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Abstract 

Computational classijcation of proteins using methods 
such as string kernels and Fisher-SVM has demonstrated 
great success. However, the resulting models do not offer an 
immediate interpretation of the underlying biological mech- 
anisms. In particulal; some recent studies have postulated 
the existence of a small subset of positions and residues in 
protein sequences may be suficient to discriminate among 
different protein classes. In this work, we propose a hy- 
brid setting for the classiJication task. A generative model 
is trained as a feature extractor, followed by a sparse clas- 
siJier in the extracted feature space to determine the mem- 
bership of the sequence, while discovering features relevant 
for classijcation. The set of sparse biologically motivated 
features together with the discriminative method offer the 
desired biological interpretability. We apply the proposed 
method to a widely used dataset and show that the peqor- 
mance of our models is comparable to that of the state-of- 
the-art methods. The resulting models use fewer than 10% 
of the original features. At the same time, the sets of criti- 
cal features discovered by the model appear to be consistent 
with conjinned biological$ndings. 

1. Introduction 

Protein homology detection is a fundamental problem 
in computational biology. With the advance of large-scale 
sequencing techniques, it becomes evident that experimen- 
tally determining the function of an unknown protein se- 
quence is an expensive and tedious task. Currently, there 
are more than 54 million DNA sequences in GenBank [3], 
and approximately 208,000 annotated and 2.6 million unan- 
notated sequences in UNPROT [I] . The rapid growth of 
sequence databases makes development of computational 
aids for functional annotation a critical and timely task. 

Early approaches to computationally-aided homology 
detection, such as BLAST [22] and FASTA [23], rely on 
aligning the query sequence to a database of known se- 
quences (pairwise alignment). However, alignment is per- 

formed on the query sequence to each of the sequences 
in the database one at a time. Later methods, such as 
profiles [7] and profile hidden Markov models (profile 
HMM) [S] collect aggregate statistics from a group of se- 
quences known to belong to the same family. Upon query 
time, an unknown sequence is aligned to all models to test 
for significant hits. Profile HMMs have demonstrated great 
success in protein homology detection. The linear struc- 
ture of a profile HMM offers great interpretability to the 
underlying process that generates the sequences: the match 
states represent positions in the superfamily that are con- 
served throughout the evolutionary process. However, as 
generative models, profile HMMs are estimated from se- 
quences known to belong to the same superfamily and do 
not attempt to capture the differences between members and 
nonmembers. Also, it has been shown that profile HMMs 
are unable to detect members with low sequence identity. 

To tackle these deficiencies, Jaakkola et al. proposed 
SVM-Fisher in [lo]. The idea is to combine a generative 
model (profile HMM) with a discriminative model (sup- 
port vector machines, SVM) and perform homology detec- 
tion in two stages. In the first stage, the generative model, 
trained with positive sequences only, extracts fixed-length 
features from all sequences ('positive and negative). In the 
second stage, given the features, the discriminative model - - 
constructs the decision boundary between the two classes. 

The class of string kernels, on the other hand, bypasses 
the first stage and directly model the decision boundary us- 
ing SVMs. The spectrum kernel [IS], the mismatch ker- 
nel [16] and the projile kernel [14] define different notions 
of neighborhood for a subsequence of size k 2 1 and deter- 
mine the similarity between the two sequences as a function 
of the size of the intersection of their neighborhood. 

Previous studies suggest that both approaches are more 
effective than the generative models. Despite their great 
success, these two approaches are not readily interpretable 
or, when an interpretation of the models is available, it may 
not be biologically intuitive. For instance, the model should 
be able to explain how sequences in the same superfamily 
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evolve over time. Are there certain positions that are criti- 
cal to a superfamily? If so, what kind of physical/chemical 
properties should such positions possess? Although pro- 
file HMMs attempt to offer such explanations, as generative 
models they lack the discriminative interpretability. 

The central idea of our work is to develop an inter- 
pretable method for protein homology detection. Our ap- 
proach is motivated by the results presented in [12, 19, 131 
that postulate the existence of a small subset of positions 
and residues in protein sequences may be sufficient to dis- 
criminate among different protein classes. We aim to re- 
cover these critical positions and the type of residues that 
must occur at these positions using a new set of features 
embedded in a class of discriminative models. The com- 
bination of the features and the classifier may offer a sim- 
ple and intuitive interpretation to the underlying biological 
mechanism that generates the biosequences. 

2 Related works 

In [11,10] Jaakkola et al. proposed to use the gradient of 
the log-likelihood of the sequence with respect to the model 
parameters as features: fz,B = [(Z: S)/021g - [ (S)  where 
ji E C,  the alphabet set, S E S, the emitting states in the 
model, Q represents the set of parameters of the model, and 
E(S: E) as well as J ( s " )  are the sufficient statistics, as defined 
in [18]. The extracted fixed-length features are called the 
Fisher scores and used to build the SVM for homology de- 
tection. SVM-Fisher approach has received some criticism 
because an inference procedure of quadratic complexity is 
required for each sequence. Although the criticism does ad- 
dress a valid concern for a general HMM, in the case of a 
profile HMM, such issue does not exist: the linear structure 
enables one to make inference in linear time. 

The methods based on string kernels, on the other hand, 
bypass the need of a generative model as a feature extractor. 
Given a sequence, X ,  the spectrum-k kernel [15] first im- 
plicitly maps it to a d-dimensional vector, where d = 1x1'". 
The representation of the sequence X in the feature space 
is Q k ( X )  = C , ( I ( a  = 7 ) ) y , = C k ,  where a denotes all k- 
mers in X and y denotes a member in the set of all k-mers 
induced by C. The similarity between two sequences, X 
and Y ,  is then defined as K(X;  Y )  = @ k ( X ) T @ k ( Y ) ,  The 
mismatch(lc,m) kernel [16] relaxes exact string match- 
ing by allowing up to rn mismatches between a and y. 
In such setting, each element in the kernel matrix takes 
O(km+l lClm ( T x  + T y  )) time to compute. 

3 Proposed features and methods 

Our computational approach to remote homology detec- 
tion has two steps: feature extraction followed by joint clas- 
sification and feature selection in the constructed feature 
space. A crucial aspect of this approach lies in the abil- 
ity to impose the sparsity constraint, leading to significant 
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Figure 1. The proposed hybrid model. 

reduction in the number of utilized features and the inter- 
pretability of the final model. We show the proposed hybrid 
procedure in Fig. 1. 

3.1 Feature extraction 

We use the sufficient statistics corresponding to the sym- 
bols of the match states as features. This choice of features 
may allow immediate biological interpretation of the con- 
structed model because the structure of a profile HMM in- 
dicates that the match states represent the positions that are 
conserved throughout evolution. The proposed features can 
be obtained using the forward and backward algorithm de- 
scribed in [IS]. In this setting, each example is represented 
by a vector of length d = rn(C1, where m is the number of 
match states in the profile HMM and 1x1 = 20. 

3.2 Classification and Feature Selection 
via Logistic Regression 

Let fi be the features extracted from the ith example, 
Xi, and q E (0 ,  1) be the response variable, where q = 1 
denotes membership of the superfamily. The logistic re- 
gression model defines the probability of sequence Xi be- 
longing to the superfamily of interest as ni = P(c(X,-)  = 
1) = $(PT fi), where P is the parameter of the model and 
4(.) is the cumulative distributiorz function (CDF) of a lo- 
gistic distribution. To estimate the model, one sets ,d to p, 
the parameter vector maximizing the joint likelihood of the 
observed data. There are existing algorithms for estimating 
p, such as Iteratively Reweighted Least Squares algorithm. 
Like SVM, the logistic model is a discriminative classifier. 

3.3 Interpretation of the logistic model 
with the proposed features 

Use of the logistic model provides a simple and intuitive 
description of data. If the assumption, p(c = llf: P )  = 
$ ( f T p ) ,  holds, then the contribution of each predictor vari- 
able, f(j), 1 5 j 5 d, is reflected in the corresponding 
model parameter, ,Bj. A coefficient with a large absolute 
value indicates a strong preference for a type of amino acids 
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at the corresponding position: the position prefers a specific 
amino acid to be present when the coefficient is large and 
positive and prefers a specific amino acid to be absent when 
the coefficient is large and negative. 

Moreover, ,B also offers a probabilistic interpretation. 
Define the odds of an event with probabiqty p of occur- 
ring as &; given the estimated parameter /?, and a feature 
vector fi representing sequence Xi in the feature space, the 
estimated odds of sequence Xi belonging in the superfam- 
ily can be expressed as odds(Xi E supFam) = egTf i .  
Define a new sequence Xi. such that fit = fi, except 

( j )  ( j )  
fi, = fi + 1, meaning we increase the jth covari- 
ate of example i, by one unit. In this case, odds(Xit E 

-T - 
supFam) = efl fi+fli, indicating that the odds are mul- 
tiplied by efij in response to such increase. For example, 
suppose at position S, the parameter , @ T ~  for symbol Z is 
0.1615 = log(1.175). Then the odds of a sequence, X ,  be- 
ing in the superfamily increases by 17.5 percent if in X ,  the 
symbol IT: aligns to the model at position 5. 

One may argue that the preference for presence or ab- 
sence of a specific amino acid at a position in a group of 
sequences is already reflected in the profile HMM and us- 
ing a logistic model to recover the desired information is 
redundant. However, this need not be the case: one posi- 
tion in a specific superfamily may prefer a certain group of 
amino acids which is also preferred by another group of se- 
quences. In this case the corresponding coefficient in the 
logistic model we proposed will be insignijcant, close to 
0. A coefficient corresponding to a certain type of amino 
acids at one position will be significant if, for example, it 
has been observed that the group of amino acids are present 
in the family of interest (the positive examples) and are ab- 
sent in all the other families (the negative examples). 

3.4 Use of Sparsity-enforcing Regularizers 

Our belief that the model may be sparse leads us to set 
the prior distribution ,B - N(0: A), where A is some co- 
variance matrix. In our study, we set A to be some diago- 
nal matrix. Such an assignment states that all features are 
mutually independent. The assumption is clearly not valid, 
since the features are the sufficient statistics. However, it 
is impractical to assume a general covariance structure as 
it involves either specifing or estimating (3 parameters in 
advance. Also, Gaussian priors often do not set the coeffi- 
cients corresponding to the irrelevant features to 0, because 
the shape of the distribution is too mild around the origin. 
Therefore, we use priors that promote and enforce sparsity: 
the Laplacian priors. In such setting, P(,Bi) = Ge-fiIPil. 
The Laplacian priors produce sparser models than Gaussian 
priors. 

3.5 A Similar Setting with SVM 

Given the feature vectors, one may choose to also build 
the decision boundary using an SVM. In the case of a linear 
kernel, like the logistic model, the SVM also builds a lin- 
ear decision boundary to discriminate between the classes. 
However, the results produced by an SVM may be inter- 
pretable only when a linear (or possibly polynomial) kernel 
is used. While the objective functions in the SVM and lo- 
gistic regression settings are different, the results are often 
similar. 

4 Experiments and Results 
We use the dataset published in [25] to perform our ex- 

periments. The dataset contains 54 target families from 
SCOP 1.59 [17] with 7329 SCOP domains. No sequence 
shares more than 95% identity with any other sequence in 
this dataset. The dataset appears to be very diverse, where 
in some family, there are as few as 2 positive training se- 
quences while in some other families, there are as many as 
95 positive training sequences. Such diversity makes ho- 
mology detection a challenging task. We evaluate all meth- 
ods using the Receiver Operating Characteristic (ROC) and 
ROC-50 [8] scores. The ROC-50 score is the (normalized) 
area under the ROC curve up to 50 false positives. With 
small number of positive testing sequences and large num- 
ber of negative testing sequences, the ROC-50 score is more 
indicative of the prediction accuracy. 

We build all profile HMMs for our hybrid procedure in 
the following way: first, we locate the profile most suitable 
for the experiment and download the multiple alignment 
from PFam [2] and estimate an initial profile HMM from the 
multiple alignment; next, we refine the profile HMM with 
the positive training sequences using a procedure similar to 
the EM [4] algorithm with 9-component mixture of Dirich- 
let priors [21]. To avoid over-representation of sequences, 
we also use position-based weighting scheme [9]. 

For logistic models, we perform our experiments on 
Normal and Laplace priors using Bayesian Binary Re- 
gression S o f ~ a r e  (BBR) [6]. Precision y in the Laplace 
models are set to the value suggested by [6]. Exper- 
iments using linear kernel SVM make use of an exist- 
ing machine-learning package calIed Spider (avai1abIe at 
http://www.kyb. tuebingen.mpg.de/bs/people/spider). 

In Fig. 2, we compare the performance of the models. 
The figures indicate that, with ROC-50 score greater than 
0.4, both logistic models dominate the mismatch kernel. 
The performance of both logistic models appears to be com- 
parable in the area of high ROC-50 score (> 0.8); in the 
area of low scores, the logistic model with Normal prior 
shows slightly higher prediction accuracy. Finally, SVM- 
Fisher performs well in the area of high ROC-50 score, but 
the performance starts to degrade when ROC-50 score falls 
under 0.8. To compare the logisitic model with different 
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Figure 2. Comparison of performance of mis- 
match(5,I) kernel, SVM-Fisher, and logis- 
tic model with Normal and Laplacian pri- 
ors. Panel (a) shows the number of families 
whose ROC-50 scores are better than a given 
threshold. Panel (b) shows the detail plot of 
the high ROC-50 score region of (a). 

priors, we run a sign test. The resulting p-value is close to 
1, suggesting that the performance of the model with both 
priors are comparable. . 

4.1 The Sparse Model 

Enforcing sparsity in the parameters can be viewed as a 
feature selection process. The logistic model with Lapla- 
cian prior discards the irrelevant features by setting the cor- 
responding parameters to 0. Among 54 families, there are, 
on average, 480 features to select from. The Laplacian prior 
selects only about 43 features per family, resulting in more 
than 90% reduction in the final number of selected features. 

The set of features selected by the sparse model can 
offer interesting insights into the biological significance 
of the discovered "critical positions". For example, our 
results indicate that the performance is consistently good 
on the Scorpion toxin-like superfamily. In one particu- 
lar family, Plant defensins, out of 940 features (47 po- 
sitions), the Laplacian prior selects 19 features, scattered 
on about 12 positions. The ROC-50 score of the classi- 
fier on this family is 1. We further extract these critical 
positions along with their preferred symbols: ((1 8[18],E), 
(20[20l,C), (23[231,H), (24[241,C), (29[291,G), (34[32l,G), 
(35 [331,-), (36[341,C), (37[351,DN), (38[361,G/N), 
(41[42],C), (43[44],C)), where in each pair, the leading 
number corresponds to the position in our profile HMM, 
the number in the bracket corresponds to the position in 
the HMM-logo [20] in Fig. 3, and the letter the preferred 
symbol. The positions slightly disagree because we use a 
different heuristic to label columns in multiple alignment 
as match or an insertion states. It appears from the figure 
that our classifier captures some of the conserved cysteine 
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Figure 3. The HMM-logo of the plant defensins 
family, obtained from PFam. The positions 
which are deemed as important by our lo- 
gistic model with Laplacian prior are high- 
lighted. 

residues: (20,24,34,42 and 44) that are critical for discem- 
ing plant defensins from other similar proteins. Other con- 
sewed cysteins are not selected as critical features. Upon 
detailed examination, it became clear that while conserved 
in Plant defensines, these positions also appeared to be con- 
served in other similar families with the same symbol and 
were, therefore, not deemed discriminative. A set of 9 dif- 
ferent residues seemed to play a more critical classification 
role. 

Finally, it is worth noting that the dense model with Nor- 
mal priors also achieved similar performance to the sparse 
model, but the weights learned by the dense model did not 
allow any immediate interpretation of importance nor does 
it select a small set of critical discriminative features. 

4.2 Discussion 

Tsuda et al. [24] proposed a class of marginalized ker- 
nels for biological sequences. It can be shown that in a 
kernel setting, the kernel induced by our feature set is a 
marginalized count kernel. Moreover, the kernel induced by 
our feature set also has a close relationship with the Spec- 
trum kernel [IS]: while our kernel is similar to a spectrum-1 
kernel, the use of the feature extractor introduces additional 
positional information not present in the spectrum kernel. 

5 Conclusion 

In this paper we introduce a method for learning sparse 
feature models for the homology detection problem. We use 
a profile HMM representing the family of interest to extract 
the features: the sufficient statistics of the query sequence 
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with respect to  the profile HMM. As such, the features offer 
insight to the underlying evolutionary process such as the 
degree of conservation of each position in the superfarnily. 

Using interpretable logistic classifiers with Laplace pri- 
ors, the learned models exhibit more than 90% reduction 
in the number of  selected features. These results indicate 
that it may be  possible to discover very sparse models for 
certain protein superfamilies, which might confirm the hy- 
potheses suggested in [12,19, 131 that a small subset of po- 
sitions and residues in protein sequences may b e  sufficient 
to  discriminate among different protein classes. We show 
that the sparse model select some critical positions that are 
consistent with current reports. 

In our future work we will further investigate and con- 
sider biological interpretation of the resulting sparse mod- 
els. At present, the full set of selected positions may not 
fully agree with the proposed hypotheses. Further analysis 
is needed to study the correspondences between the com- 
putation and hypothesized models. In addition, we  will ex- 
pand our framework to utilize additional sets of physically 
motivated features and the unlabeled data, leveraging the 
benefits of large training sets. 
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