Skip to content Skip to navigation

Deformable Segmentation using Sparse Shape Representation

 

Organ shape plays an important role in various clinical practices such as segmentation. Effective modeling of shape priors is challenging because: (1) shape variation is complex and cannot always be modeled by a parametric probability distribution; (2) a shape instance derived from image appearance cues (input shape) may have gross errors; and (3) local details of the input shape are difficult to preserve if they are not statistically significant in the training data. We propose Sparse Shape Composition model (SSC) to deal with these three challenges in a unified framework. In our method, a sparse set of shapes in the shape repository is selected and composed together to infer/refine an input shape. The a priori information is thus implicitly incorporated on-the-fly. It is formulated as a sparse learning problem, and is extensively validated on several medical applications, including 2D lung localization in X-ray images and 3D liver segmentation in low-dose CT scans.

Project page and code: http://www.research.rutgers.edu/~shaoting/research/siemens2010/project.htm

Publications

  • Deformable Segmentation via Sparse Shape Representation. Shaoting Zhang, Yiqiang Zhan, Maneesh Dewan, Junzhou Huang, Dimitris Metaxas and Xiang Zhou. MICCAI, The 14th Annual International Conference on Medical Image Computing and Computer Assisted Intervention, 2011. MICCAI Young Scientist Award Finalist
  • Towards Robust and Effective Shape Modeling: Sparse Shape Composition. Shaoting Zhang, Yiqiang Zhan, Maneesh Dewan, Junzhou Huang, Dimitris Metaxas and Xiang Zhou. MedIA, Medical Image Analysis, Volume 16, Issue 1, Pages 265-277, January 2012.