - or compiled - into the computer's machine langaueg

Programming Languages

- Hundreds of them:
- Early ones: BASIC, Fortran, Cobol
- Others: PHP, Java, C++
- What we are using: Scratch

Availability of Slides

Go to
nbcs.rutgers.edu/~jt
to see the powerpoint
slides and/or podcasts
for this lecture

Scratch

- Start experimenting with it now
- Get software at: scratch.mit.edu or use it in lab
- Do the following:

1) Load some sample code (use File: Import Projects: Examples) and Run it (click green flag)
2) Create and save some sprites of your own

- use New Sprite (lower right), Paint Sprite button
- Use File:Save As or File:Export Sprite

3) Design and save a stage

- Click on stage (lower right) then Backgrounds tab (middle), then Edit button

General Info

- You can have one or more sprites
- All the sprites can be active on the stage at one time
- Each sprite can have one or more scripts, costumes and sounds
- Multiple scripts can be simultaneously affecting what sprite does
- Sprites won't do anything until at least one of their scripts is activated
- The first statement in a script usually tells what activates it, such as the Green Flag

Building Scripts

- Grab statement or coding component you want from proper category
- Place into coding box
- Statements will snap together
- Fill in open spots in statements with proper coding components
- They are shaped so they can only fit into certain types of statements
- To delete a piece of code just drag it out of coding box back into statement section

Scratch Variables

- As soon as it is created, a set of statements is displayed:

Scratch Variables

- As soon as it is created, a set of statements is displayed:

Scratch Variables

- As soon as it is created, a set of statements is displayed:

Scratch Variables

- As soon as it is created, a set of statements is displayed:

Calculations

- Operators

Operators can be combined together
Figure the average of three heights.

Height1 + Height2 + Height3

Build two addition operators. Slide one into the other.

Calculations

- Operators

Operators can be combined together.
Figure the average of three heights.

Checkbook Code

- Calculate the new balance

The new balance is the old balance minus the check value.

Example. Balance: 1000 Check:100

Checkbook Code

- Calculate the new balance

The new balance is the old balance minus the check value.

```
set Ealance v to Balance - Value
```


Other Operations

- Combining Text

```
join hello world
```

Notice space after hello?

Other Operations

- Combining Text

Can combine a lot together - even text and variables to make more interesting statements.

Other Operations

- Combining Text

foin foin Playerswame , who plays for the Yankees is batting: BatuingAverage

Can combine a lot together - even text and variables to make more interesting statements.

Other Operations

- Combining Text
ioin PlayersName who plays for the Yankees is batting: join hello BattingAverage

Can combine a lot together - even text and variables to make more interesting statements.

Place one join in another

Other Operations

- Combining Text
foin foin playerswame , who plays for the Yankees is batting: BatungAverage

Given to Say, this would display:

Checkbook Code

Checkbook Code

- Extension:

Hey, how about handling deposits when d is clicked?

- Extension:

Hey, how about handling deposits when d is clicked?

Checkbook Code

- Extension: Have some fun with multimedia

Now include Motion commands in code to move
checkbook sprite along the scale as the balance changes.

- Go to X:? Y:?

Place sprite at certain point on screen
Hint: move pointer on stage and lower right will display x, y coordinates

- Point in direction

Specify direction you want sprite to point
Next time it moves will be in that direction.
-90 is left; 90 is right
Move a certain amount of steps in current direction.

Checkbook Code
Full code.

Checkbook Code
Full code.

Availability of Slides
Go to
nbcs.rutgers.edu/~jt
to see the powerpoint slides and/or podcasts for this lecture

[^0]: Algorithm: Add the following test scores:

 - Start

 90,78,87,67

 - sum = 0
 - Input the first testscore - 90
 - Add first testscore to sum \rightarrow sum $=90$
 - Input the second testscore - 78
 - Add to sum \rightarrow sum $=168$
 - Input the third testscore - 87
 - Add to sum \rightarrow sum $=255$
 - Input the fourth testscore - 67
 - Add to sum \rightarrow sum $=322$
 - Ourtput sum
 - Stop

