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ABSTRACT

Recent advances in various display and virtual technologies coupled with an explosion in available

computing power have given rise to a number of novel human{computer interaction (HCI) modalities{

speech, vision-based gesture recognition, eye tracking, EEG, etc. However, despite the abundance of

novel interaction devices, the naturalness and e�ciency of HCI has remained low. This is due in particular

to the lack of robust sensory data interpretation techniques. To deal with the task of interpreting single

and multiple interaction modalities this dissertation establishes a novel probabilistic approach based on

dynamic Bayesian networks (DBNs). As a generalization of the successful hidden Markov models, DBNs

are a natural basis for the general temporal action interpretation task. The problem of interpretation

of single or multiple interacting modalities can then be viewed as a Bayesian inference task. In this

work three complex DBN models are introduced: mixtures of DBNs, mixed-state DBNs, and coupled

HMMs. In-depth study of these models yields e�cient approximate inference and parameter learning

techniques applicable to a wide variety of problems. Experimental validation of the proposed approaches

in the domains of gesture and speech recognition con�rms the model's applicability to both unimodal

and multimodal interpretation tasks.
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gestural concepts ĉ from images of moving hand y; decoupled LDS/HMM and its nonlinear
counterpart estimate the hand motion driving force and hand shape without the knowledge
of underlying gestural actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.1 Generative multimodal model. Gestures and speech originate as a communication concept
C. It is arguable whether and to what extent there is interaction between the two modal
concepts. Speech and gestures are separated in the processing phase and expressed using
di�erent modalities HV and HA. Finally, they are perceived using hearing A and vision V .125

8.2 Competing inference models for bimodal gesture/speech recognition. Top to bottom:
decision-level inference, highly coupled feature-level inference, naively coupled inference,
coupled inference with adaptive time-invariant weight HMM, and coupled inference with
adaptive time-varying weight HMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3 State transition probability matrices for three coupled HMM models of speech/gesture
action \up." Superscripts (v; v), (v; a), (a; v), and (a; a) denote visual intramodal, audio-
to-visual intermodal, video-to-audio intermodal, and visual intramodal transition pdfs. . 132

8.4 Segmentation of visual (top) and verbal (bottom) parts of action \up." Shown are gestime-
level segmentations of visual unit force in x direction and word-level segmentations of the
�rst MFCC coe�cient of the verbal action. Also depicted (small graphs) are the concept
states of the respective actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xv



CHAPTER 1

INTRODUCTION

1.1 Background

With the ever-increasing role of computers in society, human{computer interaction or HCI has become

an increasingly important part of our daily lives. As computing, communication, and display technologies

progress even further, the existing HCI techniques may become a bottleneck in the e�ective utilization

of the available information ow. For example, the most popular mode of HCI still relies on keyboards

and mice. These devices have become familiar but tend to restrict the information and command ow

between the user and the computer system. This limitation has become even more apparent with the

emergence of novel display technology such as virtual reality [1, 2, 3] and wearable computers [4]. Thus,

in recent years there has been a tremendous interest in introducing new modalities into HCI that will

potentially resolve this interaction bottleneck.

One long-term goal in HCI has been to migrate the \natural" means that humans employ to commu-

nicate with each other into HCI (Figure 1.1). With this motivation, automatic speech recognition has

been a topic of research for decades [5]. Some other techniques like automatic gesture recognition, anal-

ysis of facial expressions, eye tracking, force sensing, or electroencephalograph (EEG) have only recently

gained more interest as potential modalities for HCI. Though studies have been conducted to establish

the feasibility of these novel modalities using appropriate sensing and interpretation techniques, their

role in HCI is still being explored.

Humans perceive the environment they live in through their senses|vision, hearing, touch, smell,

and taste. They act on and in the environment using their actuators such as whole body, hands, face,

and voice. Human-to-human interaction is based on sensory perception of actuator actions of one human

by another, often in the context of an environment (Figure 1.2). In the case of HCI, computers perceive

actions of humans. To have the human{computer interaction be as natural as possible, it is desirable

that computers be able to interpret all natural human actions. Hence, computers should interpret

human hand, body, and facial gestures, human speech, eye movements, etc. Some computer sensory
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Figure 1.1 Human-to-human interaction and human-to-computer interaction. Humans perceive their
environment through �ve basic senses. HCI, on the other hand, need not be bound to typical human
senses.
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modalities are analogous to the human ones. Computer vision and automatic speech recognition mimic

the equivalent human sensing modalities. However, computers also possess sensory modalities that

humans lack. They can accurately estimate the position of the human hand through magnetic sensors

and measure subtle changes of the electric activity in the human brain, for instance. Thus, there is a

vast repertoire of human action modalities that can potentially be perceived by a computer.

1.1.1 Human action modalities for HCI

A large repertoire of human actions could possibly be incorporated into HCI by designing suitable

sensing mechanisms. Historically, the action modalities most exploited for HCI are based on hand

movements. This is largely due to the dexterity of the human hand, which allows accurate selection and

positioning of mechanical devices with the help of visual feedback. Appropriate force and acceleration

can also be applied easily using the human hand. The hand movement is exploited in the design of

numerous interface devices|keyboard, mouse, stylus, pen, wand, joystick, trackball, etc. The keyboard

provides a direct way of providing text input to the computer, but the speed is obviously limited and can

be improved only at a limited rate. Similarly, hand movements cause a cursor to move on the computer

screen (or a 3D display). The next level of action modalities involves the use of hand gestures, ranging

from simple pointing, through manipulative gestures, to more complex symbolic gestures such as those

based on the American Sign Language. With a glove-based device the ease of hand gestures may be

limited, but with non-contact video cameras, free hand gestures would be easier to use for HCI. The role

of free hand gestures in HCI could be further improved, to require less training for instance, by studying

the role of gestures in human communication. A multimodal framework is particularly well suited for

embodiment of hand gestures into HCI.

In addition to hand movements, a dominant action modality in human communication is the pro-

duction of sound, particularly spoken words. The production of speech is usually accompanied by other

visible actions, such as lip and eye movement, which can be exploited in HCI as well. The facial expres-

sion and body motion, if interpreted appropriately, can help in HCI. Even a subtle \action" such as a

controlled thought has been investigated as a potential candidate for HCI.

1.1.2 Computer sensing modalities for HCI

What action modality to use for HCI is largely dependent on the available computer sensing technol-

ogy. A broad number of categories of the computer sensing modalities has been previously considered

for HCI. We next examine how the above human action modalities might be measured and interpreted

by a computer.
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1.1.2.1 Position and motion sensing

Many interface devices have been built to sense the position and motion of the human hand and

other body parts for use in HCI. The keyboard is the simplest such interface, where the touch of a

particular key indicates that one of a set of possible inputs was selected. More accurate position and

motion sensing in a 2{D plane is used in interface devices such as a mouse, light pen, stylus, and

tablet [6, 7]. Three-dimensional position/motion sensing is commonly done through a joystick or a

trackball. For a brief history of HCI technology covering these familiar computer sensing modalities,

see [8]. For tracking the head (to display the graphics with the correct perspective) various forms of

sensors have been employed. Electromagnetic �elds [9] are the most popular method, but are expensive

and restricted to a small radius. Ultrasonic tracking requires line of sight and is inaccurate, especially

at long ranges [10]. Other methods might include tracking of infrared LEDs, or inertial trackers, using

accelerometers. Attempts to solve the hand tracking resulted in glove-based mechanical devices that

directly measure hand and/or arm joint angles and spatial position [11, 12, 13, 14, 15]. Interpretation of

motion perceived in this fashion has gone beyond simple position measurements. Numerous techniques

based on statistical interpretation of dynamic patterns have been explored for classi�cation of common

types of stylus motion [6, 7] or �nger movements [11].

1.1.2.2 Audio sensing

The direct motivation for sensing the sound waves using a (set of) microphone(s) and processing the

information using techniques known as automatic speech recognition (ASR), is to be able to interpret

speech, the most natural human action modality for HCI. Signi�cant advances have been made toward

the use of ASR for HCI [5]. However, the current ASR technology is still not robust, especially outside

controlled environments, under noisy conditions and with multiple speakers [16]. Methods have been

devised, for example, by using microphone arrays and noise cancelation techniques to improve the speech

recognition. However, these tend to work only for the environments for which they are designed. An

active research area is concerned with making the ASR su�ciently robust for use in HCI. For instance,

it has been demonstrated conclusively that the recognition rate for speech can be improved by using

visual sensing to simultaneously analyze the lip motion [17]. Other visual sensing modalities such as

gesture analysis may also help in improving the speech interpretation [18].

1.1.2.3 Visual sensing

A video camera together with a set of techniques for processing and interpreting the image sequence

can make it possible to incorporate a variety of human action modalities into HCI. These actions include

hand gestures [19], lip movement [17], gaze [20, 21, 22], facial expressions [23], head and other body
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movements [24, 25]. Visually interpreted gestures, for instance, can allow a tetherless manipulation of

virtual reality [26] or augmented reality displays [27]. However, the use of visual sensing for HCI su�ers

di�culties from both a theoretical and practical standpoint. The problem of visual interpretation of

hand gestures is still not well understood, particularly when it is desirable not to put restrictions on the

hand movements for more natural HCI [19]. From a practical standpoint, visual sensing involves the

processing of huge amounts of information in real time, which could put undue demands on the processing

power of the system being controlled. Furthermore, visual sensing requires an unoccluded view of the

human, putting restrictions on the motion of the user and the physical setting for HCI. Nonetheless, the

use of computer vision for improving HCI continues to be a topic of very active research [28]. Visual

sensing can be especially useful in conjunction with other sensing modalities [29] such as lip reading with

audio [17], lip reading with eye tracking [30], visual gesture recognition with speech [18], etc.

1.1.2.4 Tactile and force sensing

The dexterity of the human hand for accurately positioning a mechanical device can be coupled with

application of \force" which can be sensed by using appropriate haptic devices. The computer sensing

of touch and force is especially important for building a proper feel of \realism" in virtual reality. The

key idea is that by exerting force or touch on virtual objects (with the corresponding haptic display for

feedback), the user will be able to manipulate the virtual environment in a natural manner. Situations

where such realism is especially important include, for example, simulation of surgery for training [31, 32].

Force sensing is a topic of very active research since is it di�cult to design suitable devices with the

desired accuracy without constraining the user [33, 34]. A better force sensing for HCI may also be

obtained by also simultaneously considering the sensing of position and motion.

1.1.2.5 Neural sensing

One computer sensing modality that has been explored with increasing interest is based on the

monitoring of brain electrical EEG activity [35, 36, 37, 38]. The brain activity can be monitored non-

invasively from the surface of the scalp and used for directly controlling the computer display. This form

of interaction is also termed brain-actuated control, or BAC. The \hands-free" nature of the resulting

HCI makes it attractive for head-mounted displays and situations (such as aircraft pilot) where hands are

being used in other tasks. Another very big impetus for pursuing this sensing modality is as a means of

HCI for the physically disabled [39]. However, it requires training (using biofeedback and self-regulation)

so that speci�c brain-responses may be modulated [40]. There are many theoretical and applied open

problems that need to be addressed for BAC, for example, how user distractions and/or increased

workload a�ect such an interface. An alternative approach includes sensing surface electromyographic
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(EMG) signals [41]. Approaches have also been suggested for using multimodal sources that include eye

tracking and monitoring of muscle tension in conjunction with EEG [42, 43].

1.2 Motivation

Recent advances in computing, communication, and display technologies have put signi�cant stress

on improving the information ow between the human user and a computer. A number of computer

sensing modalities have become available to facilitate this task. However, existence of these devices alone

is not su�cient for the improvement of HCI. E�cient interpretation of the sensed modalities is a major

imperative towards more natural HCI.

1.2.1 Unimodal interpretation

The main task in interpreting a single sensed modality is to infer as much information content from

the modality as possible. For instance, in tracking the mouse motion it may be bene�cial to interpret

it on a \scale" higher than just a sequence of unrelated screen coordinates. A sequence of points can

describe a circle around a graphical user interface (GUI) window or a line across it to indicate the user's

wish to move or delete the window. Similarly, a hand motion can simply indicate a deictic (pointing)

action, or it may specify the size and shape of a complex virtual object. This level of interpretation has

been long present in the machine interpretation of speech as the main human-to-human communication

modality. However, it has only recently begun to �nd its way into interpretation of other modalities.

One common thread among all computer sensory interpretation tasks is the need to interpret temporal

and sometimes spatial patterns of the data \transmitted" by the user and acquired by a computer. Thus,

the framework of pattern recognition easily comes to mind. Common user's intentions and actions can

be thought to produce \typical" patterns of sensory data that need to be recognized by the machine.

However, such data patterns may vary more or less from one user to another and from time to time. It is

then plausible to assume that even though some variability in data patterns exists it can be su�ciently

well described in the probabilistic framework. Hence, statistical pattern recognition becomes an attractive

direction to pursue. Di�erent approaches to spatio-temporal series analysis and interpretation within

the framework of statistical pattern recognition have been studied for decades. Hidden Markov models

(HMMs) [5] have been particularly successful as tools for modeling and recognition of spoken language.

On the other hand, the role of probabilistic or Bayesian networks (see Chapter 2) has been known in

the �eld of arti�cial intelligence and exploited in di�erent expert systems to model complex interaction

among causes and consequences. Recently but not unexpectedly, Bayesian networks have found their

way into time series modeling [44]. In fact, it was shown that the successful HMMs and grammars are

nothing else but a special case of dynamic Bayesian networks (DBNs) [44]. With that in mind, it is
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natural and tempting to fully explore the role and bene�ts of Bayesian networks in interpreting di�erent

HCI modalities.

1.2.2 Multimodal interpretation

Until now we have focused my attention on solving (or posing) the problem of interpretation of

single, independent interaction modalities. However, the interaction of humans with their environment

(including other humans) involves multiple, concurrent modes of communication. We speak about, point

at, and look at objects all at the same time. We also listen to the tone of a person's voice and look at

a person's face and arm movements to �nd clues about his or her feelings. To get a better idea about

what is going on around them people look, listen, touch, and smell. When it comes to HCI, on the

other hand, people usually use only one interface device at a time|typing, clicking the mouse button,

speaking, or pointing with a magnetic wand. The \ease" with which this unimodal interaction allows

one to convey her intent to the computer is far from satisfactory.

Several studies have con�rmed that people prefer to use multiple action modalities for virtual object

manipulation tasks [2, 6]. In [2] Hauptmann and McAvinney concluded that 71 percent of their sub-

jects preferred to use both speech and hands to manipulate virtual objects rather than just one of the

modalities alone. Oviatt has shown in [6] that 95 percent of the subjects in a map manipulation task

tend to use gestures together with speech. Multiple modalities also complement each other. Cohen has

shown [45], for example, that gestures are ideal for direct object manipulation while natural language

is more suited for descriptive tasks. Another drawback of current advanced single modality HCI is that

it lacks robustness and accuracy. For example, modern automatic speech recognition systems are still

error-prone in the presence of noise and require directed microphones or microphone arrays. Automatic

gesture recognition systems are still constrained to the recognition of few prede�ned hand movements

and are burdened by cables or strict requirements on background and camera placement [19]. However,

concurrent use of two or more interaction modalities may loosen the strict restrictions needed for accu-

rate and robust interaction with the individual modes. For instance, spoken words can a�rm gestural

commands, and gestures can disambiguate noisy speech. Redundant multimodal inputs can also enable

physically or cognitively handicapped people access to computers (or computer-controlled devices).

A rationale for integration of multiple sensory modalities can be found in nature. Human beings

as well as other animals integrate multiple senses. Studies of the superior colliculus have shown that

di�erent senses are initially segregated at the neural level. When they reach the brain, sensory signals

converge to the same target area in the superior colliculus, which also receives signals from the cerebral

cortex and which, in turn, modulates resultant behavior. A majority (about 75 percent) of neurons

leaving superior colliculus are multisensory. This strongly suggests that the use of multimodality in HCI
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would be desirable, especially if the goal is to incorporate the naturalness of human communication into

HCI.

Lastly, the rationale for combining di�erent sensory data may come from statistical data analysis.

The disadvantage of using a single sensor system is that it may not be able to adequately reduce the

uncertainty for decision making. Uncertainty arises when features are missing, when the sensor cannot

measure all relevant attributes, or when observations are ambiguous [46]. On the other hand, it is well

known that it is statistically advantageous to combine multiple observations from the same source because

improved estimates are obtained using redundant observations [47]. It is also known that multiple types

of sensors may increase the accuracy with which a quantity can be observed. For example, if xi and xj

are two (statistically independent) estimates of one quantity corrupted by Gaussian noise, the minimum

mean square error combination of the two estimates results in

xij =
�
��1
i +��1

j

��1
��1
i xi +

�
��1
i +��1

j

��1
��1
j xj ;

where �i and �j are the variances of xi and xj , respectively. Moreover, the variance of the fused estimate

�ij is given by

��1
ij = ��1

i +��1
j :

Thus, the variance of the fused estimate �ij is \smaller" than the variances of either of the two original

estimates. This can be easily generalized to more than two redundant observations.

Bayesian networks again emerge as a powerful framework for the multimodal interpretation task.

Modeling of di�erent observations (modality sensory data) driven by more or less correlated multiple

causes can be easily achieved in this network model domain, as will be shown in Chapters 2 and 8.

1.3 Organization

The dissertation is organized as follows. Chapter 2 introduces the theoretical concepts of proba-

bilistic (Bayesian) networks. It de�nes the problems of inference and learning and addresses issues of

approximate inference and general learning techniques.

Chapter 3 focuses on DBNs. This class of networks is particularly suitable for the modeling of time

series. Within the domain of dynamic models, the problems of forward and backward propagation,

smoothing, prediction, decoding, and learning are de�ned. Two essential classes of DBNs are studied:

discrete-state HMMs and continuous-state linear dynamic systems (LDSs).

Chapters 4, 5, and 6 introduce three novel models of dynamic Bayesian networks. Each of the models

fuses several basic DBN types to achieve modeling of complex processes. Amixture of DBNs in Chapter 4

considers the case of how one can associate multiple observations with a number of underlying dynamic

processes. In Chapter 5 a model is formulated that describes the evolution of an LDS driven by a
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concept-generated input. Finally, Chapter 6 explores ways of modeling interactions between two or

more HMM-based concept models that draw their measurements from di�erent observation spaces. In

each of the three chapters, the issues of e�cient inference and model parameter learning are addressed.

Chapter 7 deals with modeling, analysis, and recognition of free hand gestures within the scope of

HCI. A particular temporal and spatial model of hand gestures is �rst suggested. Analysis of the model's

parameters is then tackled in this framework. Then, a DBN-based architecture for gesture recognition

is proposed founded on the complex DBN models of Chapters 4 and 5. In particular, focus is on two

examples of gestural interactions: mouse-acquired hand motion, and visually perceived gestural actions.

Chapter 8 further expands the notion of a single modality recognition to the realm of multiple modal-

ities. Multiple modalities are an e�ective domain for e�cient, natural HCI. To model the correlation

of multiple modalities we propose a multimodal Bayesian network framework based on coupled HMMs

introduced in Chapter 6. The framework is then applied to modeling of gestural and verbal actions for

virtual display control.

The dissertation is concluded with the discussion of DBN models and results and the proposal for

future work in Chapter 9.

1.4 Contribution

Original contributions of this work span the areas of DBNs and interpretation of unimodal and

multimodal computer sensory inputs such as gestures and speech for advanced HCI. In particular, we

have addressed the following important issues:

� formulation of mixtures of dynamic Bayesian networks model,

� formulation of mixed-state dynamic Bayesian network model,

� formulation of coupled hidden Markov model,

� introduction of dynamic Bayesian network framework for modeling and interpretation of hand

gesture, and

� introduction of dynamic Bayesian networks for modeling and interpretation of multimodal gesture

and speech interaction.

The issues addressed are not by any means con�ned to the area of human{computer interaction. The

strong theoretical foundation of the proposed techniques allows for their applicability to general problems

of time series modeling and classi�cation under multiple observation data sets.
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CHAPTER 2

BAYESIAN NETWORKS

2.1 Introduction

A Bayesian network is a graphical model used to describe dependencies in a probability distribution

function (pdf) de�ned over a set of variables. Namely, dependencies among variables are represented in

a graphical fashion and used to decompose (factor) the distribution in terms of conditional independence

relations de�ned over subsets of variables.

Let ZL = fz0; � � � ; zL�1g be a set of L random variables (for example, see Figure 2.1). Let Pr(z0; � � � ;

zL�1) be a probability density function de�ned over ZL. Without knowing what the dependencies among

variables z� are, one can apply the chain rule of basic probability theory and decompose the pdf Pr(�)

as, for example,

Pr(z0; : : : ; zL�1) =

Pr(z0)Pr(z1jz0)Pr(z2jz1; z0) � : : : � Pr(zL�1jzL�2; : : : ; z0):

Again, this decomposition holds in general and does not presume any knowledge of particular random

variable dependencies. However, it is often the case that a certain structure exists in those dependencies:

A Bayesian network is a graphical way of representing a particular joint distribution

factorization.

Each random variable of a pdf associated with the Bayesian network is represented as one node in

such a network. For instance, in Figure 2.1 there are seven nodes, thus the graph de�nes a pdf of seven

random variables. Directed arcs in the graph represent dependencies among variables. Thus, variable

z5 in Figure 2.1 is only inuenced by z3 and z4. In other words, given the values of z3 and z4, z5 is

conditionally independent from the rest of the random variables. This observation can be generalized in

the following fashion:

Pr(z0; � � � ; zL�1) =
L�1Y
i=0

Pr(zija(zi)); (2.1)
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Figure 2.1 Bayesian network|graphical depiction of dependencies in Pr(z0; z1; z2; z3; z4; z5; z6).
Each node in the network represents one random variable. Set a(z5) denotes ancestor vari-
ables of z5. Pdf Pr(z1; z2; z3; z4; z5; z6) can then be decomposed as Pr(z6jz4) Pr(z5jz3; z4)
Pr(z3jz2; z0) Pr(z2jz1) Pr(z4) Pr(z1) Pr(z0).

where a(zi) denotes a subset of ZL whose elements are directly inuencing zi. Subset a(zi) is usually

denoted as ancestors or parents of zi. For instance, in Figure 2.1, ancestors of z5 are z3 and z4, denoted

as the set a(z5) = fz3; z4g. Hence, the joint pdf can be decomposed as

Pr(z0; z1; z2; z3; z4; z5; z6) =

Pr(z6jz4) Pr(z5jz3; z4) Pr(z3jz2; z0) Pr(z2jz1) Pr(z4) Pr(z1) Pr(z0):

At this point it is useful to de�ne some basic notation often encountered in Bayesian network theory.

The notation actually originates in graph theory.

� A parent of node zi is every node zj such that there is a directed arc from zj to zi.

� A directed arc from node zj to node zi implies that zi is zj 's child.

� Descendants of node zj are all its children, its children's children, etc.

� An undirected path from node zj to node zk is a sequence of nodes starting in zj and ending in zk

such that each node in the sequence is either a parent or a child of its successor.

� A directed path from node zj to node zk is an undirected path from zj to zk, where each node in

the path is strictly a parent of its successor.

� Node zk in an undirected path has converging arrows if it is a child of both the previous and the

following nodes in the path.

For example, in Figure 2.1 fz0; z3; z5; z4g is an undirected path, while z1; z2; z3 is a directed path.

I now outline some important rules of Bayesian networks [48]:

� Each node in the network is conditionally independent from its nondescendant given its parents.

� A set of nodes Zi is conditionally independent of another (disjoint) set Zj given set Zs if Zs

d-separates Zi and Zj . Namely, in every undirected path between a node in Zi and a node in Zj

there is a node zk such that:
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{ zk has converging arrows and neither zk nor its descendants are in Zs, or

{ zk does not have converging arrows and zk is in Zs.

A power of Bayesian networks is that one can infer conditional variable dependencies by visually in-

specting the network's graph. Returning to the network in Figure 2.1, one can quickly conclude that z0

and z1 are conditionally independent given z2 and z3 since they d-separate z0 and z1. Hence, it follows

that Pr(z0; z1jz2; z3) = Pr(z0jz2; z3)Pr(z1jz2; z3). However, z1 and z0 are not conditionally independent

given only z3 since z3 has converging arrows.

Why is such decomposition important? The answer lies in probability inference. Inference is the task

of e�ciently deducing what a distribution over a particular subset of random variables is given that

one knows the states of some other variables in the network. More precisely, one needs to e�ciently

calculate a particular conditional or marginal pdf from the one de�ned by the net. The following section

is devoted to discussion of inference in Bayesian networks.

2.2 Inference

2.2.1 Bayesian rule inference

Consider the partition ZL = X [ Y . Let X = fx0; : : : ; xN�1g and Y = fy0; : : : ; yM�1g, L = N +M ,

and denote the two subsets as the sets of hidden and visible variables, respectively. Furthermore, let

UK be an arbitrary subset of ZL. The goal of inference is to �nd the conditional pdf over UK given the

observed variables Y , namely Pr(UK jY).

If UK � Y , the desired pdf is trivially equal to

Pr(UK jY) =
KY
k=1

�(uk � yk);

where �(x) = 1 for x = 0 and �(x) = 0 otherwise.

A nontrivial case arises when UK � X . The desired pdf can now be obtained using the Bayes rule:

Pr(UK jY) =
Pr(UK ;Y)

Pr(Y)
(2.2)

=
Pr(UK ;Y)P
UK

Pr(UK ;Y)
: (2.3)

Clearly, it is su�cient to �nd the joint pdf Pr(UK ;Y) and then marginalize over UK . Moreover, the

joint pdf over UK and Y is obtained by marginalizing Pr(ZL) over the set of hidden variables X � UK :

Pr(UK ;Y) =
X

x2X�UK

Pr(x;UK ;Y) =
X

x2X�UK

Pr(ZL): (2.4)
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For instance, in Figure 2.1 one may want to know Pr(z3jz1; z5; z6). One could directly apply the Bayesian

rule, write

Pr(z3jz1; z5; z6) =
Pr(z3; z1; z5; z6)

Pr(z1; z5; z6)

=

P
z0;z2;z4

Pr(z0; : : : ; z6)P
z0;z2;z3;z4

Pr(z0; : : : ; z6)
;

and then perform the marginalization given the decomposition de�ned by the inference graph. In small

networks (or pdfs with few variables) like the one of Figure 2.1, that may not be a di�cult problem.

However, direct application of the above rule becomes less feasible as the number of variables increases.

In fact, inference in arbitrary Bayesian networks is, in general, NP-hard [49]. Nevertheless, there are

several special cases of Bayesian network topologies that allow for more e�cient inference algorithms. I

next consider one such network class.

2.2.2 Exact probability propagation in a singly connected network

An often encountered class of Bayesian networks is the class of singly connected Bayesian networks.

Singly connected Bayesian networks contain no undirected cycles. In other words, their equivalent

undirected graphs are in fact trees. The tree structure leads to an e�cient inference algorithm for the

case of a single desired variable (K = 1) known as the sum-product algorithm [50, 48, 51].

The idea behind the sum-product algorithm is to distribute the global sum over all hidden variables

UK of Equation 2.4 into a product of local sums over local subsets of hidden variables. Local subsets

are determined by the topology of the net. Namely, consider the network in Figure 2.1. The network

is singly connected. Its nodes can be rearranged as shown in Figure 2.2. Suppose one is interested in

Pr(z3jz1; z5; z6), as before. The basis of the sum-product algorithm is the fact that z3 separates all

the nodes in the network into two disjoint sets. These sets are labeled as E+(z3) and E
�(z3). Set E

+

consists of parents of z3 and all the nodes in undirected paths to z3 that pass through one of its parents.

Set E� contains the children nodes and the nodes connected to z3 through its children. To calculate the

conditional pdf of interest, node z3 collects \messages" from its parents and its children. Each parent of

z3 sends it a message containing the probability of every value of that parent given the observations in

set E+. Each child of z3 sends back a message containing the probability of observations in E� given

every setting of z3. The conditional pdf of z3 is then the product of two terms. The �rst term is the sum

of the messages to z3 from its parents weighted by the conditional probability of z3 given its parents.

The second term is the product of the messages of the children of z3. Hence,

Pr(z3jz1; z4; z5) /

"X
z0;z2

Pr(z3jz0; z2)Pr(z2jz1)Pr(z0jz1)

#
Pr(z5jz3):
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Figure 2.2 Exact probability propagation in singly connected Bayesian networks. Any variable (node)
in the network separates the rest of the variables into two disjoint sets. Calculation of conditional
probabilities then reduces to message passing between a node and its parents and children.

This procedure is repeated for every hidden variable (node) in the network. Hence, one can write similar

expressions for Pr(z2jz1) and Pr(z0jz1). The well-known forward-backward algorithm often mentioned

in the hidden Markov model literature [5] is clearly one particular view of the probability propagation

algorithm in singly connected networks.

2.2.3 Approximate inference

In the case of arbitrary Bayesian networks, exact inference may not be feasible. Therefore, it is more

plausible to look for an approximate, yet tractable, solution to the inference problem. I briey mention

a number of di�erent approximate techniques.

Monte Carlo inference techniques [52] approximate a desired conditional distribution with the rela-

tive frequencies of occurrence obtained by simulation. In some cases, inference by ancestral simulation

yields satisfactory results. Another alternative is to use Gibbs sampling, a Markov chain Monte Carlo

technique [53], where a Markov chain is designed over the space of hidden variables so that its stationary

distribution approximates the desired conditional distribution in the network.
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Helmholtz machine inference [54] attempts to circumvent the main drawback of Monte Carlo and vari-

ational techniques, namely, the need for repeated expensive computations for every di�erent constellation

of hidden variables X . This is achieved by constructing a recognition Bayesian network corresponding to

a speci�c con�guration of visible and hidden variables in the original generative network. The recognition

network topology is designed so that the inference problem in this network becomes computationally

tractable. A commonly found recognition network topology is the one of factorial networks, where

Q(XjY) =
Q

hi2X
Qi(hijY).

Variational inference techniques [55] rely on calculation of a parameterized distribution which is

in some sense close to the desired conditional network distribution, yet easier to compute. Briey, a

distribution Q(Xj�) with variational parameters � is de�ned such that a convenient distance measure

between Q(Xj�; �) and Pr(XjY) is minimized with respect to �. The most common choice of the distance

measure is the Kullback{Leibler divergence:

�� = argmin
�

X
X

Q(Xj�) log
P (XjY)

Q(Xj�)
: (2.5)

Topology of Q is chosen such that it closely resembles the topology of P . However, as mentioned

before, the topology of Q must allow a computationally e�cient inference. In Appendix A we present an

important theorem due to Ghahramani [56] that provides simpli�ed conditions for optimal variational

parameters of a speci�c exponential family of distributions Q.

2.3 Learning

The role of learning is to adjust the parameters of a Bayesian network so that the pdf de�ned by the

network su�ciently describes statistical behavior of the observed data.

Let M be a parametric Bayesian network model with parameters � of the probability distribution

de�ned by the model. Let Pr(M) and Pr(�jM) be the prior distributions over the set of models and

the space of parameters, respectively. Given some observed data assumed to have been generated by the

model, the goal of learning in Bayesian framework is to estimate the model parameters � such that the

posterior probability of the model-given data (instances of random variables) ZL,

Pr(MjZL) =
Pr(M)

Pr(ZL)

Z
�

Pr(ZLj�;M)Pr(�jM)d�; (2.6)

gets maximized. To make this task tractable, however, it is usually assumed that the pdf of the parameter

of the model, Pr(�jM), is highly peaked around the maximum likelihood estimates of those parameters.

In other words,

Pr(MjZL) �
Pr(M)

Pr(ZL)
Pr(ZLj�ML;M)Pr(�MLjM);
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where the maximum likelihood estimate �ML is obtained from

�ML = argmax
�

logPr(ZLj�) (2.7)

for a given modelM. Hence, in the rest of this section we simply focus on maximum likelihood learning

of model parameters without explicitly discussing its appropriateness.

2.3.1 Learning with hidden variables

Consider now the case where not all variables Z in Bayesian networkM are observed. Using notation

of Section 2.2, maximum likelihood learning of network parameters can now be stated as the following

optimization problem:

�̂ = argmax
�

log
X
X

P (Y ;Xj�); (2.8)

where P denotes a speci�c joint pdf de�ned by the network. Alternatively, one can minimize the cost

function de�ned as

J(�) = � log
X
X

P (Y ;Xj�): (2.9)

2.3.1.1 Gradient-based learning

To minimize the above cost one could, at least in principle, employ a number of di�erent optimization

techniques. A number of such techniques rely on the gradient of the cost function J(�). It can easily be

shown that the following expression for the gradient holds:

rJ(�) =
@J

@�
= �

X
X

P (XjY ; �) log P (X ;Yj�): (2.10)

This expression can be simpli�ed in the case of discrete network variables [57]. In that case Bayesian net-

work parameters � are the conditional probabilities of hidden variables given their parents Pr(xija(xi)).

Assuming that xi can take on one of j = 0; : : : ; J � 1 possible values whereas a(xi) can take on one

of k = 0; : : : ;K � 1 possible values, one can show that the gradient in the direction of parameter

�ijk = Pr(xi = jja(xi) = k) yields

@J

@�ijk
= �

Pr(xi = j; a(xi) = kjY)

�ijk
: (2.11)

This shows that the gradient in the direction of local parameter �ijk involves computation of local

statistics Pr(xi = j; a(xi) = kjY). Such statistics occur as by-products of inference calculations in all

standard Bayesian net inference algorithms and are therefore readily available.

However, when minimizing cost J using a gradient approach, one has to keep in mind that such

minimization is indeed constrained:
P

j �ijk = 1. Hence, every parameter update obtained through the

use of Equation 2.11 must be projected onto an appropriate constrained surface. Together with Equa-

tion 2.11 this yields the following gradient-based network parameter update algorithm [57].
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Initialize �;

while ( �� > maxError ) f

for each ( i, j, k ) f

��ijk = �
Pr(xi=j;a(xi)=kjY)

�ijk
;

g

Project �� onto constraint surface;

w  w + ���;

g

In the above algorithm � is used to denote the learning rate. To ensure convergence of the gradient

minimization approach, � has to satisfy certain conditions, some of which are outlined in [58].

2.3.1.2 Expectation-maximization learning

\Generic" gradient optimization of cost function J is not always necessary. An iterative procedure

known as the expectation-maximization (EM) algorithm [59] is usually employed. Here, however, I present

a generalization of the original EM approach, known as the generalized EM (GEM) due to Hathaway [60]

and Neal and Hinton [61]. This generalization elegantly encompasses a step that validates the use of

variational inference, a powerful approximate inference technique discussed in Section 2.2.3.

To derive the GEM algorithm, consider any positive function Q(X ) such that

X
x2X

Q(x) = 1:

It is convenient to write this function in the following form:

Q(X ) =
e�HQ(X ;Y)

ZQ
; (2.12)

where HQ(X ;Y) is some (positive) function, usually referred to as the Hamiltonian of Q, and ZQ =P
X exp(�HQ(X ;Y)) is a normalization factor. Similarly, I can de�ne the Hamiltonian H(X ;Y) of the

joint pdf described by the network as

P (X ;Y) = e�H(X ;Y): (2.13)

From Equation 2.9, using Jensen's inequality [62], one can obtain an upper bound on the cost function

in the following manner:

J(�) = � log
X
X

P (Y ;Xj�)

= � log
X
X

Q(X )
P (Y ;Xj�)

Q(X )
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� �
X
X

Q(X ) log
P (Y ;Xj�)

Q(X )

= �
X
X

Q(X ) logP (Y ;Xj�) +
X
X

Q(X ) logQ(X )

= hH(X ;Y)i � hHQ(X ;Y)i � logZQ

= B(P;Q; �): (2.14)

Terms hH(X ;Y)i and hHQ(X ;Y)i denote expectations with respect to distribution Q of Hamiltonians

H and HQ, respectively.

To minimize cost J(�) (or maximize logPr(Yj�)) with respect to � one can iteratively alternate

between the following two optimization steps of the upper bound B(P;Q; �):

Initialize �;

while ( �J(�) > maxError ) f

Expectation (E) Qnew = argminQ B(P;Q; �old);

Maximization (M) �new = argmin� B(P;Qnew; �);

g

Consider �rst the expectation step E. It is easy to show that the step yields

Qnew(X ) = Pr(XjY ; �old); (2.15)

the expectation of the hidden variables X given the observations Y . Also, the upper bound becomes

tight, thus guaranteeing no increase in cost. The maximization step then becomes

�new = argmin
�
hH(X ;Y)iPr(XjY;�old)

; (2.16)

where the above expectation is de�ned over the posterior distribution Pr(XjY ; �old). Hence, we arrive at

the \classical" version of the EM algorithm, as proposed in [59]. In the expectation step, one does what

was earlier referred to as inference. The maximization step (or, actually, minimization) then reduces the

cost by adjusting the model's parameters. It was shown in [59] that this procedure (maximization step

in particular) is guaranteed not to increase the cost. Therefore, the EM procedure leads to a stationary

point of the cost function [63]. In many cases this coincides with a local minimum.

Let us return for a moment to the expectation step. I mentioned that the result of optimization in

the expectation step leads to the inference problem. In Section 2.2 I concluded that, unfortunately, only

a small number of Bayesian networks allow e�cient exact inference. The majority of models call for

an approximate inference that can be computed more e�ciently. How does this approximate inference

a�ect the learning? The answer is simple: it does not! In the expectation, one need not fully optimize

the bound, i.e., instead of optimizing over all possible functions Q one may optimize only over a subset

18



of Q, Qfixed, that allows computationally e�cient inference:

Expectation (E) : Q�
new = arg min

Q2Qfixed

B(P;Q; �old) (2.17)

That is exactly what happens in the variational inference approach described in Section 2.2.3. The

maximization step, however, remains the same since the terms hHQnew(X ;Y)i and ZQnew do not depend

on �:

Maximization (M) : �new = argmin
�
hH(X ;Y)iQ�new : (2.18)

Note however that in this case one only optimizes the bound on the cost, not the cost itself.

I have already mentioned that the EM iterative scheme leads to a stationary point of the cost function.

Having said that, one realizes that the choice of initial parameter estimates becomes crucial. In most

practical cases one often has some knowledge of (initial) model parameters. EM is then used to re�ne

those initial choices. Nevertheless, there are occasions when a good choice of initial parameters is not

available. In order not to settle for a \bad" local minimum one has to resort to techniques that will

guarantee \acceptable" solutions. One such technique is called the deterministic annealing variant of

the EM algorithm. Proposed by Ueda and Nakano [64], the approach combines deterministic annealing

with the GEM. Briey, instead of function Q de�ned in Equation 2.12, one considers a slightly modi�ed

Q�:

Q�(X ) =
Q(X ;Y)�P
U Q(U ;Y)

�
; 0 < � � 1: (2.19)

The inverse of factor � is known as the annealing temperature Tanneal = 1=�. The expression for the

bound on the cost function now becomes

B�(P;Q; �) = hH(X ;Y)i �
1

�
hHQ(X ;Y)i � logZQ: (2.20)

The algorithm basically follows the same steps as the classical GEM. However, at initialization one sets

the annealing temperature to some initial high value. The e�ect of this is that, roughly, many small

local minima of the cost function virtually disappear. As one progresses through the EM iterations,

the temperature is \slowly" lowered until, for Tanneal = 1, the solutions of annealing EM satis�es

the original optimization problem. Overall, this modi�ed EM procedure seems to lead toward a global

minimum of the cost function. Annealing EM seems particularly e�ective for GEM algorithms with

approximate expectation steps (such as variational inference) [65].
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CHAPTER 3

DYNAMIC BAYESIAN NETWORKS

3.1 Introduction

Dynamic Bayesian networks [44] are a special case of singly connected Bayesian networks speci�cally

aimed at time series modeling. In this case, one assumes causal dependencies between events in time

leading to a simpli�ed network structure, such as the one depicted in Figure 3.1. Namely, in its simplest

form, the states of some system described as a DBN satisfy the following Markovian condition:

The state of a system at time t depends only on its immediate past: its state at time

t� 1.

This is of course the well-known model of Markov chains [66]. In fact, Markov chains are one speci�c

example of DBNs. However, the states of a DBN need not be directly observable. They may inuence

some other variables that an observer can directly measure. This is indicated in Figure 3.1 by the sets

of squares (observables) inuenced by the sets of circles (state variables). The model that immediately

comes to mind at this point is the hidden Markov model (HMM) [5]. Again, as will become more clear

t1 t2 t3

t

Figure 3.1 General notion of dynamic Bayesian networks. DBNs describe evolution of the states of
some system in time in terms of their joint probability distribution. At each instance in time t the states
of the system depend only on the states at the previous (t� 1) and possibly current time instance.
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Figure 3.2 Dependency graph of a dynamic Bayesian network (DBN) with one hidden and one observ-
able state at each time instance.

from the sections to follow, an HMM is nothing but a special case of a DBN. Of course, nothing prevents

one from assuming that the states of a DBN can take on values from an uncountable, unbounded set

such as <. In fact, they may belong to a vector space <N . In that case, an HMM-like DBN may become

a classical linear dynamic system (LDS) a�ected by random noise. Finally, as indicated in Figure 3.1

the state of some system need not be a single, simple state. It may be viewed as a complex structure of

interacting states. Each state at one time instance may depend on one or more states at the previous

time but also on some current states. Complex structures like this can also be represented as DBNs.

Thus, the previous DBN \de�nition" is reformulated:

States of a system at time t depend on their immediate past (states at time t � 1) and

possibly on the current states of their neighbors.

It the rest of this chapter we �rst present a formal de�nition of the dynamic Bayesian network

model. General inference, decoding, and learning tasks are formalized in this new framework. Finally,

a substantial part of the chapter is devoted to two speci�c examples of DBNs: hidden Markov models

and linear dynamic systems.

3.2 Model

The formal model of a DBN is now de�ned more strictly. To accomplish this we focus our discussion,

without loss of generality, on the case of a single hidden state and a single observation at each time

instance. This is depicted in Figure 3.2. Given the dependency topology of Figure 3.2, the DBN is a

probability distribution function on the sequence of T hidden-state variables X = fx0; : : : ; xT�1g and

the sequence of T observables Y = fy0; : : : ; yT�1g that has the following factorization:

Pr(X ;Y) =
T�1Y
t=1

Pr(xtjxt�1) �
T�1Y
t=0

Pr(ytjxt) � Pr(x0): (3.1)

Clearly, the factorization satis�es the requirements for DBNs that state xt depend only on state xt�1.

In order to completely specify a DBN one needs to de�ne

� state transition pdf Pr(xt+1jxt),
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Figure 3.3 Inference in DBNs. Given a sequence of observations one needs to estimate the distribution
of hidden variables (shaded circles).

� observation pdf Pr(ytjxt), and

� initial state distribution Pr(x0)

for all t = 0; : : : ; T�1. All of the conditional pdfs can be time-varying (Pr(xt+1jxt) = (xt+1jxt; t)) or time

invariant, parametric (Pr(xt+1jxt) = (xt+1jxt; �)) or nonparametric (probability tables). Depending on

the type of the state space of hidden and observable variables, a DBN can be discrete, continuous, or a

combination of the two. For instance, HMMs are usually de�ned over a set of N discrete hidden states

and a set of continuous observations. LDSs are, on the other hand, speci�ed over sets of continuous

variables.

As in the case of general Bayesian networks, one may be interested in the following tasks:

� Inference: estimate the pdf of hidden states given some known observations Pr(XjY).

� Decoding: �nd the best sequence of hidden states that may have generated the known sequence of

observations.

� Learning: given a number of sequences of observations, estimate parameters of a DBN such that

it \best" models the data.

In the sections to follow, we address solutions to the above tasks within the Bayesian network framework.

3.3 Inference

The problem of inference in dynamic Bayesian networks can be posed as the problem of �nding

Pr(X T�1
0 jYT�10 ), where YT�10 denotes a �nite set of T consecutive observations, YT�10 = fy0; y2; : : : ;

yT�1g and X
T�1
0 is the set of the corresponding hidden variables. This is depicted in Figure 3.3. The

shaded circle indicates that the distribution of xt is to be estimated based on observations YT�10 .

Depending on the type of DBN, it may be more e�cient (or, in fact, only possible) not to estimate the

conditional pdf Pr(X T�1
0 jYT�10 ) for all constellations of X T�1

0 but instead to estimate the pdf's su�cient

statistics [62]. Thus, for instance, in the case where the conditional pdf is Gaussian it is su�cient to
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estimate the mean and variance of xt,


xtjY

T�1
0

�
and



xtx

0
tjY

T�1
0

�
for every t as well as the covariance


xtx
0
t�1jY

T�1
0

�
. Similarly, when xt is discrete and the conditional pdf is given as a table of probabilities,

one needs to �nd Pr(xtjY
T�1
0 ) ( which is the same as



xtjY

T�1
0

�
) and Pr(xtx

0
t�1jY

T�1
0 ). We will return

to this discussion in more detail when we revisit the DBN avor of HMMs and LDSs. Since all of the

above statistics can in principle be derived from Pr(xtjY
T�1
0 ) and Pr(xtxt�1jY

T�1
0 ), we focus the rest

of my general DBN inference discussion on those two quantities.

As in the case of general singly connected Bayesian networks (see Section 2.2.2), an e�cient forward-

backward algorithm can be employed for this purpose. Namely, a two-step process is needed to accom-

plish the inference task: propagation of probabilities in the forward direction (direction of time) and

then the backward propagation. The two steps are formulated in the following section.

3.3.1 Forward propagation

Let �t(xt) be the forward probability distribution de�ned as the joint probability of observations up

until time t and the state at time t:

�t(xt) = Pr(Yt0; xt): (3.2)

Given the network topology of Figure 3.3 it is easy to see that

�t+1(xt+1) = Pr(yt+1jxt+1)
X
xt

Pr(xt+1jxt)�t; (3.3)

with the initial condition �0(x0) = Pr(x0).

One \by-product" of forward propagation is the likelihood of the observation data sequence YT�10 .

From the de�nition of the forward factor alpha in Equation 3.2 it follows that

Pr(YT�10 ) =
�T�1(xT�1)P
�T�1

�T�1(�T�1)
: (3.4)

Hence, the probability of the observation sequence is proportional to the forward factor of the last hidden

state. This probability is useful when one needs to determine how well di�erent DBN models \�t" a

data sequence in the framework of maximum likelihood estimation.

3.3.2 Backward propagation

Let �t(xt) be the backward probability distribution, i.e., the conditional probability of observations

from time t+1 until the last observation at time T � 1 conditioned on the values of the state at time t:

�t(xt) = Pr(YT�1t+1 jxt): (3.5)

Then, the following recursive relationship holds:

�t�1(xt�1) =
X
xt

�t(xt)Pr(xtjxt�1)Pr(ytjxt); (3.6)
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with �T (xT�1) = 1 �nal condition.

3.3.3 Smoothing

Given the expressions for forward and backward probability propagation, it easily follows that

t(xt) = Pr(xtjY
T�1
0 ) =

�t(xt)�t(xt)P
xt
�t(xt)�t(xt)

; (3.7)

where t(xt) is the smoothing operator. One can also derive higher-order smoothing equations. In

particular, a �rst-order smoothing is de�ned as

�k;k�1(xt; xt�1) = Pr(xt; xt�1jY
T�1
0 ) =

�t�1(xt�1)Pr(xtjxt�1)Pr(ytjxt)�t(xt)P
xt
�t(xt)�t(xt)

: (3.8)

3.3.4 Prediction

Another interesting inference problem deals with predicting future observation or hidden states based

on the past observation data. Namely, a one-step prediction can be stated as the following inference

problem:

Pr(xt+1jY
t
0)

or

Pr(yt+1jY
t
0):

It is easy to show that

Pr(xt+1jY
t
0) =

P
xt
Pr(xt+1jxt)�t(xt)P

xt
�t(xt)

: (3.9)

Similarly,

Pr(yt+1jY
t
0) =

P
xt+1

�t+1(xt+1)P
xt
�t(xt)

: (3.10)

Instead of considering the pdfs themselves, it is sometimes more convenient to express the prediction

problem in terms of the expected or maximum likelihood estimates:

hxt+1;ti = E[xt+1jY
t
0]

xt+1;tML
= argmax

xt+1

Pr(xt+1jY
t
0)

hyt+1;ti = E[yt+1jYt]

yt+1;tML
= argmax

yt+1

Pr(yt+1jY
t
0):

3.3.5 Decoding

The goal of sequence decoding in dynamic Bayesian networks is to �nd the most likely sequence of

hidden variables given the observations

X �T�1
0 = arg max

XT�1
0

Pr(X T�1
0 jYT�10 ): (3.11)
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This task can be achieved using the dynamic programming Viterbi algorithm [67]. Let

�t+1(xt+1) = max
X t
0

Pr(X t+1
0 ;Yt+10 ): (3.12)

Given the topology of the DB network,

�t+1(xt+1) = Pr(yt+1jxt+1) �max
xt

"
Pr(xt+1jxt) �max

X t�1
0

Pr(X t
0 ;Y

t
0)

#
(3.13)

= Pr(yt+1jxt+1) �max
xt

[Pr(xt+1jxt) � �t(xt)] : (3.14)

It now readily follows that

max
XT�1
0

Pr(X T�1
0 jYT�10 ) = max

xT�1

�T�1(xT�1): (3.15)

To �nd X �T�1
0 one also needs to keep track of the argument xt that maximizes �t+1(xt+1),

 t+1(xt+1) = argmax
xt

[Pr(xt+1jxt) + �t(xt)] ; (3.16)

and then trace back:

x�t =  t+1(x
�
t+1): (3.17)

For a sequence to be decoded using the Viterbi algorithm it is necessary to �rst receive a complete set of

observations y1; : : : ; yT . However, for on-line decoding it is inconvenient to wait for a complete sequence

of observations to be received before proceeding with the backtracking. A suboptimal solution known

as the truncated Viterbi algorithm engages backtracking every time after a �xed number of Tmax << T

observations is received. Assuming that Tmax is su�ciently large, the suboptimally decoded sequence

becomes close enough to the optimal X �T�1
0 .

3.4 Learning

The learning algorithm for dynamic Bayesian networks follows directly from the EM or GEM al-

gorithm described in Section 2.3. However, the expression for the joint probability distribution now

assumes a speci�c form

logPr(X T�1
0 ;YT�10 j�) =

T�1X
t=1

logPr(xtjxt�1) +
T�1X
t=0

logPr(ytjxt) + logPr(x0);

where � is the model parameter vector. The maximization step now �nds parameters � that satisfy

@B(P;Q�)

@�
=

T�1X
t=1

�
@ logPr(xtjxt�1)

@�

�
+

T�1X
t=0

�
@ logPr(ytjx0)

@�

�

+

�
@ logPr(x0)

@�

�
= 0; (3.18)
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where the expectation is as de�ned in Section 2.3. Equivalently, a gradient-based learning procedure

can be implemented that utilizes @B(P;Q�)
@�

.

Two types of dynamic Bayesian networks are often encountered in the literature: linear dynamic

systems and hidden Markov models. Both types posses the same DBN topology (as shown in Figure 3.3),

but they di�er with respect to the underlying spaces over which the hidden variables are de�ned.

3.5 Linear Dynamic Systems and Continuous-State Dynamic

Bayesian Networks

Continuous-state DBNs are well known in the theory of linear systems. However, only recently have

the linear systems been studied as a special case of dynamic Bayesian networks [68, 44]. Consider the

following state space equation:

xt+1 = At+1xt + vt+1 (3.19)

yt = Ctxt + wt (3.20)

x0 = v0; (3.21)

where xt 2 <N , yt 2 <M , vt has a zero-mean Gaussian distribution with variance Qt, and wt has a

zero-mean Gaussian distribution with variance Rt, for all t = 0; 1; : : :. Assume furthermore that x0 has

a Gaussian distribution with mean � and variance Q0. It is then easy to show that any xt and yt are

also distributed normally according to the following distributions:

Pr(xt+1jxt) = N (xt+1; At+1xt; Qt)

= (2�)�
N
2 jQtj

� 1
2 exp

�
�
1

2
(xt+1 �At+1xt)

tQ�1
t+1(xt+1 �At+1xt)

�
; (3.22)

and

Pr(ytjxt) = N (yt; Cxt; Rt)

= (2�)�
M
2 jRtj

� 1
2 exp

�
�
1

2
(yt � Cxt)

tR�1
t (yt � Cxt)

�
: (3.23)

Obviously, this leads one to the typical dynamical Bayesian network topology from Figure 3.3. The

formulation of an LDS presented above is for a time-varying system. However, the rest of this section

focuses on time-invariant LDSs.

Given the above de�nition of the transition and observation pdfs one can now write an expression

for a joint pdf that is de�ned by a Gaussian LDS. We choose, equivalently, to de�ne its Hamiltonian:

H =
1

2

T�1X
t=1

(xt �Axt�1)
0Q�1 (xt �Axt�1) +

T � 1

2
log jQj
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+
1

2
(x0 � �)

0
Q0

�1 (x0 � �) +
1

2
log jQ0j+

NT

2
log 2�

+
1

2

T�1X
t=0

(yt � Cxt)
0
R�1 (yt � Cxt) +

T

2
log jRj+

MT

2
log 2�: (3.24)

The expression of this form is particularly useful when dealing with the model parameter updates. We

will use the Hamiltonian form to derive the EM-based parameter update equations of Section 3.5.2.

In the case of LDSs with independent and identically distributed (iid) Gaussian noise processes, as

mentioned in Section 3.3, it is not necessary to consider the actual expressions for inference pdfs. Namely,

su�cient statistics are su�cient to completely determine the stochastic behavior of the network. One

can show [69] that the following �rst- and second-order statistics are in fact su�cient for an LDS with

iid Gaussian noise:

�


xtjY

T�1
0

�
,

�


xtx

0
tjY

T�1
0

�
, and

�


xtx

0
t�1jY

T�1
0

�
,

for t = 0; : : : ; T � 1. The rest of the discussion of LD systems as DBNs thus focuses on the calculation

and use of these su�cient statistics.

3.5.1 Inference

Inference in continuous-state DBNs directly follows from the general inference framework of DBNs

(see Section 3.3). We next consider the problems of forward propagation, smoothing, prediction, and

decoding. Backward propagation is excluded from the discussion because it represents an integral part

of smoothing. Even though it is possible to formulate backward propagation on its own [69], its fusion

with smoothing yields a more clear set of DBN equations.

3.5.1.1 Forward propagation

Forward probability propagation in LD systems requires calculation of the following statistics:

� hxtjYt0i,

� hxtx0tjY
t
0i, and

�


xtx

0
t�1jY

t
0

�
,

Obviously, these statistics are elements of the well-known Kalman �ltering equations [70]



xtjY

t
0

�
=



xtjY

t�1
0

�
+Kf

t (yt � C


xtjY

t�1
0

�
) (3.25)
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�t;t = �t;t�1 �K
f
t C�t;t�1 (3.26)


xtjY
t�1
0

�
= A



xt�1jY

t�1
0

�
(3.27)

�t;t�1 = A�t;tA
0 +Q (3.28)

Kf
t = �t;t�1C

0 (C�t;t�1C
0 +R)

�1
; (3.29)

where

�t;t =


(xt �



xtjY

t
0

�
)(xt �



xtjY

t
0

�
)0jYt0

�
�t;t�1 =



(xt �



xtjY

t�1
0

�
)(xt �



xtjY

t�1
0

�
)0jYt�10

�
:

At this point it is useful to de�ne the expression for likelihood of the observed data. It follows from

the theory of Kalman �lters that

� logPr(YT�10 ) =
1

2
T log(2�)

+
1

2

T�1X
t=0

�
(yt � hxti)

0�t;t�1
�1 (yt � hxti) + log j�t;t�1j

�
: (3.30)

3.5.1.2 Smoothing

Smoothing or inference equations for LDSs can be obtained from the above forward equations and a

similar set of backward equations [71, 72]. However, it is also possible to solve the smoothing problem

directly from the forward equations [73]. The set of equations de�nes the Rauch-Tung-Streibel (RTS)

smoother:

Ks
t�1 = �t�1;t�1A

0��1
t;t�1 (3.31)


xt�1jY
T�1
0

�
=



xt�1jY

t�1
0

�
+Ks

t�1

�

xtjY

T�1
0

�
�A



xtjY

t�1
0

��
(3.32)

�t�1;T�1 = �t�1;t�1 +Ks
t�1 (�t;T�1 ��t;t�1)K

s
t�1

0: (3.33)

Again, the smoothed variance �t;T�1 is de�ned as

�t;T�1 =


(xt �



xtjY

T�1
0

�
)(xt �



xtjY

T�1
0

�
)0jYT�10

�
:

To complete the su�cient statistics necessary for inference, We need to de�ne the expression for the

variance of hidden states across two consecutive times steps. It can be shown that [74]

h(xt � hxti)(xt�1 � hxt�1i)
0i =

�t;tK
s
t�1

0 +Ks
t (h(xt+1 � hxt+1i)(xt � hxti)

0i �A�t;t)K
s
t�1

0:

In the rest of this work, unless explicitly mentioned otherwise, We use a shortened notation of hxti

to denote the smoothed estimate


xtjY

T�1
0

�
. Similar notation rules are followed for other estimates of

su�cient statistics.

28



3.5.1.3 Decoding

Decoding of the \best" sequence as de�ned in Section 3.3.5 trivially reduces to the sequence of

expectations:

X �T�1
0 = f



xtjY

t
0

�
; t = 0; : : : ; T � 1g: (3.34)

As will be seen in the section on discrete DBNs (hidden Markov models), the Viterbi estimates in general

do not coincide with the �ltered ones.

3.5.2 Learning

Learning of Kalman �lter/smoother parameters � = (A;Q;C;R; �;Q0) is usually less emphasized in

time series prediction literature. The reason for this is that often parameters of the system are known

from physical models and measurements. Nevertheless, estimating the system parameters from data can

in fact be useful.

Consider the case of a time-invariant dynamic system, where � = (A;Q;C;R; �;Q0) is independent of

time. Given the form of the probability distribution de�ned by an LDS or, equivalently, its Hamiltonian

(see Equation 3.24) the update equations are found by setting the partial derivatives of hHi with respect

to elements of � to zero. For the case of a single data sequence this yields the following set of equations:

Anew =

 
T�1X
t=1

hxtxt�1
0i

! 
T�1X
k=1

hxtxt
0i

!�1

(3.35)

Qnew =
1

T � 1

 
T�1X
t=1

hxtxt�1
0i �Anew

T�1X
t=1

hxt�1xt
0i

!
(3.36)

Cnew =

 
T�1X
t=0

yt hxt
0i

! 
T�1X
t=0

hxtxt
0i

!�1

(3.37)

Rnew =
1

T

T�1X
t=0

(ytyt
0 � Cnew hxti yt

0) (3.38)

�new = hx0i (3.39)

Q0;new = hx0x0
0i � hx0i hx0i

0: (3.40)

Note that the above expressions are de�ned with respect to the su�cient statistics evaluated on the

model with parameter values before the update (as imposed by the EM algorithm).

The question naturally arises how to select some good initial parameter values to start the recursion.

There are several possible answers to that question. It is usually the case that one has some initial guess

of what the parameters should be. It is also possible that one only needs to \re�ne" the model he has

and �t it to a new set of data. Finally, one may have no guess of what the parameters are. In that case

one usually resorts to initialization of more complex models using models that are one level simpler. In
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the case of LDSs one may assume that the simpler model contains no temporal dependencies between

hidden states x. One can then use factor analysis [44] to initialize such a model and infer its states.

From there one can employ the LDS update equations to initialize the estimates of LDS parameters.

3.6 Hidden Markov Models and Discrete-State Dynamic Bayesian

Networks

Discrete-state DBNs are also known as hidden Markov models or HMMs. Hidden Markov models

have been used successfully for more than a decade in the �eld of automatic speech recognition (ASR) [5].

In this section we present the prospect of HMMs from the point of view of their DBN nature.

As mentioned before, an HMM is a DBN with a discrete-valued state space. Nevertheless, the

dependency graph of an HMM is still the same as the general dependency graph of a dynamic Bayesian

net (see Figure 3.2). Hence, the joint pdf de�ned by this model is clearly the one of Equation 3.1. The

HMM becomes a distinct model by de�ning a unique family of state transition pdfs.

3.6.1 Notation

Unlike LDS models of the previous section, HMMs are usually speci�ed directly by de�ning the

necessary conditional probabilities. Consider an HMM with N discrete hidden states. We denote the

state variables of this model by s in order to di�erentiate them from the continuous-valued states of an

LDS. The state space of an HMM can then be de�ned in two equivalent ways. One is to assign each

state a di�erent integer from a set of N di�erent integers:

S = f0; 1; : : : ; N � 1g:

Each st can now take on values from this set. A slightly di�erent state space (yet mathematically

equivalent) can be constructed by assigning one unit vector of dimension N to each di�erent state. In

other words,

S = fe0; : : : ; eN�1g;

where ei denotes the unit vector with a nonzero element in the ith position. Even though the indexed

notation tends to prevail in the classical HMM literature, We often use the \vector"-type notation. The

reason for that will become more clear as the model is developed further.

Consider now the state transition pdf Pr(stjst�1). Assume that the HMM in question is time

invariant. Hence, the transition pdf now becomes an N �N probability table (matrix) P whose entries

are

P (i; j) = Pr(st = ijst�1 = j);
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or equivalently

P (i; j) = Pr(st = eijst�1 = ej);

where i; j = 0; : : : ; N � 1. If we use the vector notation, the following expression holds:

Pr(st = eijst�1 = ej) = st
0Pst�1

where P is the transition pdf matrix. The same notation holds when one leaps into the log space:

logPr(st = eijst�1 = ej) = st
0 logPst�1, where logP denotes an element-wise operation.

Note another important implication of this notation, namely, that the following vector and matrix

identities are easily shown to be true:

hsti = [Pr(st = e0) � � �Pr(st = eN�1)]
0 = Pr(st);

hsts
0
ti = diag(hsti):

The observation pdf for an HMM, Pr(ytjst), can be de�ned in a number of ways. Next, three cases

are considered that are most commonly found in the literature.

3.6.2 Discrete observation HMM

In the discrete observation HMM, observation state variables can take on values from one of M

di�erent states Y = fe0; : : : ; eM�1g. Consequently, one can de�ne an observation probability table

(matrix) as

Po(i; j) = Pr(yt = eijst = ej);

with i = 0; : : : ;M � 1; j = 0; : : : ; N � 1. Equivalently, Pr(yt = eijst = ej) = yt
0Post.

The joint pdf de�ned by this model is de�ned by the following Hamiltonian:

H =

T�1X
t=1

st
0 logPst�1 +

T�1X
t=0

yt
0Post + s0 log�0: (3.41)

3.6.3 Gaussian observation HMM

Observation states are distributed according to Gaussian distribution with means and variances

determined by the conditioning hidden states. In other words,

Pr(ytjst = ei) = N (Ci; Ri);

where Ci and Ri belong to the sets of prede�ned means and variances. Let st(j) denote the jth component

of state st. Then one can also write

Pr(ytjst = ei) =

N�1X
j=0

N (cj ; Rj) � st(j);
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since all st(j) are zero except for st(i). Finally, if all states have identical variances R0 = : : : = RN�1 = R

a compact notation of the following form holds:

Pr(ytjst = ei) = N (C � st; R);

where C is a matrix whose columns are the means associated with the hidden states C = [C0 � � �CN�1].

The model's Hamiltonian for the case of all di�erent observation means and variances now takes the

form

H =

T�1X
t=1

st
0 logPst�1 + s0 log�0

+
1

2

T�1X
t=0

N�1X
i=0

�
log jRij+ (yt � Ci)

0
Ri

�1 (yt � Ci)
�
st(i) +

1

2
NT log 2�:

3.6.4 Mixture-of-Gaussians observation HMM

Modeling the observation pdf as a mixture of Gaussians allows one, at least in principle, to model

any desired distribution on the observation space. Consider the case of a mixture with S components.

Denote with Pm(j; i); j = 0; : : : ; S � 1 the mixing weights (or mixture probabilities) of the ith hidden

state. Furthermore, assume that each state's mixture has a di�erent set of mixture component means

Ci;j and Ri;j , where index j represents the mixture component and index i denotes the hidden state.

Without loss of generality, let all the hidden states have the same number of mixture components. One

can then say that

Pr(ytjst = ei; ct = ej) = N (Cij ; Rij) =

N�1X
k=0

S�1X
l=0

N (Ck;l; Rk;l)st(k)ct(l);

where ct is the state variable indicating the \state of the mixture" at time t. If one thinks of a generative

model de�ned by this HMM, then st denotes the active state at time t and ct denotes the active

observation mixture once the system is in state st. Clearly, given that st, ct has the distribution de�ned

by the stth column of Pm,

Pr(ctjst = ej) = Pmst:

This fact is depicted by the modi�ed DBN of Figure 3.4.

The Hamiltonian of an HMM with the observation pdf de�ned as a mixture of S Gaussians then

�nally becomes

H =

T�1X
t=1

st
0 logPst�1 + s0 log�0

+
1

2

T�1X
t=0

N�1X
i=0

S�1X
j=0

�
log jRi;j j+ (yt � Ci;j)

0
Ri;j

�1 (yt � Ci;j)
	
ct(j)st(i)

+
1

2
NST log 2� +

T�1X
t=0

ct
0 logPmst: (3.42)
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Figure 3.4 Dependency graph of a hidden Markov model with a mixture of observation pdfs. Variable
ct speci�es which observation distribution mixture component is active at time t. The observation yt
depends both on the hidden state xt as well as the mixture variable ct. The model is often used to de�ne
an HMM with a mixture of Gaussian observation pdfs.

3.6.5 A di�erent state-space model

It is also feasible to de�ne an alternative state-space model associated with an HMM [44]. This state-

space model is similar to the one for the DBN. However, the HMM de�ned in such space is nonlinear:

st+1 = WTA(At+1st + wt+1) (3.43)

yt = Ctst + vt; (3.44)

where WTA is the winner-takes-all nonlinear operator: its output is a unit vector with nonzero in the

position of a largest component of the operator's argument. As before, the space of st is the set of all

unit vectors of dimensions N . In fact, one can show that it is possible to go between the two alternative

representations of HMMs, i.e., to �nd Pr(xtjxt�1) from At and Qt and vice versa [44].

3.6.6 Inference

Inference in HMMs follows readily from the general inference in DBNs. As HMMs are directly

speci�ed by probability tables and/or Gaussian (or mixture-of-Gaussians) pdfs, forward, backward, and

smoothing equations are simply those found in Section 3.3. Here, the expressions are presented again in

accordance with the adopted HMM notation.

3.6.6.1 Forward propagation

Let �t be an N -dimensional vector whose components are �t(i) = Pr(st = ei;Yt0), i = 1; : : : ; N .

Then,

�t = diag(Pr(yt)) � P � �t�1; (3.45)

where Pr(yt) is an N dimensional vector with the element i equal to Pr(ytjst = ei).
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3.6.6.2 Backward propagation

Let �t be an N -dimensional vector whose components are �t(i) = Pr(YT�1t+1 jst = ei), i = 1; : : : ; N .

Then,

�t = P 0 � diag(Pr(yt+1)) � �t+1: (3.46)

3.6.6.3 Smoothing

Let t be an N -dimensional vector whose components are t(i) = Pr(st = eijY
T�1
0 ), i = 1; : : : ; N .

Then,

t =
diag(�t)�t
�t0�t

: (3.47)

Keeping in mind the notation introduced in Section 3.6.1, one can also write that

t = hsti :

We will use this notation throughout the rest of this work.

The joint probability of two consecutive hidden states can also be easily found. Let �t be an N �N

matrix whose components are �t(i; j) = Pr(st = ei; st+1 = ej jY
T�1
0 ). Then,

�t = diag(�t) � PA
0 � diag (diag(Pr(yt+1))�t+1) : (3.48)

Again, one can equivalently write

�t =


sts

0
t+1

�
:

In the case of mixture-of-Gaussians observation HMMs, another quantity is of interest. That is the

joint distribution of the hidden system states and the states of the mixture components, Pr(st = ei; ct =

ej jY
T�1
0 ). It is trivial to show that these statistics can be obtained as

Pr(st = ei; ct = ej jY
T�1
0 ) = Pr(st = eijY

T�1
0 )Pr(ct = ej jst = ei; yt): (3.49)

Of course, Pr(st = eijY
T�1
0 ) = t(i) and

Pr(ct = ej jst = ei; yt) =
Pm(j; i)N (Ci;j ; Ri;j)PS�1
k=0 Pm(j; i)N (Ci;j ; Ri;j)

�����
yt

is the proportion that the jthe mixture component of the ith state \contributes" to the observation yt,

or in other words, the probability that yt came from mixture component j in state i.

3.6.6.4 Prediction

Prediction equations are not commonly seen in the classical HMM literature. However, they can be

readily obtained from equations in Section 3.3.4 and Section 3.6.6.1:

P s
k+1;k =

P�k
10�t

(3.50)

34



P y
k+1;k =

10�t+1
10�t

; (3.51)

where P x
k+1;k(i) = Pr(st+1 = eijYt0), P

y
k+1;k = Pr(yt+1jYt0), and 1 is an N -dimensional vector of all

ones. For continuous observation densities, the expected value estimate can be shown to be

yek+1;k = CP x
k+1;k : (3.52)

3.6.6.5 Decoding

Application of the Viterbi algorithm from Section 3.3.5 leads to

�t = diag(Pr(yt)) max
columns

[P diag(�t�1)] ; (3.53)

where �t is an N -dimensional vector with elements �t(i) = maxSt�1
0

Pr(st = i;St�10 ;Yt0). Similarly,

 t+1 = arg max
columns

[Pr(st+1jst)diag(�t(st))] ; (3.54)

and

s�t =  t+1(�xt+1) (3.55)

with s�T�1 = argmax �T�1.

3.6.7 Learning

Batch learning in HMMs has been studied extensively in the classical HMM framework [5]. This

section considers the problem of parameter learning for the case of a mixture-of-Gaussians observation

HMM. The mixture-of-Gaussians observation HMM is a generalization of both the single Gaussian

observation and the discrete observation models. Hence, the parameter update equations of the mixture-

of-Gaussians model parameters can be easily specialized for the simpler models.

As before, we consider the parameter update equations that are the consequence of the EM learn-

ing on a single data sequence. Hence, one needs to �nd partial derivatives of the mean Hamiltonian

in Equation 3.42 with respect to the model parameters: transition pdf matrix P , mixture distribution

matrix Pm, and N � S mixture parameters Ci;j and Ri;j . Given the simple form of Equation 3.42, it

readily follows that

P (i; j) =

PT�1
t=1 hst(i)st�1(j)iPT�1

t=1 hst�1(j)i
(3.56)

Pm(k; i) =

PT�1
t=0 hct(k)st(i)iPT�1

t=0 hst(i)i
(3.57)

Ck;i =

PT�1
t=0 yt hct(k)st(i)iPT�1
t=0 hct(k)st(i)i

(3.58)

Rk;i =

PT�1
t=0 (yt � Ck;i)(yt � Ck;i)

0 hct(k)st(i)iPT�1
t=0 hct(k)st(i)i

; (3.59)
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where i = 0; : : : ; N � 1 and k = 0; : : : ; S � 1. In the case of a single Gaussian observation S = 1, all

statistics of the form hct(k)st(i)i become identical to hst(i)i. Obviously, Pm(k; i) = 1 for all model states

i. The discrete observation case parameter updates are also easy to deduce. One simply needs to assume

that all variances Rk;i are in�nitesimally small, whereas means Ck;i take on values of integers k or unit

vectors ek. The observation probability table is then simply identical to the mixture probability matrix

Pm, and ct can be thought of as the observation state variables:

Po(k; i) =

PT�1
t=0 hyt(k)st(i)iPT�1

t=0 hst(i)i
:

Besides the outlined batch learning approach, on-line gradient learning schemes (see Section 2.3),

can also be employed for HMM parameter updates. Nevertheless, such schemes are not as common as

the batch approach. Examples of on-line parameter updates for HMMs can found in [68].

3.6.8 Bayesian network representation and state transition diagrams

At this point it may be useful to draw a parallel between two di�erent graphical representations found

in HMM literature. One is, of course, the DBN representation. The other, more common, representation

is the state transition diagram. To point out the di�erence and similarities between the two, consider the

example of a discrete observation HMM. Assume that the model has N = 6 hidden states and M = 3

observation states. Speci�cally, the model is completely speci�ed with

� (hidden) state space S = fe0; e1; : : : ; e5g or equivalently S = f0; 1; 2; 3; 4; 5g,

� observation state space Y = fe0; e1; e2g or equivalently Y = f0; 1; 2g,

� state transition probability matrix

P =

2
6666666666664

:7 :2 :7

:8 :3

:5 :8

:1 :7

:3 :1 :2 :3 :3

3
7777777777775
;

� observation probability matrix

Po =

2
6664

:1 :3 :1 :2 :9

:2 :2 :5 :4 :2

:8 :7 :2 :5 :6 :1

3
7775 ;

� and initial state distribution Pr(s0 = e0) = 1.

36



A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

0

1

2

3

4

5

.8 .5

.1

.1

.3

.8

.2

.3

.3

.7

.3

.2

.7

.7

.1

.2

.7

.3

.5

.2

.1

.4

.5

.2

.2

.6

.9

0

.1

0

.2

.8

Figure 3.5 State diagram representation of a discrete observation hidden Markov model in text. The
model has six hidden states and three observation states with transition and observation probabilities
denoted on the diagram. Equivalent DBN representation of the model is still the same as that depicted
in Figure 3.2, but must also include the probability tables speci�ed in text.

The classical state-space diagram for the above model is shown in Figure 3.5. It provides information

such as what transitions between states are allowed and how likely they are, as well as the probabilities

of observation symbols. On the other hand, its DBN dependency graph is that of a \generic" DBN. It is

shown again in Figure 3.6 for the case of a length-5 observation sequence. Clearly, the DBN representa-

tion is not complete. It only speci�es that there are Markovian dependencies between consecutive hidden

variables and that observations depend only on current hidden states. However, without specifying the

state and observation pdfs, this could just as well be the model of an LDS. On the other hand, the state

transition diagram in Figure 3.5 completely speci�es the HMM. Nevertheless, it does not clearly show

the temporal structure that the model supports.

3.7 Complex Dynamic Bayesian Networks

A complex DBN is an extension of the concept of dynamic Bayesian networks. The network is formed

by combining two or more dynamic Bayesian nets into a complex dependency structure.
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Figure 3.6 Dependency graph for an HMM with an observation sequence of length 5.

We will consider three types of complex DBNs: factorial HMMs [55], switching state space models [65],

and multistate HMMs [75]. Network topologies for the above networks are depicted in Figure 3.7.

Factorial HMMs are based on the idea that a sequence of observations can be modeled as driven by

a \combination" of underlying discrete Markov processes (see Figure 3.7(a)). Switching space models,

on the other hand, assume that a sequence of observations can be obtained by time-multiplexing the

outputs of several di�erent linear systems. The multiplexer in this case, as depicted in Figure 3.7(c), is

modeled as a discrete Markov process. If a number of di�erent processes concurrently evolves in time

and a correlation between processes is assumed to exist, a multistate HMM (see Figure 3.7(b)) can prove

to be a reasonable model of such behavior.

Despite their di�erent topologies, all of the above network types can be reduced to basic DBNs

using the combination-of-variables method [51]. Consider the case of a complex network obtained by

\merging" in some way L di�erent basic network structures. The basis of the method is then to consider

all concurrent variables xkm, m = 1; : : : ; L, as a new complex variable xt = (xk1; : : : ; xkL). The new

complex variable is de�ned over its own complex space X = X1� : : :�XL of dimension Nc = N1 � � �NL.

Moreover, the inter- and intra-network conditional pdfs can be easily reformulated to �t this new space.

Once this reduction is performed, the inference methods of basic DBNs from Section 3.3 can be directly

applied.

However, brute force application of the above method exponentially increases the complexity of

inference. To make the inference task tractable, approximate inference techniques, such as the ones

described in Section 2.2.3, can be applied. Several particularly appealing complex DBN structures are

discussed in great detail in Chapters 4, 5 and 6.

3.8 Hierarchy of Models

In discussing DBNs so far, focus has been on the case of a single network used for modeling of the

complete set of observations YT . However, in many situations it is more plausible to consider such a

sequence being modeled by a set of di�erent DBNs. In other words, di�erent subsequences of YT are

modeled using di�erent models from the set. Such situations are often encountered in automatic speech

recognition. For example, words are modeled as sequences of smaller units known as phonemes. Each
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(c) Switching state space model

Figure 3.7 Complex dynamic Bayesian networks. The terms s and x denote discrete and continuous
space variables, respectively.

phoneme is in turn modeled as an HMM. Besides making modeling more \natural," the use of multiple

simpler models usually reduces the complexity of modeling of the whole process. Thus, in modeling

spoken English one usually uses combinations of 47 basic phoneme models to represent any particular

word in the language (as opposed to having an individual model for every word.)

Let N = fM1;M2; : : : ;MNM
g be a set of NM DBN models. Each modelMi; i = 1; : : : ; NM with

di�erent parameters �i is de�ned over its own state space Xi and a common observation space Y . To

completely specify the set of models one needs to de�ne a relationship between the models in the set

(i.e., a relationship between their state spaces). Namely, one needs to de�ne a cross-probability density

function

Pi;j = Pr(x
(i)
t jx

(j)
t�1); x

(i)
t 2 Xi; x

(j)
t�1 2 Xj : (3.60)

between di�erent models. E�ectively, this de�nes a �rst-order Markov chain over the space of models

N , as depicted in the state diagram of Figure 3.8.

Given the above structure of the model set, one can now view it in the following manner. Let X be

the state space formed as a Descartes product of individual model state spaces Xi:

X = X1 �X2 � � � � � XNM
:
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Figure 3.8 State diagram of a Markov chain de�ned over the space of four models. Markov chain allows
transitions from model m0 to model m1 or model m3, model m1 to model m2, and model m2 to model
m3. Given this model-to-model transition topology, only P1;0, P3;0, P2;1, and P3;2 are nonzero. Each
model is assumed to be a speci�c DBN, as indicated in the lower �gure.

Hence, if the dimension of each model state space Xi is Ni, the dimension of X is
QNM

i=1 Ni. One can

now easily de�ne

Pr(xtjxt�1); xt; xt�1 2 X

Pr(ytjxt); yt 2 Y

from Equation 3.60 and the individual model parameters �i. Therefore, a global DBN is now de�ned

which models the sequence YT by encompassing a set of models N .

The fact that one can view a structured set of DBNs as a single complex dynamic Bayesian model

enables one to readily apply the inference and learning techniques from Sections 3.3 and 3.4 to this

case. However, increased state-space and model parameter dimensionality may in practice inuence the

performance of inference and learning algorithms presented in the above sections. Simpli�cations can

be obtained by noting that very often the structures of global network parameters are very sparse. For

instance, it is common that Pi;j(x
(i)
t jx

(j)
t�1) is nonzero only for a few (i; j). It is sometimes su�cient

to assume that the cross-probability density can be factored as Pi;j(x
(i)
t jx

(j)
t�1) = P in

i (x
(i)
t ) � P out

j (x
(j)
t�1).

More often, one simply assumes that transitions among models are only possible when the system �nds

itself in one particular model state known as the exit state. Once the system is in an exit state of one

model, it can transition to a number of entry states of the other models in the set. This corresponds to a

very sparse structure of Pi;j . For discrete state-space models, model-to-model state transition matrices
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Pi;j become 2
6666664

0 � � � 0 x

0 � � � 0 0

. . .

0

3
7777775
;

where x denotes the only nonzero element of this matrix.
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CHAPTER 4

MIXTURES OF DYNAMIC BAYESIAN NETWORKS

4.1 Introduction

Chapter 3 discussed a general as well as two simpler models of DBNs: linear dynamic systems and

hidden Markov models. Both of these models inherently carry the following assumption: all observations

yt at some �xed time instance t are produced by one and only one model. Thus, even though a pool of

N models may be available, it is assumed that only one model is active at a time. Nevertheless, it may

often be the case that, at one instance, a number of measurements are available that come from several

objects in the observation space. For instance, a camera charge-coupled device (CCD) array provides

a set of measurements of a visual scene that may consist of one or more objects (e.g., foreground and

background). A question quickly comes to mind: given that one knows how many objects are in the scene

at one time, how does one associate the available measurements with the objects? In other words, how

does one know which measurement came from which object? Moreover, how does one track an object

(or multiple objects) in the case of multiple, unassociated measurements? This problem is commonly

referred to as the data association (DA) and tracking problem. As alluded to before, the DA/tracking

problem occurs in many realistic situations. In the case of a visually tracked object, for example, a

CCD image captures both the object of interest and its background. It is also feasible that two or more

objects of interest are present within the same image in addition to some \noisy" background. Similar

situations occur often in ballistic missile tracking, air tra�c control, and underwater sonar tracking [76].

The DA/tracking problem has been studied extensively for the past four decades within the framework

of single or multiple target tracking in cluttered environments [76]. It was observed early on that the

exact Bayesian solution to the DA/tracking problem is in general not tractable. Numerous approximate

approaches stemming from generalizations of single object{single observation Kalman �lter tracking

have been proposed, such as probabilistic data association (PDA) for a single target in a cluttered

environment (multiple nontarget related observations) and joint PDA (JPDA) or maximum likelihood

PDA (ML/PDA) for multiple targets [77].
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Figure 4.1 A mixture of N = 2 dynamic Bayesian networks with observations in the joint observation

set of cardinality M = 5. At each time instance t an observation y
(m)
t ;m = 0; : : : ; 4 is generated by one

of N states x
(n)
t ; n = 0; : : : ; 1. Switching variable s

(m)
t determines which of the two dynamic systems

generates the observation y
(m)
t . For convenience, only the observations at t = 2 are shown.

On the other hand, there has long been interest in the so-called switching linear dynamic systems [78].

Switching LDSs are those LD models whose parameters instantaneously change (switch) in time accord-

ing to some (probabilistic) law. For instance, the noise process variance can switch among several dif-

ferent values according to some Markovian dynamics. Similarly, a number of LDSs can be concurrently

active while only one of the systems produces all the observations at any given time, again according

to some switching dynamics. Recently, Ghahramani and Hinton [65] have proposed a solution to this

switching LDS problem from the perspective of approximate inference in DBNs. The resulting switching

network topology was mentioned briey in Section 3.7.

In this section, we extend the idea of a single observation switching DBN to the multiple observa-

tion DBNs with unknown observation associations. We denote these network topologies as mixtures of

dynamic Bayesian networks.

4.2 Model

Consider the case of N concurrent dynamic models, each modeling the temporal evolution of one of

N dynamic systems. Let the joint observation set for all N models consist of M di�erent observations.

Assume furthermore that at each time instance t every observation y
(m)
t , m = 0; : : : ;M � 1 is generated

by one and only one dynamic system n; n = 0; : : : ; N � 1. This situation is depicted in Figure 4.1, for

N = 2 and M = 5. To model the dependence of observations on only one dynamic system at every time
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t we introduce the switching variable s
(m)
t for every observation m. Namely,

Pr(y
(m)
t jx

(0)
t ; : : : ; x

(N�1)
t ; s

(m)
t = n) = Pr(y

(m)
t jx

(n)
t ): (4.1)

Here, st(m) can take on values from the set of N discrete variables f0; : : : ; Ng indicating which subnet n

the mth observation has come from. Moreover, assume that s
(m)
t is a random variable with a known pdf

Ps(n) = Pr(s
(m)
t = n). Let the dynamics of the systems be modeled using the general DBN framework

of Chapter 3, i.e., the dynamic systems can be modeled as either discrete (HMMs), continuous (LDS),

or some combination thereof.

The joint pdf de�ned by this model can now be written as

P (X ;Y ;S) =
N�1Y
n=0

T�1Y
t=1

Pr(x
(n)
t jx

(n)
t�1)Pr(x

(n)
0 )

M�1Y
m=0

T�1Y
t=0

Pr(y
(m)
t jx(0)t ; x

(1)
t ; : : : ; x

(N�1)
t ; s

(m)
t )

M�1Y
m=0

T�1Y
t=0

Pr(s
(m)
t ); (4.2)

where the sets X , Y , and S denote the sets of DBN (hidden) state variables, observations, and switching

state variables, respectively.

Equivalent to the de�nition of the joint pdf, one can write the Hamiltonian of this model, using the

factorization of Equation 4.1:

H = �
N�1X
n=0

(
T�1X
t=1

logPr(x
(n)
t jx

(n)
t�1)� logPr(x

(n)
0 )

)

�
M�1X
m=0

N�1X
n=0

T�1X
t=0

s
(m)
t (n) logPr(y

(m)
t jx

(n)
t )

�
M�1X
m=0

N�1X
n=0

T�1X
t=0

s
(m)
t (n) logPs(n): (4.3)

Here, s
(m)
t (n) denotes the nth component of the vector index variable s

(m)
t , similar to the HMM notation

of Section 3.6.

Parameters of the mixture of DBNs are clearly the individual parameters of each underlying DBN

and the set of observations, as well as the parameters of the switching distribution Ps.

4.3 Inference

Given the complex structure of a mixture of DBNs one is usually interested in recovering the hidden

dynamics of the system, given some set of observations: Pr(XjY). Moreover, one would like to know

the likelihood Pr(SjY) of model-to-observation assignments. In the case of a single DBN, as seen
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Figure 4.2 Factorization of the mixture of dynamic Bayesian networks from Figure 4.1. For clarity,
only the factorization of the mixture subnet n = 0 with observations at time t = 2 is depicted. Complete
network factorization contains N such subnets.

in Chapter 3, e�cient inference algorithms exist that provide the desired answer. However, such inference

in the case of a mixture of DBNs is clearly intractable. It is therefore necessary to consider some

approximate techniques that result in tractable inference.

An appealing approximate inference technique can be readily applied to this problem, namely, the

structured variational inference approach described in Section 2.2.3. In this approach one de�nes an

overparameterized and factorized model structure that \resembles" the original intractable topology. In

the case of a mixture of DBNs the factorized topology chosen is that of Figure 4.2. Given the proposed

factorization, the approximating Hamiltonian becomes

HQ = �
N�1X
n=0

(
T�1X
t=1

logPr(x
(n)
t jx

(n)
t�1)� logPr(x

(n)
0 )

)

�
M�1X
m=0

N�1X
n=0

T�1X
t=0

h
(m)
t (n) logPr(y

(m)
t jx

(n)
t )

�
M�1X
m=0

N�1X
n=0

T�1X
t=0

�
s
(m)
t (n) + q

(m)
t (n)

�
logP (n)

s : (4.4)

Parameters h
(m)
t (n) and q

(m)
t (n) are the variational parameters of the approximating distribution Q that

are to be optimized in the sense of Section 2.2.3. These parameters are denoted as the observation and

switching state weights, respectively.
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Using Theorem 1 it is easy to show (see Appendix B) that the following set of �xed-point equations

de�nes the optimal approximating distribution

h
(m)
t (n) =

D
s
(m)
t (n)

E
(4.5)

q
(m)
t (n) = exp

D
log
�
Pr(y

(m)
t jx

(n)
t )
�E
: (4.6)

From the above equations it is clear that the weight h
(m)
t (n) of observationm in system n is proportional

to the probability that the observation came from this system, given all measurements. The switching

state weight q
(m)
t (n) measures the \likelihood" of the mth observation given the estimates of the nth

DBN's states. It is now easy to show that the switching state weights q
(m)
t (n) in Equation 4.6 together

with the factorization Q yield D
s
(m)
t (n)

E
=

q
(m)
t (n)Ps(n)PN�1

l=0 q
(m)
t (l)Ps(l)

: (4.7)

Hence,
D
s
(m)
t (n)

E
is a MAP-like Bayesian estimate of the probability that observation m came from

system n. The �nal cost function of this approximation (see Section 2.2.3) can then be written as

Cost = B(P;Q) = hH �HQi � logZQ; (4.8)

where ZQ denotes the \observation" probability in the factorized network and hH �HQi depends on

the choice of DBN dynamics.

In summary, the inference algorithm can be now written as follows:

error = 1;

Initialize su�cient statistics of Pr(y
(m)
t jx(n)t ) (hxi, etc.) ;

while (error > maxError) f

Find hs�i using Equation 4.7;

Estimate su�cient statistics of Pr(y
(m)
t jx(n)t ) from hs�i and ycdot in the factorized network Q;

Update Cost using Equation 4.8;

error  ( oldCost - Cost ) / Cost;

g

We now consider the variational inference approximation for two special cases of mixed DBNs where

the underlying mixture networks are LDSs and HMMs.

4.3.1 Mixture of linear dynamic systems

In the case of a set of N linear dynamic systems, the observation pdf of the mth measurement given

the nth system is assumed to be Gaussian with mean C(n) and variance R(n):

Pr(y
(m)
t jx

(n)
t ) = N (C(n); R(n));
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where y
(m)
t 2 <Ny is assumed for all m.

Therefore, the switching weight �xed-point equation, Equation 4.6, becomes

q
(m)
t (n) = (2�)�

1
2Ny jR(n)j�

1
2 exp

�
�
1

2

��
y
(m)
t � C(n)x

(n)
t

�0
R(n)�1

�
y
(m)
t � C(n)x

(n)
t

���

= (2�)�
1
2Ny jR(n)j�

1
2 exp

�
�
1

2

�
y
(m)
t � C(n)

D
x
(n)
t

E�0
R(n)�1

�
y
(m)
t � C(n)

D
x
(n)
t

E��

� exp

�
�
1

2
trace

�
R(n)�1R̂

(n)
t

��
;

where R̂
(n)
t denotes the variance of state x

(n)
t :

R̂
(n)
t =

D�
x
(n)
t �

D
x
(n)
t

E��
x
(n)
t �

D
x
(n)
t

E�
0
E
:

Clearly, the closer the observation y
(m)
t is to the one infered by the state of the nth LDS, the more it

weighs the switching state. The estimate of the switching state
D
s
(m)
t (n)

E
in Equation 4.7 therefore

resembles an estimate of a mixture of Gaussian distribution mixing weights.

To obtain the estimates of the hidden system states x
(n)
t one needs to use a time-varying version

of the LDS inference described in Section 3.5 on each LDS subnet. However, there are two subtle

di�erences when applying the LDS inference to each mixed DBN subnet. First of all, one needs to weigh

the observation variance R(n) at each time instance t by the factor 1=h
(m)
t (n), depending on which one

of M observations is being fused. This stems from the fact that according to the chosen factorization

in Equation 4.4 the inverse of each observation variance R(n) gets multiplied by h
(m)
t (n).1 Second, in the

observation fusing phase of LDS inference, there are M di�erent observations instead of a usual single

observation. However, this does not pose any di�culty because the M -observation inference task can

be easily reduced to a one-observation inference by concatenating the M observations into an M �Ny

vector with a block diagonal observation variance consisting of weighed matrices R(n)=h
(m)
t (n).2

4.3.2 Mixture of hidden Markov models

In the mixture-of-HMMs network one assumes that each of N dynamic subnets can be modeled as

an HMM of Section 3.6. Consider the case of discrete observation HMMs.3 Here, the observation pdf of

the mth measurement coming from the nth HMM subnet is given by the probability table P
(m)
o (�; �):

Pr(y
(m)
t = jjx

(n)
t = i) = P (m)

o (j; i);

1Recall from Equation 4.3 that the observation log likelihood logPr(y
(m)
t jx

(n)
t ) is scaled by variational parameter

h
(m)
t (n). Since the pdf in question is Gaussian, scaling the log likelihood by h

(m)
t (n) yields the same inference results as

scaling of the distribution variance by the inverse of h
(m)
t (n).

2Obviously, the observations can also be recursively fused using the recursive least-squares procedure, or, equivalently,
a Kalman �lter in the observation space with a unit transition matrix and zero state noise.

3The case of continuous, Gaussian observation HMM is analogous to the case of Gaussian observation noise LDS of the
previous section.
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where i and j take on values from the sets of indices of hidden states f0; : : : ; Nx � 1g and observations

f0; : : : ; Ny � 1g, respectively.

The switching weight Equation 4.6 now assumes the following form:

q
(m)
t (n) =

Nx�1Y
i=0

Po(m; i)



x
(n)
t

(i)
�
: (4.9)

As before, the estimates of the switching states are de�ned by Equation 4.7. To obtain the estimates

of the hidden dynamical system states x
(n)
t one uses a modi�ed time-varying version of the standard

HMM inference of Section 3.6. Namely, as in the case of the LDS inference above, two modi�cations are

necessary. To account forM di�erent measurements, one simply considers a single measurement with the

probability equal to the product of M individual observation probabilities. Furthermore, each one of M

observation probabilities is weighed by the power h
(m)
t , according to the factorization Q in Equation 4.4.

4.4 Learning

Given the pdf factorization of Equation 4.4, learning the parameters of a mixture of DBNs becomes

trivial and reduces to the learning of parameters of individual LDS or HMM subnets. This follows

directly from the discussion of the generalized EM algorithm in Section 2.3. For instance, maximization

of a mixture of LDS parameters yields the set of update equations, similar to the ones of Section 3.5.2:

A(n)
new =

 
T�1X
t=1

D
x
(n)
t x

(n)
t�1

0
E! T�1X

k=1

D
x
(n)
t x

(n)
t

0
E!�1

(4.10)

Q(n)
new =

1

T � 1

 
T�1X
t=1

D
x
(n)
t x

(n)
t�1

0
E
�Anew

T�1X
t=1

D
x
(n)
t�1x

(n)
t

0
E!

(4.11)

C(n)
new =

 
M�1X
m=0

T�1X
t=0

y
(m)
t

D
x
(n)
t

0
ED

s
(m)
t (n)

E! T�1X
t=0

D
x
(n)
t x

(n)
t

0
E!�1

(4.12)

R(n)
new =

1

T

M�1X
m=0

T�1X
t=0

�
y
(m)
t y

(m)
t

0
D
s
(m)
t (n)

E
� Cnew

D
x
(n)
t

E
y
(m)
t

0
D
s
(m)
t (n)

E�
(4.13)

�(n)new =

M�1X
m=0

D
x
(n)
0

ED
s
(m)
t (n)

E
(4.14)

Q
(n)
0;new =

M�1X
m=0

(hx0x0
0i � hx0i hx0i

0)
D
s
(m)
t (n)

E
: (4.15)

The equations are obviously a generalization of the single LDS parameter update equations from Sec-

tion 3.5.2. Similar parameter update equations can be obtained for a mixture of HMMs.

In addition to the subnet parameters, the probability of associations Ps can be easily reestimated in

the same GEM framework. Namely, the update equation for the data association can be easily shown
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to be

Ps;new(n) = c

T�1X
t=0

M�1X
m=0

D
s
(m)
t (n)

E
; (4.16)

where c is the normalization constant.
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CHAPTER 5

MIXED-STATE DYNAMIC BAYESIAN NETWORKS

5.1 Introduction

In this chapter we consider a speci�c instance of dynamic Bayesian networks (DBNs) that arise from

those of the previous chapter: hidden Markov models and Kalman �lters (KFs). We call such DBNs

mixed-state DBNs. A mixed-state DBN is a coupled combination of an HMM and a KF. In it, the

output of an HMM is the driving input to a linear system. A block diagram of this system is depicted

in Figure 5.1.

LS

yk

HMM

uk

(s , x )  = f ( y )^ ^

s xkk

Figure 5.1 Block diagram of a physical system (LDS) driven by an input generated from a hidden
Markov model (HMM). The system has an equivalent representation as a mixed-state dynamic Bayesian
network.

What motivates one to consider such a combination of systems? Several examples may easily come

to mind. Suppose that one observes an autonomous moving target. The target motion is governed by

Newtonian physics as well as the input force (thrust) imposed upon it by its human operator. Assume

that one has some knowledge of what sequence of actions the operator may take in time. In other words,

one knows that there are dependencies between levels of control thrust at successive time instances.

Thus, it is plausible to model the thrust controlled by an operator as an HMM where the hidden

states correspond to a number of possible actions the operator may take, and the observables model the
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thrust value at those action instances. Knowledge of object motion under Newtonian laws of physics is

embedded in the linear system model.

Another example of a physical system that can be modeled as a mixed DBN is the human hand/arm

motion during gestural communication. Like spoken language, hand gestures are claimed to posses an

inherent linguistic structure of the concepts that drive them (e.g., see [79]). Consequently (and again

similar to spoken language modeling), one may want to model such concepts using HMMs. However,

instead of driving the human vocal tract, the concepts now control the motion of the human arm through,

for example, arm joint torques. This physical arm motion can, in turn, be described using di�erent

kinematic and dynamic motion models of simple or articulated structures. Again, these physical models

are built into the block denoted as the linear/nonlinear system.

In both of the above examples the aim of modeling the systems in the mixed DBN framework is

to be able to infer what the underlying concept that drives the physical system is. This can help

to distinguish among di�erent motion patterns of a target observed by a radar or among di�erent

hand gestures observed by a computerized interactive kiosk. Moreover, the concepts need not only be

inferred|they can also be predicted. Consequently, the motion of the target or the human hand can be

predicted too (based on the predicted concept) and used for tracking of the physical systems.

In the rest of this chapter techniques are formulated to achieve the goal of estimating and predicting

the system concept and the states of the physical system. Furthermore, we show how this can be used

to learn the model parameters of both the concept generator and the physical system.

5.2 Model

Consider a coupled system whose block diagram is depicted in Figure 5.1. The system can in general

be described using the following set of state-space equations:

xt+1 = At+1xt +Bt+1ut+1 + vt+1;

yt = Ctxt + wt; and

x0 = v0

for the physical system, and

Pr(st+1; st) = Pr(st+1jst)Pr(st);

P r(ut; st) = Pr(utjst)Pr(st); and

Pr(s0) = �0

for the generating (driving) concept. The meaning of the variables is as usual (see Section 3.5): x is used

to denote the (hidden) state of the LDS system, u is an input to this system, while v represents the state
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Figure 5.2 Bayesian network representation (dependency graph) of the mixed-state DBN. Term s
denotes instances of the discrete valued concept states driving the continuous valued physical system
states x and observations y.

noise process. Similarly, y is the measurement (observation) and w is the measurement noise. Parameters

A, B, and C are the typical LDS parameters: the state transition matrix, the input \gain" matrix, and

the observation matrix, respectively. We represent the concept generator as a hidden Markov model.

States of this model are written as s. The model itself is de�ned using an appropriate state transition pdf

Pr(st+1jst), observation pdf Pr(utjst), and initial state distribution �0. Again, the notation is analogous

to that used in Section 3.6. Note that the input u to the LDS is the output of the concept HMM.

Finally, assume that the dimensions of the variable spaces are

� s� 2 fe0; : : : ; eS�1g,1

� x� 2 <N , and

� y� 2 <M .

The state-space representation is equivalently represented in the dependency graph in Figure 5.2 and

can be written as

Pr(Y ;X ;U ;S) =
T�1Y
t=1

Pr(stjst�1)Pr(s0)

T�1Y
t=0

Pr(utjst)

T�1Y
t=1

Pr(xtjxt�1; ut)Pr(x0ju0)

1ei is the unit vector of dimension S with a non-zero element in the i-th position. For more detail on this notation
see Section 3.6
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T�1Y
t=0

Pr(ytjxt); (5.1)

where Y ;X ;U , and S denote the sequences of length T of observations and hidden state variables. Of

course, as we will soon show, variable u� can be absorbed into x�, thus yielding a simpli�ed pdf form:

Pr(Y ;X ;S) =
T�1Y
t=1

Pr(stjst�1)Pr(s0)

T�1Y
t=1

Pr(xtjxt�1; st)Pr(x0js0)

T�1Y
t=0

Pr(ytjxt):

Terms vt and wt in the physical system formulation are used to denote random noise terms. One

can write an equivalent representation of the physical system in the probability space assuming that the

following conditional pdfs are de�ned:

Pr(xt+1jxt; ut+1) = Px(xt+1 �At+1xt � Bt+1ut+1); (5.2)

Pr(ytjxt) = Py(yt � Ctxt); (5.3)

where Px and Py are some known, usually parameterized, pdfs.

Throughout the rest of this chapter we assume without loss of generality that the state noise v of

the physical system is zero with probability one (w.p.1) or nonexistent. This is allowed given the fact

that noise in the states of the physical system can be accounted for by the noise in the output of the

driving HMM. In addition, assume that the observation noise of the physical system is modeled as an

i.i.d. zero-mean Gaussian process:

wt � N (0; R):

Furthermore, we restrict the output distribution of the HMM subsystem to be Gaussian with constant

variance Q and the mean determined by the process's hidden states:

utjst � N (Dst; Q); t > 0

u0js0 � N (D0s0; Q0):

Finally, assume that the physical system parameters A;B;C and the concept system state transition pdf

P are time-invariant, and without loss of generality reduce B to identity B = I . The model parameters

can then be summarized as follows:

� continuous subsystem parameters A, C, and R,

� discrete subsystem parameters P and �0, and
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� coupling parameters D and Q.

The model state equations now yield

Pr(st+1jst) = s0t+1Pst; (5.4)

ut = Dst + vt; (5.5)

xt+1 = Axt + ut+1; (5.6)

yt = Cxt + wt; (5.7)

with initial conditions

Pr(s0) = �0;

x0 = D0s0 + v0:

Given the above assumptions, the joint pdf of the mixed-state DBN of duration T (or, equivalently,

it's Hamiltonian) can be written as

H =
1

2

T�1X
t=1

(xt �Axt�1 �Dst)
0
Q�1 (xt �Axt�1 �Dst) +

T � 1

2
log jQj

+
1

2
(x0 �D0s0)

0Q0
�1 (x0 �D0s0) +

1

2
log jQ0j+

NT

2
log 2�

+
1

2

T�1X
t=0

(yt � Cxt)
0R�1 (yt � Cxt) +

T

2
log jRj+

MT

2
log 2�

+

T�1X
t=1

s0t(� logP )st�1 + s00(� log�0): (5.8)

Note that in this formulation we distinguish the initial parameter valuesD0; Q0 from the same parameters

in the rest of the temporal sequence D;Q.

5.3 Inference

The goal of inference in mixed-state DBNs is to estimate the likelihood of hidden states of the system

(s and x) for some known sequence of observations y0; : : : ; yT�1 and the known model parameters.

Namely, one needs to �nd

Pr(s0; : : : ; sT�1; x0; : : : ; xT�1jy0; : : : ; yT�1):

Let S;X , and Y denote the sequences (sets) of variables of interest, where each set contains a sequence

of T consecutive temporal variables. The inference problem requires one to determine

Pr(S;XjY):
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Alternatively, one can �nd the su�cient statistics of the above distribution.

In this formulation we have omitted a set of intermediate hidden variables U = fu0; : : : ; uT�1g, which

is the set of inputs to the physical system. However, these variables are crucial for the inference. They

can be reintroduced using the following marginalization:

Pr(S;XjY) =

Z
U

Pr(S;U ;XjY)

=

Z
U

Pr(XjU ;Y)Pr(SjU)Pr(UjY): (5.9)

Now, the theory of HMMs and Kalman �lters from Chapter 3 directly provides the intermediate answers

to the constituting conditionals. Using the KF framework one can easily �nd Pr(XjU ;Y). Similarly, it is

easy to determine Pr(SjU). The problem lies in the marginalization of Equation 5.9. To see that, assume

that there are S possible discrete hidden states of the HMM subsystem. Let the initial distribution of

x0 be Gaussian with some mean and variance. At t = 1 the pdf of the physical system state x1 becomes

a mixture of S Gaussian pdfs since one needs to marginalize over S possible but unknown input levels.

It is clear that this procedure yields a pdf exponential in the number of mixture components. Clearly,

the inference task is of exponential complexity.

Next we consider two types of approaches that deal with the complexity of inference. One is a

completely decoupled inference while the other maintains coupling between the two subsystems using

an iterative procedure.

5.3.1 Decoupled inference

Decoupled inference is the more common of the two approaches. It is often (wrongfully) considered

the only approach to inference in the mixed-state systems.

Consider the inference equation as formulated in 5.9. Assume, furthermore, that the conditional pdf

Pr(UjY) in Equation 5.9 has a dominant peak at the maximum likelihood (ML) estimate of u, u = uML.

One can then approximate the inference equation with

Pr(S;XjY) / Pr(XjUML;Y)Pr(SjUML): (5.10)

Clearly, once the ML estimate of u is known, S and X become independent. Inference of S and X can

then be independently formulated in the decoupled subnets. This is �guratively depicted in Figure 5.3.

The question now becomes how to obtain the ML estimate of the input u. The theory of LDS presented

in Section 3.5 answers the question of how to �nd the ML estimate of the system states x when the noise

processes are i.i.d. Gaussian. A common trick can be used to �nd the desired ML estimates of u in the

same manner. Consider the LDS state space equations de�ned in 5.1. These equations can be rewritten
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Figure 5.3 Inference in decoupled mixed-state DBN can be easily accomplished once the coupling u� is
known.

in the following form: 2
4 xt+1

ut+2

3
5 =

2
4 At+1 Bt+1

0 I

3
5
2
4 xt

ut+1

3
5+

2
4 vt+1

vut+1

3
5 ;

yt = Ctxt + wt;

x0 = v0:

Here, we introduce an additional constraint on input u: it must be almost constant between two con-

secutive time steps. Of course, the level of constancy can be determined by the variance of the noise

process vu. Techniques have been developed that adaptively adjust the level of noise so that the state

estimates satisfy a �xed signi�cance level [76]. These techniques are a modi�cation of the basic Kalman

�lter principle formulated in Section 3.5. Hence, an ML estimate of u (together with an ML estimate

of x) can be easily obtained. Given this estimate, the inference of s is trivially achieved in the HMM

framework.

The problem with the presented approach, however, is in its basic assumption that there is a dom-

inant peak around the ML estimate of u. Even though this assumption may hold in majority of cases,

instances can be constructed where the assumption fails. To deal with that problem we next formu-

late an alternative coupled approach to inference in mixed-state DBNs based on variational inference

approximation.

5.3.2 Variational inference

Application of variational inference techniques from Section 2.2.3 to mixed-state DBN is particularly

appealing. To see this, consider the factorization of the original network into an approximate but decou-

pled one, depicted in Figure 5.4. The two subnetworks of the original network are an over-parameterized

HMM with variational parameters q and an LDS with variational parameters u.

More precisely, we de�ne the Hamiltonian of the approximating network as

HQ =
1

2

T�1X
t=1

(xt �Axt�1 � ut)
0Q�1 (xt �Axt�1 � ut) +

T � 1

2
log jQj
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Figure 5.4 Factorization of the original mixed-state DBN. Factorization reduces the coupled network
into a decoupled pair of an HMM (Qs) and an LDS (Qx).
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Q0

�1 (x0 � u0) +
1

2
log jQ0j+

NT

2
log 2�

+
1

2

T�1X
t=0

(yt � Cxt)
0
R�1 (yt � Cxt) +

T

2
log jRj+

MT

2
log 2�

+

T�1X
t=1

s0t(� logP )st�1 + s00(� log�0) +
T�1X
t=0

s0t(� log qt): (5.11)

The meaning of the variational parameters will become clear once we identify their update (�xed-point)

equations. The �xed-point equations are easily obtained by applying Theorem 1 with the factorization

of Equation 5.11. Skipping over the intermediate derivation steps (which can be found in Appendix C)

the theorem yields

� Variational parameters of the LDS subnet Qx:

u�� = D hs� i ; 8� (5.12)

� Variational parameters of the HMM subnet Qs:

q�� (i) =

8<
: exp

�
d0iQ

�1
�
hx� i � A hx��1i �

1
2di
�	

� > 0

exp
�
d0

0
iQ

�1
0

�
hx0i �

1
2d0
�	

� = 0;
(5.13)

where di denotes the ith column of D. To obtain the expectation terms hs� i and hx� i in the above equa-

tions one needs to use the classical inference in the HMMs with output probabilities q� and LDSs with

inputs u� , respectively. This follows directly from the chosen network factorization and is �guratively

depicted in Figure 5.4.
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The error bound of the above approximation can be shown to be (see Appendix C)

Cost = B(P;Q) =
T�1X
t=1

(hxti �A hxt�1i)
0Q�1 (u�t �D hsti)

+
1

2

T�1X
t=1

tr
�
D0Q�1D hsts

0
ti
	
�
1

2

T�1X
t=1

(u�t )
0
Q�1 (u�t )

+ hx0iQ
�1
0 (u�0 �D hs0i) +

1

2
tr
�
D0
0Q

�1
0 D0 hs0s

0
0i
	
�
1

2
(u�0)

0
Q0

�1 (u�0)

+

T�1X
t=0

hsti
0
log q�t

� logPQs
� logPQx

; (5.14)

where logPQs
and logPQx

roughly correspond to the log likelihoods of quasi-observations and observa-

tions in the HMM and LDS subnets of Q, respectively. Namely, following the de�nitions in Section 2.2.3,

PQs
=
X
S

Qs(S);

and

PQx
=

Z
X

Qx(X ;Y):

The variational inference algorithm for mixed-state DBNs can now be summarized as

error = 1;

Initialize hxi;

while (error > maxError) f

Find q� from hx�i using Equation 5.13;

Estimate hs�i from q� using HMM inference;

Find u� from hs�i using Equation 5.12;

Estimate hx�i from y� and u� using Kalman inference;

Update Cost using Equation 5.14;

error  ( oldCost - Cost ) / Cost;

g

The algorithm is symbolically depicted in Figure 5.5. All joint statistics of the original network of

the form hxts0ti can now be found decoupled as hxti hsti
0
.

The meaning of the variational parameters can now be examined. It is obvious from Equation 5.12

and the factorization of the network de�ned in Equation 5.11 that u� parameters can be viewed as the

estimated inputs of the LDS, based on the estimates of the hidden states of the HMM subnet. The

input at time � is estimated to be a linear combination of all possible inputs di weighted by their
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Figure 5.5 Symbolical depiction of a variational inference loop in a mixed-state DBN. Assume that one
is given an estimate of s. Estimate of LDS input u is obtained from s, and estimate of LDS state x is
found from u and y. Finally, an updated estimate of s can be found from x.

corresponding likelihoods hs� (i)i, D hs� i =
PN�1

i=0 di hs� (i)i. The meaning of q� is not immediately

obvious. Based on Equation 5.11, q� can be viewed as the probabilities of some �ctional discrete-valued

inputs presented to the HMM subnet. These probabilities are related to the estimates of the states x�

of the LDS through Equation 5.13. To better understand the meaning of this dependency consider the

plot in Figure 5.6 of q� versus d = di for a �xed value of the di�erence hx� i�A hx��1i and unit variance

Q. We restrict ourselves to the scalar case and assume that d can take on any value in <. Clearly,

the function assumes a maximum value for d = hx� i � A hx��1i. If we had a set of discrete values

of d corresponding to N possible LDS input levels di, q� (i) would be maximized for di closest to the

estimated di�erence hx� i �A hx��1i = hu� i. Thus, those states of the HMM are favored which produce

inputs \closer" to the ones estimated from the LDS dynamics.

5.4 Decoding

The inference task presented in the previous section demands that estimates of hidden states of the

HMM and LDS subnets be found. These estimates are conditioned on all available observations, both

in past and in future. However, we can restrict ourselves to the estimates of the hidden variables based

only on the observations up to the time instance of the variable of interest. Then, we deal with the

forward propagation in DBNs, as de�ned in Chapter 3. One alternative of the forward propagation is

Viterbi decoding. Here, a best sequence of hidden variables is found that maximizes the probability of
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observations. Viterbi decoding in both HMMs and LDSs was tackled in Chapter 3. We now formulate

a Viterbi decoding procedure for mixed-state DBNs.

Consider a pair (xt; st). Given a sequence of observations it is plausible that only one sequence of

pairs (xt; st), 0 � t < T may have generated the observations. Assume that there are S such pairs at

time t that maximize the probability of observations up to time t. At the next time instance t + 1,

one can arrive from any of the original S pairs by applying a set of S possible new inputs d0; : : : ; dS�1.

The goal of a Viterbi update is to �nd the best transition from any of S previous states (xt; st) to a

particular new state (xT+1; st+1) that maximizes the probability of all observations. Namely, we choose

the transition as the best one if

cost(xt+1; st+1) =

min
(xt;st)

fcost(xt; st)

+
1

2
log jOj+

1

2

�
yt+1 � Cxt+1jt

�0
O�1

�
yt+1 � Cxt+1jt

�
� logPr(st+1jst)g ; (5.15)

where O denotes the variance of the innovation yt+1�Cxt+1jt as de�ned in Section 3.5. Of course, LDS

state prediction xt+1jt is a function of (xt; st) and st+1.
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In addition to keeping track of the cost, one also needs to keep a record of best transitions as well

as pairs (xt; st) and variances associated with xt which are necessary for Kalman update equations of

xt+1jt.

5.5 Learning

The task of learning the parameters of the mixed-state DBNs can be formulated as the problem of

maximum likelihood learning in general Bayesian networks. This enables us to use the optimization

approach of generalized EM presented in Section 2.3.

Assuming a knowledge of the su�cient statistics obtained in the inference phase, it is easy to show that

the following parameter update equations result from the maximization step of the GEM (see Appendix C

for detailed derivations):

Anew =

 
T�1X
t=1



xtx

0
t�1

�
�Dnew



stx

0
t�1

�! T�1X
t=1



xt�1x

0
t�1

�!�1

(5.16)

Qnew =
1

T � 1

T�1X
t=1

(hxtx
0
ti �Anew hxt�1x

0
ti �Dnew hstx

0
ti) (5.17)

Dnew =

 
T�1X
t=1

hxts
0
ti �Anew hxt�1s

0
ti

! 
T�1X
t=1

hsts
0
ti

!�1

(5.18)

Cnew =

 
T�1X
t=0

yt hx
0
ti

! 
T�1X
t=0

hxtx
0
ti

!�1

(5.19)

Rnew =
1

T

T�1X
t=0

�
yty

t
t � Cnew hxti y

0
t

�
(5.20)

Pnew =

 
T�1X
t=1



sts

0
t�1

�!
diag

 
T�1X
t=1

hsti

!�1

(5.21)

�0;new = hs0i : (5.22)

All the variable statistics are, as required by GEM, evaluated in the network with the parameter values

before update. Some of the equations, notably the ones for A and D parameters (Equations 5.16

and 5.18) are coupled and have to be solved simultaneously. This is, however, not a problem since the

solution can be formulated easily as a solution to the system of two linear equations with two matrix

unknowns. Finally, it is obvious that the above equations represent a generalization of the parameter

update equations of zero-input LDS models derived in Section 3.5.

In the case of variational inference, the parameter learning equations retain the same form. However,

computation becomes signi�cantly simpler given the fact that coupled statistics such as hxts0ti can be
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factored in the form of hxti hs0ti. Therefore, a formula for the update of D, for instance, becomes

Dnew =

 
T�1X
t=1

hxti hsti
0 �Anew hxt�1i hsti

0

! 
T�1X
t=1

hsts
0
ti

!�1

:
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CHAPTER 6

COUPLED HIDDEN MARKOV MODELS

6.1 Introduction

Many processes in nature are products of complex interactions among a multitude of simple processes.

Each of the simple processes may have its realization in a di�erent observation domain or modality. The

task is often to infer some information about the underlying global process.

Consider, for instance, the production of the human speech. The air streaming through the vocal

tract gets modulated by di�erent motions and changes of vocal cords, nasal cavity, and lips. We perceive

the sound signal using our auditory apparatus. However, it is well known that a part of the spoken

information is transmitted visually, through images of lip movements. In the absence of reliable audio

information, such as in a noisy vehicle, humans often supplement the process of sound disambiguation

using visual appearance of the accompanying lip movements. Thus, we unconsciously use the fact that

the sound production is a result of lip motion correlated with many other processes and that by collecting

information from di�erent observation domains (audio signal and visual images) we can acquire a better

estimate of the underlying word concept associated with that sound. Hence, for instance, if one could

measure the physical motion of vocal cords one could possibly attain an even better estimate of the

uttered word.

As a second example, consider the process of natural human communication. Elements of such

communication are not only the speech but also hand, arm, and body movements, also known as gestures.

When a person tries to describe a position of some object in space he or she often points at the object and

simultaneously utters: \Look at that thing!" Clearly, the information about the object's position can

be transmitted much more e�ectively if one uses both the spoken language and the gestures. However,

the production dynamics of the hand motion and the vocal tract changes are obviously di�erent even

though they are somewhat correlated.
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Figure 6.1 Block diagram of two coupled systems with di�erent internal dynamics. In this example,
each system is modeled as a hidden Markov model.

The above two examples motivate consideration of models of such physical systems that consist of a

number of subprocesses with di�erent but coupled internal dynamics and possibly di�erent observation

domains. A block diagram depiction of such a system is presented in Figure 6.1.

The rest of this chapter considers one such model of coupled systems. We assume that the coupling is

on the level of discrete-valued concepts while the observations may belong to either discrete or continuous

valued spaces. Such models are denoted coupled hidden Markov models. They are also often referred

to as multimodal hidden Markov models, indicating that their observations as well as dynamics come

from di�erent observation/production modalities. Coupled DBN-like models were �rst considered for

multimodal information fusion by Hennecke and Stork [80] in their Boltzmann zipper architecture. Later

on, Brand [81, 75] has proposed a coupled HMM topology that coincides with the very basic coupled

DBN topology utilized in this chapter.

6.2 Model

Coupled hidden Markov models are a generalization of the concept of ordinary HMMs introduced

in Section 3.6. Namely, each state of one subsystem (or modality) at time t depends on the states of all

other subsystems (or modalities) at time t � 1. This dependency structure is depicted as a particular

dynamic Bayesian network topology in Figure 6.2.

More precisely, we de�ne an M -modal coupled HMM of length T as the following joint pdf:

P (S(0); : : : ;S(M�1);Y(0); : : : ;Y(M�1)) =
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Figure 6.2 Dependency graph of a two-subsystem (bimodal) coupled hidden Markov model.

T�1Y
t=1

M�1Y
n=0

Pr(s
(n)
t js

(0)
t�1; : : : ; s

(M�1)
t�1 )Pr(s

(n)
t )

T�1Y
t=0

M�1Y
n=0

Pr(y
(n)
t js

(n)
t ) (6.1)

or, equivalently, its Hamiltonian:

H(S(0); : : : ;S(M�1);Y(0); : : : ;Y(M�1)) =

�
T�1X
t=1

M�1X
n=0

logPr(s
(n)
t js

(0)
t�1; : : : ; s

(M�1)
t�1 )�

M�1X
n=0

logPr(s
(n)
0 )

�
T�1X
t=0

M�1X
n=0

logPr(y
(n)
t js

(n)
t ); (6.2)

where S(n) = fs(n)0 ; : : : ; s
(n)
T�1g denotes a sequence of hidden state variables of modality n, and Y(n) =

fy
(n)
0 ; : : : ; y

(n)
T�1g denotes a sequence of observations of the same modality. The state space of modality

n is assumed to be of dimension N(n), i.e., s
(n)
t 2 fe0; : : : ; eN(n)�1g.

Note that the following assumption holds in this model:

The state of any modality n at time t is (conditionally) independent of the states of all

other modalities at the same time t given that the states of all modalities are known at time

t� 1.

This is reected in the form of the transition pdf in Equation 6.2:

Pr(s
(0)
t ; : : : ; s

(M�1)
t js(0)t�1; : : : ; s

(M�1)
t�1 ) =

M�1Y
n=0

Pr(s
(n)
t js

(0)
t�1; : : : ; s

(M�1)
t�1 ):
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At �rst glance it may seem that this assumption constricts the generality of my model. However, it

will become clear as the model is developed further in subsequent sections that, in fact, the assumption

yields a very general coupled DBN framework. To construct computationally e�cient models we will

need to further simplify the structure of this pdf.

6.3 Inference

Even though the topology of a coupled HMM resembles that of an ordinary HMM (in fact, it contains

ordinary HMMs as its subgraphs), the inference schemes of ordinary HMMs are not directly applicable

to the coupled ones. Of course, one could attempt to apply the classical forward-backward algorithm

of Chapter 3. However, the complexity of formulas will increase signi�cantly. We therefore attempt to

�nd other (preferably simpler) ways of solving the inference problem.

For sake of completeness, we now state the inference problem of coupled HMMs. The task is to �nd

the conditional pdf over the space of hidden states given some �xed sequence of observations of length

T of all M modalities:

Pr(S(0); : : : ;S(M�1)jY(0); : : : ;Y(M�1)):

In the following sections we will exploit speci�c structures of the transition pdfs of coupled HMM to

come up with computationally appealing solutions to the inference problem.

6.3.1 Naive inference

Naive inference is, in general, not a computationally e�cient approach to inference in coupled HMMs.

However, it is important to study this approach given that it is often the �rst to come to mind.

Consider the dependency graph of a general coupled HMM in Figure 6.2. Instead of looking at M

hidden states at time t as the states of M individual modalities, one can group them into an M -tuple

�t = (s
(0)
t ; : : : ; s

(M�1)
t ). The model can now be formulated in terms of the new, complex variable �t.

This is depicted in Figure 6.3. Namely, we perform the Cartesian product of all sub-HMMs' (HMMs

corresponding to individual modalities) state spaces to construct the new, complex state space. This

new state space has dimension of N = N(0) � : : : �N(M � 1), i.e., �� 2 fe0; : : : ; eN�1g. The hidden state

transition pdf of the new model becomes

Pr(�tj�t�1) =
M�1Y
n=0

Pr(s
(n)
t js

(0)
t�1; : : : ; s

(M�1)
t�1 ): (6.3)

Clearly, P of Equation 6.3 can be described as a table (matrix) of N �N entries. A similar Cartesian

product argument can be used to construct the space of observations  t = (y
(0)
t ; : : : ; y

(M�1)
t ).

As is clear now, we have reduced the M -modal coupled HMM to an ordinary but complex HMM.

The drawback is that the state and observation space dimensions have increased exponentially! Assume

66



0 0 0 0 0

0 0 0 0 0

y
0

y
1

y
2

y
3

y
4

1 1 1 1 1

1 1 1 1 1

0s s s s3 4

0 1 2 3 4

1 2 s

yy y y y

s0 s1 s2 s3 s4σ σ σ σ σ0 1 2 3 4

0 3 41 2

0 1 2 3 4ψ ψ ψ ψ

σσσσσ

ψ

Figure 6.3 Naive approach to inference in coupled HMMs. The M -modal coupled HMM is reduced to
an ordinary HMM whose hidden states �t live in the Cartesian product of M state spaces of the original
modal HMMs. The dimension of this new state space is N = N(0) � : : : �N(M � 1).

for a moment that each sub-HMM had a state space of the same dimension Ns. Complex HMM will

have the state space of dimension NM
s . This in turn means an increase in computational complexity of

inference (see Section 3.6). Furthermore, the number of parameters (or, more precisely, their dimension)

has increased, too (state transition table P has N2M
s entries). This can seriously a�ect the model's

parameter learning phase. It will require a tremendous increase in the number of training data samples

to achieve the same parameter estimate accuracies.

In the above discussion, however, we have disregarded the fact that often sub-HMM transition matri-

ces Pr(s
(n)
t js

(0)
t�1; : : : ; s

(M�1)
t�1 ) have a sparse structure. Namely, only a few of all possible transitions are

actually allowed. Bringing that into the consideration of complexity (dimensionality) of the HMM en-

ables pruning-out a substantial number of states that can never be visited. Hence, the e�ective dimension

Neff of the state space of our complex HMM will become Neff � N .

6.3.2 Variational inference

The previous section concluded that naive reduction of the coupled HMM inference problem to that

of a complex, ordinary HMM carries with an increase in computational complexity and model parameter

dimensions.

To deal with these problems we now consider an alternative, approximate inference approach. As

the approximation tool, we use the variational inference technique of Section 2.2.3. However, direct

application of variational inference to the coupled model de�ned in Equation 6.2 will not yield any

signi�cant reduction in the model complexity. We therefore consider the following factorized form of
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state transitional pdf:

Pr(s
(n)
t js

(0)
t�1; : : : ; s

(M�1)
t�1 ) =

M�1X
m=0

w(n)(m)Pr(s
(n)
t js

(m)
t�1); (6.4)

where w(n)(m) de�nes an intermodal weight with which modality m inuences modality n. The weights

sum up to one according to
M�1X
m=0

w(n)(m) = 1; n = 0; : : : ;M � 1: (6.5)

Hence, the transition pdf for each modeM is a combination ofM \bimodal" transition pdfs Pr(s
(n)
t js

(m)
t�1)

(\bimodal" here denotes that the pdfs link only the state variables of two modalities n and m out of

M possible variables). This factorization yields a total of M �M state transition pdfs and M �M

weights w�(�) that completely describe the coupled model's state transition pdf. Suppose again that

each modality's state space has the same dimension Ns. The coupled model's transition pdf then has a

total of M2N2
s +M2 parameters compared to NM

s of the naive approach in Section 6.3.1.

Given the above factorization we next consider three special cases of this model. In the �rst case we

assume that the weights w are �xed a priori. The second case relaxes this assumption and adaptively

determines the weights based on some prior model. Finally, the third model allows the adaptation of

time-varying weights wt.

6.3.2.1 Fixed weights model

Consider the case of the state transition pdf factorization of Equation 6.4 where all intermodal weights

w(n)(m); n;m = 0; : : : ;M � 1 are �xed. The model's joint pdf (or, equivalently, its Hamiltonian) can

then be written as

H =

�
T�1X
t=1

M�1X
n=0

M�1X
m=0

w(n)(m)s
(n)
t

0 logP (n;m)s
(m)
t�1 �

M�1X
n=0

s
(n)
0

0 log�
(n)
0

�
T�1X
t=0

M�1X
n=0

logPr(y
(n)
t js

(n)
t ): (6.6)

The network associated with this factorization is shown in Figure 6.4. In accordance with the variational

inference technique of Section 2.2.3, we choose the approximating distribution Q to be

HQ =

�
T�1X
t=1

M�1X
n=0

w(n)(n)s
(n)
t

0 logP (n;n)s
(n)
t�1 �

M�1X
n=0

s
(n)
0

0 log�
(n)
0

�
T�1X
t=0

M�1X
n=0

logPr(y
(n)
t js

(n)
t )
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Figure 6.4 Dependency graph of a coupled HMM with �xed intermodal weights.

�
T�1X
t=0

M�1X
n=0

s
(n)
t

0 log q
(n)
t : (6.7)

This approximating network Q is depicted in Figure 6.5. Variational parameters of the approximating

network Q are denoted by q
(n)
t (m) and are represented as parameter vectors q

(n)
t . The choice of the

approximating topology seems straightforward: by decoupling the sub-HMMs we allow for easy inference

in each of the submodels.

The task of variational inference is to �nd the \best" values of q, the ones that minimize the KL-

distance between P and Q (see Section 2.2.3). Using Theorem 1, after a couple of intermediate steps

(detailed in Appendix D) one arrives at the following optimal estimates of the variational parameters:

log q(l)� =

8>>>>>><
>>>>>>:

PM�1
m=0;m 6=l w

(m)(l) logP (m;l)0
D
s
(m)
1

E
� = 0PM�1

m=0;m 6=l w
(l)(m) logP (l;m)

D
s
(m)
��1

E
+
PM�1

m=0;m6=lw
(m)(l) logP (m;l)0

D
s
(m)
�+1

E
0 < � < T � 1PM�1

m=0;m 6=l w
(l)(m) logP (l;m)

D
s
(m)
T�2

E
� = T � 1:

(6.8)

The log of a variational parameter of modality l at time � is a linear combination of the state estimates

of all other modalities 0; : : : ; l � 1; l + 1; : : : ;M � 1 at the neighboring time instances � � 1 and � + 1.

One can also think of q
(l)
� as the \probability"1 of state s

(l)
� given the states of all other modalities. This

\probability" is proportional to a weighted geometric mean (with weights w(l)(m)) of the probabilities

of states of other modalities (s
(m)
��1 and s

(m)
�+1) mapped into the modality l (with mappings P (m;l)0 and

1Strictly speaking q
(l)
� is not a (discrete) pdf since

PN(l)�1

m=0
6= 1.
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Figure 6.5 Factorization of �xed-weight coupled HMM.

P (l;m)):

q(l)� =

M�1Y
m=0;m6=l

�
P (l;m)

D
s
(m)
��1

E�w(l)(m)

�
M�1Y

m=0;m6=l

�
P (m;l)0

D
s
(m)
�+1

E�w(m)(l)

:

This fact is also �guratively depicted in Figure 6.6. For instance, consider the following brief example of

a bimodal coupled HMM. Assuming that in the absence of noise the model performs well, its transition

pdf parameters are given as

P (1;1) =

2
4 0:8 0:1

0:2 0:9

3
5 P (1;2) =

2
4 0:9 0:4 0:1

0:1 0:6 0:9

3
5

P (2;1) =

2
6664

0:5 0:3

0:3 0:1

0:2 0:6

3
7775 P (2;2) =

2
6664

0:9 0:2 0

0:1 0:7 0:1

0 0:1 0:9

3
7775

:

Let the state distribution of modality 1 at time � be biased towards state one:

D
s(1)�

E
=

2
4 0:9

0:1

3
5 :

One then may expect that with high likelihood the observation in modality 1 at the next instance � +1

will again come from state 1. However, the observation in modality 1 at that time instance is ambiguous
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Figure 6.6 Result of variational inference on one sub-HMM of the approximating distribution Q. Infer-
ence in the submodel is performed by assuming that all other submodels have �xed and known hidden
states.

because of noise, say

Pr(y
(1)
�+1js

(1)
�+1) =

2
4 0:35

0:65

3
5 :

Based only on modality 1, the likelihood of its states at � + 1 then becomes

D
s
(1)
�+1

E
= cdiag(Pr(y

(1)
�+1js

(1)
�+1))P

(1;1) hs� i =

2
4 0:59

0:41

3
5 ;

very close to a uniform distribution. On the other hand, assume that the state estimates in the second

modality are less ambiguous:

D
s(2)�

E
=

2
6664

0:9

0:1

0

3
7775 ;

and

D
s
(2)
�+2

E
=

2
6664

0:7

0:2

0:1

3
7775 :

If the inuence of the two modalities is measured by the weight factor w(1)(2) = 0:3, the state distribution

estimate of modality 1 with the inuence of modality 2 now becomes

D
s
(1)
�+1

E
=

2
4 0:73

0:27

3
5 ;

clearly better then the unimodal estimate itself.

In summary, to perform inference in the approximating networkQ one applies the following algorithm:
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Figure 6.7 Figurative representation of the variational inference algorithm for coupled HMMs. At
each iteration, state variables of all submodels except one are assumed constant (subscript \old"). The
remaining submodels' states are then re-estimated (snew) as functions of the observations y and the �xed
states of other models sold.

Cost = 1;

Initialize


s(m)

�
for all m = 0; : : : ;M � 1;

while (error > maxError) f

for ( l = 0 :M � 1 ) f

Update q
(l)
� from

D
s
(m)
�

E
;m = 0; : : : ; l � 1; l+ 1; : : : ;M � 1 using Equation 6.8;

Estimate
D
s
(l)
�

E
from y

(l)
� and q

(l)
� using ordinary HMM inference;

g

Update Cost using Equation 6.9;

error  ( oldCost - Cost ) / Cost;

g

As a consequence of the employed factorization, we have

D
s(n)� s(m)

�
0
E
=
D
s(n)�

ED
s(m)
�

E
0; 8m 6= n:

The idea behind the inference algorithm is depicted in Figure 6.7.

The cost of inference at each step is given as

hH �HQi � logZQ =

T�1X
t=1

M�1X
n=0

2
4� M�1X

m=0;m6=n

w(n)(m)tr
n
logP (n;m)

D
s
(m)
t�1s

(n)
t

0
Eo

+
D
s
(n)
t

E
0 log q

(n)
t

3
5
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+

M�1X
n=0

D
s
(n)
0

E
0 log q

(n)
0 �

M�1X
n=0

logZ
(n)
Q ; (6.9)

where logZ
(n)
Q represents the log likelihood of \observations" y

(n)
� and q

(n)
� in the nth sub-HMM.

6.3.2.2 Adaptive intermodal weights model

The previous section considered a factorized pdf model with the known intermodal weight factors

w. However, we did not answer the question of how to determine the weights. In the following model

we assume that the weights are random variables distributed according to some known probability

distribution.

Consider the intermodal weight w(n)(m). This weight describes the inuence of modality m on

modality n. De�ne the following discrete pdf on weights w(n)(�):

Pr(w(n) = m) =W (n)(m);

where
PM�1

m=0 W
(n)(m) = 1; 8n = 0; : : : ;M � 1. The joint pdf of the coupled network then becomes:

H = �
T�1X
t=1

M�1X
n=0

M�1X
m=0

w(n)(m)s
(n)
t

0 logP (n;m)s
(m)
t�1 �

M�1X
n=0

s
(n)
0

0 log�
(n)
0

�
T�1X
t=0

M�1X
n=0

logPr(y
(n)
t js

(n)
t )

�(T � 1)
M�1X
n=0

M�1X
m=0

w(n)(m) logW (n)(m): (6.10)

The di�erence between Equation 6.6 and Equation 6.10 is in the additional factor w(�)(�) logW (�)(�) that

accounts for uncertainty in w. The dependency graph of this pdf is shown in Figure 6.8.

Similar to the factorization of Section 6.3.2.1, we introduce a new factorized approximating distribu-

tion model:

HQ = �
T�1X
t=1

M�1X
n=0

c(n)s
(n)
t

0 logP (n;n)s
(n)
t�1 �

M�1X
n=0

s
(n)
0

0 log�
(n)
0

�
T�1X
t=0

M�1X
n=0

logPr(y
(n)
t js

(n)
t )

�
T�1X
t=0

M�1X
n=0

s
(n)
t

0 log q
(n)
t

�(T � 1)

M�1X
n=0

M�1X
m=0

w(n)(m) logW (n)(m)

�(T � 1)

M�1X
n=0

M�1X
m=0

w(n)(m) log r(n)(m): (6.11)
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Figure 6.8 Dependency graph of a coupled HMM with adaptive intermodal weights.

The Bayesian network equivalent of this pdf is shown in Figure 6.9. The original network has been

decoupled into M independent and overparameterized HMMs and M independent W-networks. This is

achieved by introducing variational parameters q, c, and r, as shown in Figure 6.9.

Following now-familiar steps of the variational inference approach (see Section 2.2.3) leads to the

optimal values of variational parameters:

log q(l)� =

8>>>>>><
>>>>>>:

PM�1
m=0;m6=l



w(m)(l)

�
logP (m;l)0

D
s
(m)
1

E
� = 0PM�1

m=0;m6=l



w(l)(m)

�
logP (l;m)

D
s
(m)
��1

E
+
PM�1

m=0;m 6=l



w(m)(l)

�
logP (m;l)0

D
s
(m)
�+1

E
0 < � < T � 1PM�1

m=0;m6=l



w(l)(m)

�
logP (l;m)

D
s
(m)
T�2

E
� = T � 1

(6.12)

c(l) =
D
w(l)(l)

E
(6.13)

log r(l)(k) =
1

T � 1

T�1X
t=1

tr
nD
s
(l)
t s

(k)
t�1

0
E
0 logP (l;k)

o
: (6.14)

All equations hold for k; l = 0; : : : ;M � 1. Intermediate steps of this derivation can be found in Ap-

pendix D.2.

Equation 6.12 for variational parameter q resembles Equation 6.8 that de�nes the parameter in the

case of �xed weights. Here, however, the weights are substituted with their probabilities (or, equivalently,

expectations h�i). Additional equations (6.13 and 6.14) are nonetheless necessary to account for the

stochastic nature of the weights. In particular, Equation 6.14 compounds the existence of a \correlation"

between modalities k and l. The term \correlation" here loosely refers to the similarity of two state

distributions
D
s
(l)
t

E
and

D
s
(k)
t�1

E
with respect to the mapping logP (l;k). The higher the similarity, the

higher the r will be.
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Figure 6.9 Factorized joint pdf for variational inference of a coupled HMM with adaptive intermodal
weights. Factorization yields four independent networks that isolate the four sets of hidden variables of
the original model.

Given this approximation, the inference algorithm becomes

Cost = 1;

Initialize
D
s
(m)
�

E
and



w(m)

�
for all m = 0; : : : ;M � 1;

while (error > maxError) f

for ( l = 0 :M � 1 ) f

Update q
(l)
� from

D
s
(m)
�

E
;m = 0; : : : ; l � 1; l+ 1; : : : ;M � 1 and



w(m)

�
using Equation 6.12;

Estimate
D
s
(l)
�

E
from y

(l)
� , c(l), and q

(l)
� using ordinary HMM inference on

subnet Q
(l)
q ;

g

Update log r(�) from
D
s
(�)
�

E
using Equation 6.14;

Estimate w(�) from r(�) and W on subnet Q
(�)
w ;

Update c(�) from w(�)(�) using Equation 6.13;

Update Cost using Equation 6.15;
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error  ( oldCost - Cost ) / Cost;

g

The cost term can be found as

hH �HQi � logZQ =

T�1X
t=1

M�1X
n=0

2
4� M�1X

m=0;m 6=n

D
w(n)(m)

E
tr
n
logP (n;m)

D
s
(m)
t�1s

(n)
t

0
Eo

+
D
s
(n)
t

E
0 log q

(n)
t

3
5

+

M�1X
n=0

D
s
(n)
0

E
0 log q

(n)
0

+

M�1X
n=0

D
w(n)

E
0 log r(n)

�
M�1X
n=0

logZ
(n)
Qq
�

M�1X
n=0

logZ
(n)
Qw
; (6.15)

where ZQq
(n) denotes the \probability" of observations in the nth sub-HMM and Z

(n)
Qw

represents the

\probability" of observations in the nth W-network.

6.3.2.3 Adaptive time-varying intermodal weights model

The adaptive time-varying weights model lifts the restriction of equal intermodal weights at all

time instances. By allowing the time variation of weight factors, the model allows for variable levels

of interaction between modalities at di�erent time instances. However, in order to make this model

complete one needs to de�ne the type of temporal dependencies imposed on intermodal weights. We

choose the hidden Markov model framework to describe the evolution of weights in time.

Formally, the joint pdf model is de�ned by the following Hamiltonian:

H = �
T�1X
t=1

M�1X
n=0

M�1X
m=0

w
(n)
t (m)s

(n)
t

0 logP (n;m)s
(m)
t�1 �

M�1X
n=0

s
(n)
0

0 log pi
(n)
0

�
T�1X
t=0

M�1X
n=0

logPr(y
(n)
t js

(n)
t )

�
T�1X
t=1

M�1X
n=0

w
(n)
t

0 logW (n)w
(n)
t�1 �

M�1X
n=0

w
(n)
0

0 log �
(n)
0 : (6.16)

The dynamic Bayesian network equivalent of this pdf is depicted in Figure 6.10. Parameters W (n) now

describe transition pdfs for HMMs of intermodal weight factors, and �
(n)
0 is the initial pdf of intermodal

weights of modality n. This pdf is assumed to be �xed to �
(n)
0 (k) = �(n� k), i.e., it is always the case

that w
(n)
0 (k) = �(n� k).

The complexity of this model clearly calls for an approximate inference. Following the nature of the

rest of this work, we choose the variational inference approach of Section 2.2.3. Accordingly, we need to
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Figure 6.10 Dependency graph of a coupled HMM with time-varying adaptive weights. Evolution of
intermodal factors is modeled as another dynamic Bayesian network.

de�ne a class of parameterized (and factorized) distributions. The following Bayesian network topology

naturally comes to mind:

HQ = �
T�1X
t=1

X
n = 0M�1c

(n)
t s

(n)
t

0 logPr(n; n)s
(n)
t�1 �

M�1X
n=0

s
(n)
0

0 log pi
(n)
0

�
T�1X
t=0

M�1X
n=0

logPr(y
(n)
t js

(n)
t )
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t=0

M�1X
n=0

s
(n)
t

0 log q
(n)
t

�
T�1X
t=1

M�1X
n=0

w
(n)
t

0 logW (n)w
(n)
t�1 �

T�1X
t=1

M�1X
n=0

w
(n)
t log r

(n)
t

�
M�1X
n=0

w
(n)
0

0 log �
(n)
0 : (6.17)

Figure 6.11 depicts the dependency graph of this network. Similar to the time-invariant model, we

factorized the original pdf into M HMM-like pdfs for each state-space modality (denoted in Figure 6.11

by Q
(�)
q ) and M HMM-like pdfs for temporal modeling of intermodal weights (Q

(�)
w in Figure 6.11).

Variational parameters q, c, and r are introduced for that purpose.
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Figure 6.11 Factorized approximation of a coupled HMM with time-varying adaptive intermodal
weights. Network consists of four independent subnets related to the four sets of hidden variables
of the original model.

The application of Theorem 1 then yields optimal values of variational parameters that minimize the

KL distance between the original pdf P and the approximating pdf Q:

log q(l)� =

8>>>>>><
>>>>>>:

PM�1
m=0;m 6=l

D
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(m)
1 (l)

E
logP (m;l)0

D
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E
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w
(l)
� (m)

E
logP (l;m)

D
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��1

E
+
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m=0;m6=l

D
w
(m)
�+1(l)

E
logP (m;l)0

D
s
(m)
�+1

E
0 < � < T � 1PM�1

m=0;m 6=l

D
w
(l)
T�1(m)

E
logP (l;m)

D
s
(m)
T�2

E
� = T � 1

(6.18)

c(l)� =
D
w(l)
� (l)

E
(6.19)

log r(l)� (k) = tr
nD
s(l)� s

(k)
��1

0
E
0 logP (l;k)

o
(6.20)

with l; k = 0; : : : ;M � 1.

The form and the steps of the approximate inference algorithm are identical to those of the time-

invariant models in Section 6.3.2.2. The di�erence is in the parameter update rules, which now follow

Equations 6.18 to 6.20. Moreover, to estimate
D
w
(�)
�

E
one needs to apply ordinary HMM inference in

the appropriate Q
(�)
w network. In summary, the algorithm takes the following form:
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Cost = 1;

Initialize
D
s
(m)
�

E
and

D
w
(m)
�

E
for all m = 0; : : : ;M � 1;

while (error > maxError) f

for ( l = 0 :M � 1 ) f

Update q
(l)
� from

D
s
(m)
�

E
;m = 0; : : : ; l � 1; l+ 1; : : : ;M � 1 and

D
w
(m)
�

E
using Equation 6.18;

Estimate
D
s
(l)
�

E
from y

(l)
� , c

(l)
� , and q

(l)
� using ordinary HMM inference

on subnet Q
(l)
q ;

g

Update log r
(�)
� from

D
s
(�)
�

E
using Equation 6.20;

Estimate w
(�)
� from r

(�)
� using ordinary HMM inference on subnets Q

(�)
w ;

Update c
(�)
� from w

(�)
� (�) using Equation 6.19;

Update Cost using Equation 6.21;

error  ( oldCost - Cost ) / Cost;

g

The cost term can be found as

hH �HQi � logZQ =
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0 log q
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0 log q
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0 log r
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�
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logZ
(n)
Qq
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M�1X
n=0

logZ
(n)
Qw
; (6.21)

where ZQq
(n) denotes, as before, the \probability" of observations in the nth sub-HMM, and Z

(n)
Qw

represents the \probability" of observations in the nth Qw subnet.

6.4 Learning

Parameter estimation of coupled HMMs can be formulated as the problem of maximum likelihood

learning in general Bayesian networks. This again leads one to the optimization approach of generalized

EM of Section 2.3.

The inference phase in coupled HMMs, as discussed in the previous sections, provides one with

su�cient statistics to update the model parameters. In this section, however, we discuss only the update

equations for hidden state parameters of the models in question. Update equations for parameters of
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the observation pdfs follow exactly those derived for ordinary HMMs. Thus, depending on whether the

observation pdfs are discrete, Gaussian, or mixture-of-Gaussians, for instance, the parameter equations

will be exactly the same as those in Section 3.6. Of course, there will be M times as many equations as

there were for a single HMM.

Consider �rst the case of a general coupled HMM as de�ned in Section 6.2. Each of M transition

probability pdfs Pr(s
(n)
t js

(0)
t�1; : : : ; s

(M�1)
t�1 ); n = 0; : : : ;M�1 can be viewed as a table with cells indexed by

M + 1 dimensional indices (corresponding to instances of s
(n)
t ; s

(0)
t�1; : : : ; s

(M�1)
t�1 ). There are N(n)N(0) �

: : : � N(M � 1) entries in each table. Let us denote the table entry indexed by (i0; i1; : : : ; iM ), in 2

f0; : : : ; N(n)� 1g as

Pr(s
(n)
t = ei0 ; s

(0)
t�1 = ei1 ; : : : ; s

(M�1)
t�1 = eiM ):

Thus, this is the probability that modality n is in state i0 at time t (or, equivalently, s
(n)
t = ei0) given

that the states of modalities 0 through M � 1 at time t� 1 are i1 through iM , respectively.

Application of the maximization step of the GEM algorithm leads to the following transition pdf

update equation:

Pr(s
(n)
t = ei0 ; s

(0)
t�1 = ei1 ; : : : ; s

(M�1)
t�1 = eiM ) =PT�1

t=1

D
s
(n)
t = ei0 ; s

(0)
t�1 = ei1 ; : : : ; s

(M�1)
t�1 = eiM

E
PT�1
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PN(n)
in=0

D
s
(n)
t = ei0 ; s

(0)
t�1 = ei1 ; : : : ; s

(M�1)
t�1 = eiM

E : (6.22)

Note that terms such as
D
s
(n)
t = ei0 ; s

(0)
t�1 = ei1 ; : : : ; s

(M�1)
t�1 = eiM

E
actually represent joint probabilities

Pr(s
(n)
t = ei0 ; s

(0)
t�1 = ei1 ; : : : ; s

(M�1)
t�1 = eiM ). Equation 6.22 is in fact a generalization of the transition

pdf update equation of ordinary HMMs (see Section 3.6).

However, recall that all our coupled HMM topologies except for the naive one assume the factorization

of state transition pdfs according to Equation 6.4. Now, the parameter update equation in 6.22 assumes

a simpler form:

P (n;m)(i; j) =

PT�1
t=1

D
s
(n)
t (i)s

(m)
t�1(j)

ED
w
(n)
t (m)

E
PT�1

t=1

D
s
(m)
t (j)

ED
w
(n)
t (m)

E : (6.23)

Recall that P (n;m)(i; j) is the (i; j)th entry of the (n;m)th state transition matrix, i.e., the probability

that state j in modality m is followed by state i in modality n at the next time instance. The termD
s
(n)
t (i)

E
denotes the ith component of vector

D
s
(n)
t

E
, i.e., the probability that at time t the state of the

nth modality is i. Note that the joint term
D
s
(n)
t (i)s

(m)
t�1(j)

E
can be decoupled as

D
s
(n)
t (i)

ED
s
(m)
t�1(j)

E
when n 6= m. This is because the expectations are taken with respect to the factorized Q distribution

where all modalities are mutually independent.

Besides the state transition pdfs, updates are also needed for parameters of the distributions associ-

ated with intermodal weights (in the cases when they are assumed to be stochastic). We �rst consider
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the case of adaptive but time-invariant weights (see Section 6.3.2.2). It is easy to show that, in this case,

the parameter W has the following update:

W (n)(m) =
D
w(n)(m)

E
(6.24)

for n;m = 0; : : : ;M � 1.

In the case of time-varying weight factors, the update equation for parameters of the intermodal

weight HMM distributions follows the ordinary HMM parameter updates. Namely,

W (n)(i; j) =

PT�1
t=1

D
w
(n)
t = i; w

(n)
t�1 = j

E
PT�1

t=1

D
w
(n)
t�1 = j

E ; (6.25)

where n; i; j = 0; : : : ;M � 1. As mentioned in Section 6.3.2.3, the initial weight distribution is �xed to

�
(n)
0 (k) = �(n� k)

for n; k = 0; : : : ;M � 1.
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CHAPTER 7

ANALYSIS AND RECOGNITION OF HAND GESTURES

USING DYNAMIC BAYESIAN NETWORKS

7.1 Introduction

Hand gestures are a means of nonverbal interaction among people. They range from the simple

acts of using the hand to point at and move objects, to the more complex gestures that express our

feelings and allow us to communicate ideas with others. To exploit the use of gestures in HCI, it is

necessary to provide the means by which they can be interpreted by computers. The HCI interpretation

of gestures requires that dynamic and/or static con�gurations of the human hand, arm, and even other

parts of the human body be measurable by the machine. First attempts to solve this problem resulted

in mechanical devices that directly measure hand and/or arm joint angles and spatial position. This

group is best represented by the so-called glove-based devices [11, 12, 13, 14, 15]. Glove-based gestural

interfaces require the user to wear a cumbersome device and generally carry a load of cables that connect

the device to a computer. This hinders the ease and naturalness with which the user can interact with

the computer-controlled environment.

Potentially, any awkwardness in using gloves and other devices can be overcome by video-based

noncontact interaction techniques. These approaches use video cameras and computer vision techniques

to interpret gestures, as depicted in Figure 7.1. The nonobstructiveness of the resulting vision-based

interface is particularly relevant to HCI.

7.1.1 De�nition of gestures

Outside the HCI framework, hand gestures cannot be easily de�ned. Webster's dictionary, for exam-

ple, de�nes gestures as \the use of motions of the limbs or body as a means of expression; a movement

usually of the body or limbs that expresses or emphasizes an idea, sentiment, or attitude." Psycho-

logical and social studies tend to narrow this broad de�nition and relate it to human expression and
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Figure 7.1 Vision-based gesture interpretation system. Visual images of gestures are acquired by one
or more video cameras. They are processed in the analysis stage where the gesture model parameters
are estimated. Using the estimated parameters and some higher-level knowledge, the observed gestures
are inferred in the recognition stage.

social interaction [82]. However, in the domain of HCI the notion of gestures is somewhat di�erent. In

a computer-controlled environment, one wants to use the human hand both to mimic the natural use of

the hand as a manipulator and to communicate to the machine (control of computer/machine functions

through gestures).

Hand gestures are a means of communication, similar to spoken language. The production and

perception of gestures can thus be described using a model commonly found in the �eld of spoken

language recognition. An interpretation of this model, applied to gestures, is depicted in Figure 7.2.

According to the model, gestures originate as a gesturer's mental concept, possibly in conjunction with

other modalities such as speech. They are expressed through the motion of arms and hands. Observers

perceive gestures as streams of visual images which they interpret using their knowledge of those gestures.

Thus, the production and perception model of gestures has usually been summarized in the following
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Figure 7.2 Production and perception of gestures. Hand gestures originate as a mental gestural concept
G, are expressed (Thg) through arm and hand motion H , and are perceived (Tvh) as visual images V .

form:

H = ThgG; (7.1)

V = TvhH; (7.2)

V = Tvh (ThgG) = TvgG: (7.3)

Transformations T: can be viewed as di�erent models: Thg is a model of hand or arm motion given

gestural concept G, Tvh is a model of visual images given hand or arm motion H , and Tvg describes

how visual images V are formed given some gesture G. The models are parametric, with the parameters

belonging to their respective parameter spacesMT: . In light of this notation, one can say that the aim

of visual interpretation of hand gestures is to infer gestures G from their visual images V using a suitable

gesture model Tvg , or

Ĝ = T i
vgV; (7.4)

where T i
vg denotes some (\inverse") mapping from space V to space G.

7.1.2 Gestural taxonomy

Several alternative taxonomies have been suggested in the literature that deal with psychological

aspects of gestures. Kendon [82] distinguishes \autonomous gestures" (that occur independently of

speech) from \gesticulation" (gestures that occur in association with speech). McNeill and Levy [79]

recognize three groups of gestures: iconic and metaphoric gestures, and \beats." The taxonomy that

seems most appropriate within the context of HCI was recently developed by Quek [83, 28]. A slightly

modi�ed version of the taxonomy is given in Figure 7.3. All hand/arm movements are �rst classi�ed

into two major classes: gestures and unintentional movements. Unintentional movements are those

hand/arm movements that do not convey any meaningful information. Gestures themselves can have
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Figure 7.3 A taxonomy of hand gestures for HCI. Meaningful gestures are di�erentiated from unin-
tentional movements. Gestures used for manipulation (examination) of objects are separated from the
gestures which possess inherent communicational character.

two modalities: communicative and manipulative. Manipulative gestures are the ones used to act on

objects in an environment (object movement, rotation, etc.). Communicative gestures, on the other hand,

have an inherent communicational purpose. In a natural environment they are usually accompanied by

speech. Communicative gestures can be either acts or symbols. Symbols are those gestures that have a

linguistic role. They symbolize some referential action (for instance, circular motion of index �nger may

be a sign for a wheel) or are used as modalizers, often of speech (\Look at that wing!" and a modalizing

gesture specifying that the wing is vibrating, for example). In the HCI context, symbols are, so far,

one of the most commonly used gestures since they can often be represented by di�erent static hand

postures. Finally, acts are gestures that are directly related to the interpretation of the movement itself.

Such movements are classi�ed as either mimetic (which imitate some actions) or deictic (pointing acts).

7.1.3 Temporal modeling of gestures

Because human gestures are dynamic processes, it is important to consider their temporal charac-

teristics. This may help in the temporal segmentation of gestures from other unintentional hand/arm

movements. In terms of our general de�nition of hand gestures, this is equivalent to determining the

so-called gesture interval. Surprisingly, psychological studies are fairly consistent about the temporal

nature of hand gestures. Kendon [82] calls this interval a \gesture phrase." It has been established that

three phases make a gesture: preparation, nucleus (peak or stroke [79]), and retraction. Preparation

phase consists of a preparatory movement that sets the hand in motion from some resting position. The

nucleus of a gesture has some \de�nite form and enhanced dynamic qualities" [82]. Finally, the hand

either returns to the resting position or repositions for the new gesture phase. An exception to this rule

is the so called \beats" (gestures related to the rhythmic structure of the speech).
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The above discussion can guide one in the process of temporal discrimination of gestures. The

three temporal phases are distinguishable through the general hand/arm motion: \preparation" and

\retraction" are characterized by rapid change in position of the hand, while the \stroke," in general,

exhibits relatively slower but sometimes more periodic hand motion.

7.1.4 Spatial modeling of gestures

Gestures are observed as hand and arm movements, actions in 3D space. Hence, the description of

gestures also involves the characterization of their spatial properties. In an HCI domain this charac-

terization has so far been mainly inuenced by the kind of application for which the gestural interface

is intended. For example, some applications require simple models (like static image templates of the

human hand in TV set control in [84]), while some others require more sophisticated ones (3D hand

models used in [85, 86], for instance).

If one considers the gesture production and perception model suggested in Section 7.1.1, two possible

approaches to gesture modeling may become obvious. One approach may be to try to infer gestures

directly from the visual images observed, as stated by Equation 7.4. This approach has often been

used to model gestures, and is usually denoted as appearance-based modeling. Such models include

deformable templates [87, 88, 89, 90, 91], point distribution models [92], whole visual images of hands,

arms, or body [93, 94, 95, 96], and silhouettes and contours [97, 98, 99, 100]. Another approach may

result if the intermediate tool for gesture production is considered: the human hand and arm. In this

case, a two-step modeling process may be followed:

Ĥ = T i
vhV (7.5)

Ĝ = T i
hgĤ: (7.6)

In other words, one can �rst infer the motion and/or posture of the hand and arm Ĥ from their visual

images V using some mapping T i
vh. Following that, the inference of gestures Ĝ from the motion and

posture model states Ĥ is achieved with a di�erent mapping T i
hg. Models which follow this approach

are known as articulated models [86, 101, 102, 103, 104, 105, 106, 107, 108, 109].

7.1.5 Gesture analysis

The goal of the gesture analysis phase is to estimate the states of the gesture model H using mea-

surements from the video images V of a human operator engaged in HCI. However, direct mapping of

the images of hand or arm actions to the states of the hand or arm model using some mapping T i
vh would

usually be extremely complex. For instance, one would have to infer what the hand driving torque is,

given a sequence of images of the hand in motion. In practice it is more convenient to introduce an

intermediate step to this process. This is depicted in Figure 7.4. Namely,
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Figure 7.4 Analysis of hand gestures. In the analysis stage, features F are extracted from visual images
V . Model states P̂ are estimated and possibly predicted.

F̂ = T i
vfV (7.7)

Ĥ = T i
fhF̂ : (7.8)

This means that two generally sequential tasks are involved in the analysis (see Figure 7.4). The �rst

task involves \detection" or extraction of relevant image features from the raw image or image sequence.

The second task uses these image features for computation of the model states and, consequently, the

driving input.

7.1.5.1 Feature detection

The feature detection stage is concerned with detection of features which are used for estimating

of the states of a chosen gestural model. In the detection process it is �rst necessary to localize the

gesturer. Once the gesturer is localized, the desired set of features can be detected.

Two types of cues are most frequently used in the localization process: color cues and motion cues.

Color cues are applicable because of the characteristic color signature of the human skin. The color

signature is usually more distinctive and less sensitive to illumination changes in the hue-saturation space

than in the standard (camera capture) RGB color space. Most of the color segmentation techniques rely

on histogram matching [110] or employ a simple look-up table approach [111, 112] based on the training

data for the skin and possibly its surrounding areas. However, the skin color matching schemes can

often be unreliable in changing illumination or background conditions. Hence, many gesture recognition

applications resort to the use of uniquely colored gloves or markers on hands/�ngers [109, 113, 114, 115,

116]. The use of colored gloves makes it possible to localize the hand e�ciently and even in real-time,

but imposes an obvious restriction on the user and the interface setup.

Motion cues are also commonly applied to hand/arm localization, and they are used in conjunction

with certain assumptions about the gesturer. For example, in the HCI context, it is usually the case that

only one person gestures at any given time. Moreover, the gesturer is usually stationary with respect to

the (also stationary) background. Hence, the main component of motion in the visual image is usually

the motion of the arm/hand of the gesturer and can thus be used to localize her/him.
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7.1.5.2 Model state estimation

Computation of the model states is the last stage of gesture analysis phase. In gesture recognition

systems, this is followed by the recognition stage, as shown in Figure 7.4. For hand or arm tracking sys-

tems, however, the state computation stage usually produces the �nal output. The type of computation

used depends on both the model type and the features that were selected.

In the case of 3D hand models, two sets of states are used|angular (joint angles) and linear (phalan-

gae lengths and palm dimensions). The estimation of these kinematic states from the detected features

is a complex and cumbersome task. Under certain assumptions the problem of �nding the hand joint

angles can be reduced to an inverse kinematics problem. Inverse kinematic problems are in general

ill-posed, allow for multiple solutions, and are computationally expensive. Approximate solutions are

therefore found in most case [85, 86, 110]. Once the hand model states are initially estimated, the state

estimates can be updated using some kind of prediction/smoothing scheme. A commonly used scheme

is Kalman �ltering and prediction. Three major drawbacks are associated with the 3D hand model

state estimation approach: the obvious computational complexity of the inverse kinematics, occlusions

of features (the �ngertips), and changes in scale that are di�cult to adapt to. Finally, it should be

pointed out that knowledge of the exact hand posture states seem unnecessary for the recognition of

communicative gestures [83], although the exact role of 3D hand parameters in gesture recognition is

not clear.

In the case of appearance-based models of the hand or arm the estimation of the states of such models

usually coincides with the estimation of some compact description of the image or image sequence.

Appearance models based on the visual images per se are often used to describe gestural actions: key

frames [96], eigen-images [117], motion history images [93], etc. Deformable 2D template-based models

are also often employed as the spatial models of hand and arm contours or even the whole human

body [88, 89, 90, 92]. Finally, a wide class of appearance models uses silhouettes or gray-scale images

of the hands. In such cases the model states attempt to capture a description of the shape of the hand

while being relatively simple [26, 97, 98, 100, 118]. Like the other state estimation tasks, the reported

estimation of motion states are usually based on simple Newtonian dynamics models and Kalman-based

predictors.

7.1.6 Gesture recognition

Gesture recognition is the phase in which the data analyzed from the visual images of gestures is

recognized as a speci�c gesture. This is �guratively depicted in Figure 7.5. In accordance to my previous

notation, this can be formally written as

Ĝ = T i
hgĤ: (7.9)
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Figure 7.5 Recognition of hand gestures. States of the physical modelH are used to infer the underlying
gestural concept G.

Namely, the estimates of the physical model's states are used in some way to infer what the gestural

concept is. For example, if one has the measurements of the hand and arm joint angles in time, one may

be able to �gure out what the gesture was that produced those measurements.

In the cases of certain gestural types, such as particular iconic gestures or certain symbols of American

sign language (ASL), it may be su�cient to focus on static postures of the hand [119, 120]. However, in

general, gestures are spatio-temporal actions. Because gestural actions possess this temporal context, one

needs to resort to recognition of temporal patterns. Fortunately, a wide variety of techniques is available

from the �eld of time series analysis. The main requirement for any pattern recognition technique used

in gestural classi�cation is that it be time-instance invariant and time-scale invariant. For example, a

clapping gesture should be recognized as such whether it is performed slowly or quickly, now or in ten

minutes. Again, numerous temporal pattern recognition techniques deal with such problems, and perhaps

the most prominent of these emerges from the �eld of automatic speech recognition (ASR). Because both

speech and gestures are means of natural human communication, an analogy drawn between them and

computational tools developed for ASR is frequently used in gesture recognition. In particular, hidden

Markov models and their di�erent avors have almost been the sole successful carriers of the gesture

recognition task [26, 98, 100, 121].

7.2 General Dynamic Bayesian Network Gesture Model

Let me once again consider the model of gestural actions discussed in Section 7.1.1. Recall that in

this model a gestural concept drives, through some physical process, the physical system of the human

arm and hand. An observer perceives gestures by somehow measuring (visually or mechanically) the

motion and posture of the gesturer's hands. This model can be graphically presented in the form of a

system block diagram of Figure 7.6. In this diagram the state of some gestural concept is denoted by

c. The state of the physical system is similarly denoted by x. Depending on the model of the physical

system, this state could, for instance, represent values of the hand joint angles or maybe linear hand

velocities. The inuence of concept on the physical system is represented as some driving input u. Again,
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Figure 7.6 Block diagram of a gesture production system. Gestural concept c drives a physical system
through an input u. System states x evolve according to some dynamics and are partially observed
through intermediate features f as observations y.

depending on what model of the system one has in mind this could be, for example, the joint torque or

linear force that causes hands to move. Finally, from an observer's point of view the hand motion gets

perceived as an observation y. If one visually observes the hand motion through a camera CCD, y can

then denote the gray or color levels of pixels in an image. What one really wants to know, however,

is where the hand and arm are in 3D space. Hence, one represents that information as features f and

attempts to infer them from observations y. Alternatively, one may be able to measure directly the

spatial position of the moving hand (using a magnetic tracker device, for example). In that case, the

observation y and the feature f may jointly represent a single noisy measurement of the hand position.

This representation of the gestural model is quite generic. At this point, however, we make the

crucial assumption. We propose that

Any gestural action can be modeled as a dynamic Bayesian network.

In particular, we introduce a DBN topology depicted in Figure 7.7. This means that any gestural action

of duration T observed through a set of observations Y = fy0; : : : ; yT�1g is generated by a pdf de�ned

over the space of gestural concept states C = fc0; : : : ; cT�1g and physical (hand and arm) system states

X = fx0; : : : ; xT�1g. Formally,

Pr(C;X ;Y) = Pr(c0)
T�1Y
t=1

Pr(ctjct�1)Pr(xtjxt�1; ct)
T�1Y
t=0

Pr(ytjxt): (7.10)

In this formulation we have eliminated, without loss of generality and for sake of simplicity, the input

variables u and the feature variables f .

Again, without loss of generality we assume that

� concept states c are discrete valued,

� states x of the physical system are continuous valued, and

� observations y are continuous or discrete valued.

Why do we impose those restrictions? Clearly, the common notion of a concept implies a set of discrete

symbols. For instance, each gesture has three distinct gestural phases (see Section 7.1.3). Physical
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Figure 7.7 Dynamic Bayesian network representation of a gestural action.

systems, on the other hand, are \allowed" to take on a continuum of values. The hand, for example, can

be positioned in any point of a portion of the 3D space, and hand velocity can pretty much take on any

value within a certain range. Similarly, pixel intensity can in principle assume any value, even though

it is usually quantized to an 8-bit range.

However, more important than the above restrictions are the ones imposed on the structure of state

transitions in the model. We therefore assume that

� the gestural concept of every gestural action can be modeled as a Markov chain, and

� the dynamics of hand and arm can be modeled as a linear (or linearized) dynamic system (LDS).

The assumption regarding concept dynamics is plausible and in line with the usual concept models, but

the linear dynamics assumption for the hand/arm motion model is potentially a problem. Section 7.1.4

surveyed a number of common, as we called them, spatial models of hand and arm motion. The most

physically correct is the articulated dynamical model. However, this model is extremely complex and

nonlinear. Moreover, it is questionable whether this model is at all useful for gesture recognition [83].

Therefore, let us say tentatively that the LDS assumption for the physical hand model is feasible.
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Figure 7.8 Dynamic Bayesian network representation of a directly observable gestural action, such as
the ones measured by the computer mouse.

7.3 Directly Observed Hand Gestures

The notion of directly observed hand motion assumes that, as mentioned before, the observations

carry noisy measurements of the spatial position of the human hand. Such cases occur, for instance, when

the hand position is tracked with magnetic or ultra-sonic trackers or with a simple computer mouse. In

those case there is, in general, no need to consider some intermediate features f as part of a gestural

action model. Hence, the general hand gesture model from Section 7.2 reduces to the dependency graph

of Figure 7.8. Recall that we encountered this dependency topology earlier. In fact, the above network,

together with the Markov chain concept and LDS physical system state assumptions, was denoted the

mixed-state HMM in Chapter 5. Hence, to analyze and recognize directly observed hand gestures one can

immediately apply the inference, decoding, and learning techniques of mixed-state HMMs in Chapter 5.

In the sections to follow we discuss in more detail peculiarities of mixed-state HMM techniques applied

to hand gesture analysis and recognition.

7.3.1 Dynamics of hand motion

In my modeling of hand motion we impose simpli�ed Newtonian dynamics on every hand- or arm-

related measurement. Namely,

The hand motion is modeled as the relative kinematic motion of a point-mass particle

with piecewise constant acceleration, and with respect to some suitable stationary origin.
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Figure 7.9 Hand position is measured relative to some stationary origin. In this case hand position
(yx; yy) is de�ned with respect to head.

Note the fact that the motion is relative. For instance, in the case of global arm motion the head (or

one shoulder) can be chosen as the stationary origins. In the case of computer mouse strokes, on the

other hand, the motion is inherently relative to some workspace.

From the above assumptions follow the motion state equations

_x(t) = v(t); and (7.11)

_v(t) = u(t) + nv(t); (7.12)

where x(t) = [xx(t)xy(t)]
0 is the relative position of the hand with respect to the head, v(t) is a linear

hand velocity, and u(t) a piece-wise constant input (see Figure 7.9). Roughly, one can think of u(t)

as a mass-normalized force excerpted on the hand. Of course, the piece-wise constancy comes in place

because we believe that, as stated in Section 7.2, the motion is driven by a concept which is discrete-

valued. The term nv(t) represents a noise process that models uncertainty in input u(t). Assume that

the noise process is i.i.d. Gaussian with zero mean and constant variance q:

nv(t) � N (0; q):

Furthermore, assume that only position of the hand is observable:

y(t) = x(t) + nx(t);

where nx denotes the observation noise and y(t) is the vector of observed hand position y(t) = [yx(t)yy(t)]
0.

Again, assume that this noise process is i.i.d. Gaussian, with zero mean and variance r:

nx(t) � N (0; r):
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Discretization in time is obtained using zero-order hold approximation when uniformly sampling with

period Ts (see [76], for example). This yields the set of state-space equations

xt+1 = Axt +But + nt

yt = Cxt + wt; (7.13)

where xt is now the vector of positions and velocities sampled at time t � Ts:

xt =

2
4 x(t � Ts)

v(t � Ts)

3
5

ut and yt are sampled versions of u(t) and y(t), respectively, nt is the state noise term obtained by

sampling the piecewise constant process noise nv(t), and wt is sampled from the noise process nx(t).

It is easy to show that in the case of uncorrelated spatial noise processes1 the state matrices for each

spatial coordinate are

A =

2
4 1 Ts

0 1

3
5 = A(Ts) (7.14)

B =

2
4 1

2T
2
s

Ts

3
5 = B(Ts) (7.15)

C =
h
1 0

i
(7.16)

Q =

2
4 1

3T
3
s

1
2T

2
s

1
2T

2
s Ts

3
5 q = Q(Ts) q (7.17)

R = r; (7.18)

where the last two terms denote variances of the sampled noise processes

vt � N (0; Q);

and

wt � N (0; R):

Also recall from Chapter 5 that the piecewise constant input ut is modeled as ut = Dct, with a matrix

of Nc input levels D = [d0 : : : dNc�1] and Markov chain dynamics of concept ct.

7.3.2 Inference

Exact inference of the hidden concept and system states in the proposed DBN gesture model is in

general intractable (see Chapter 5). In Chapter 5 we discussed several inference techniques that may be

used to achieve tractable yet approximate inference. All those techniques, such as variational inference,

are readily and directly applicable to this gesture model.

1\Uncorrelated spatial noise process" implies that the noise variance q is diagonal.
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7.3.3 Parameter learning

Parameter learning of the directly observed hand gesture model follows directly from the generalized

EM learning framework of mixed-state HMMs in Chapter 5. However, as a consequence of the Newtonian

dynamics model, certain di�erences emerge in this speci�c case.

One exception is clearly that the linear system transition matrix A and observation matrix C are

known and need not be estimated. More important di�erences, however, surface in the update equations

for the LDS state covariance Q and input levels D. It is easy to show that the maximization step of the

GEM algorithm yields the following parameter update equation for each spatial coordinate:

D =
�
B0Q(T )�1B

��1
B0Q(T )�1

 
T�1X
t=1

h(xt � Axt�1)ct
0i

! 
T�1X
t=1

hctct
0i

!�1

(7.19)

q =
1

2(T � 1)
tr

(
Q(T )�1

T�1X
t=1

h(xt �Axt�1)(xt �Axt�1)
0i �BD hct(xt �Axt�1)

0i

)
: (7.20)

Seemingly, the update equation for the input levels D shows dependency on the state noise variance Q.

However, in the case of noise uncorrelated across the spatial coordinates, D becomes dependent only on

the �xed value Q(T ) and not q itself, as Equation 7.19 clearly shows. Update equations for all other

parameters, including the observation noise variance r and concept transition probability distribution P

remain as given in Section 5.5.

7.3.4 Initialization

Approximate inference as well as learning of model parameters are iterative schemes. Namely, they

involve recursive minimization of the cost function that is only guaranteed not to increase the cost

(see Section 2.3). In order to attain \best" estimates of hidden variable statistics and model parameters

one needs a \good" initial estimate of those desired quantities.

Variational inference of a model's su�cient statistics relies on an initial estimate of either the concept

state hcti or the LDS state hxti (see Chapter 5). Given that Newtonian dynamics are imposed on the

motion of the hand, a good initial estimate of the LDS state can be obtained by modeling the concept-

driven LDS as a one order higher noise driven system with adaptive noise variance [76]. Recall the

LDS state formulation of Equation 7.13. Assuming that input ut is constant and contains uncorrelated

additive white noise nu;t we can write2
4 xt+1

ut+1

3
5 =

2
4 A B

0 I

3
5
2
4 xt

ut

3
5+

2
4 nt

nu;t

3
5
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h
C 0

i24 xt

ut

3
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The input noise variance var(nu;t) is (at least initially) unknown. One therefore selects some initial

variance value based on general knowledge of the hand's maneuverability. Given a set of observations Y

one can apply Kalman �ltering using the extended LDS formulation. At each step of Kalman �ltering,

however, one needs to adaptively adjust the unknown input noise variance so that the �lter \stays on

track." The adjustment criterion is usually based on the requirement that the normalized innovations

squared remain ((yt � C hxti)
0
var(xt)

�1
(yt � C hxti)) within certain bounds [76]. Hence, at each forward

Kalman propagation step the noise covariance is adjusted until the criterion is met. As the result of

this procedure one obtains estimates of hxti and huti that can be used to initialize variational inference

recursions (see Section 5.3.2).

Initialization of the model's parameters is based on the initial estimates of the su�cient statistics

hxti and hcti. An estimate of hxti can be obtained using the outlined procedure. On the other hand, an

initial estimate of hcti is usually designed based on the general concept model. For instance, assume that

the concept model is chosen to be \left-to-right" [5]. Assume furthermore that the observed data is of

duration T . Then hcti is initially assumed to be such that each concept state \covers" a nonoverlapping

temporal segment of duration T=Nc, where Nc is the total number of concept states. One can then

immediately apply the update equations (7.20 and 7.19) to obtain an initial set of parameter estimates.

7.3.5 Experiment: Analysis and recognition of hand gestures acquired by

the computer mouse

The computer mouse has long been used as a means of simple human{computer interaction. Its basic

point-and-click function has become an integral part of any graphical user interface (GUI). However,

many applications could bene�t from more than just a simple click or pointing. For instance, in a text

editor application one may use one mouse motion to indicate a word deletion and another one to specify

that a word needs to be highlighted. While interacting with a street map displayed on a computer

screen it may be useful to specify the orientation of the map by drawing an arrow symbol in the desired

direction. Finally, one can use a mouse or another pointing device (such as stylus) to write letters or

symbols that are to be recognized by the machine. Applications like this have also been around for several

years but are currently gaining large popularity due to advent of personal digital assistants (PDAs) with

handwriting recognition capabilities. To achieve on-line written symbol recognition a plethora of simple

and complex pattern recognition techniques has been employed ranging from neural networks [122] to

hidden Markov models [123].

To demonstrate the feasibility of DBN-based gesture recognition we next consider a simple case of

computer mouse{acquired hand movements. Our experiment considered four classes of symbols produced

by the human hand moving a computer mouse: arrow, erase, circle, and wiggle symbols. Examples of
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Figure 7.10 Examples of four symbols produced by computer mouse motions (left-to-right, top-to-
bottom): \arrow," \erase," \circle," and \wiggle."

symbol classes are shown in Figure 7.10. The task in question was to model each of the four symbols

with a combination of LDS and HMM. The LDS part, as outlined before, models dynamics of the mouse

motion. The HMM, on the other hand, models the driving force (concept) that causes the motion. In the

previous sections we discussed a complete, coupled model of LDS and HMM employed for this purpose,

namely a mixed-state HMM. The model can be used to jointly infer the states of the driving concept

ct and the states of the LDS xt using mixed-state HMM variational inference (see Chapter 5). In this

experiment we contrasted this coupled model to two decoupled models:

� Decoupled adapted LDS and HMM. Namely, the LDS is adapted to \best" model the dynamics of

the mouse motion of each symbol when the driving force ut is assumed to be quasi-constant with

additive white noise ut = ut�1 + nu;t (see Section 7.3.4). The HMM is consequently employed to

model the quasi-constant driving force ut inferred by the LDS.

� Decoupled �xed LDS and HMM. In this case, the LDS is assumed to be �xed for all four symbols.

In particular, we estimate the driving force using the numerical gradient approximation ut =

grad(grad(xt)), where grad(xt) = xt+1�xt�1

2�Ts
. Again, an HMM is used to model the estimated

driving force.

All three model classes are depicted in Figure 7.11.

For each of the three models we assumed the same concept state spaces. The number of concept

states was determined to be related to the number of strokes necessary to produce each symbol. Thus,

the concept model of the arrow symbol had eight states (two times four strokes), erase had six states,

circle four states, and wiggle six. Furthermore, each concept state transition was limited to left-to-right

transition: from current state the concept could only transition back to itself or to one other not-yet-
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Figure 7.11 Three ways of modeling mouse-acquired symbols. From top to bottom: completely coupled
LDS and HMM (mixed-state HMM), decoupled adapted LDS and HMM, and decoupled �xed LDS and
HMM.

visited state. This implies that the concept probability transition matrix had nonzero elements only on

the main diagonal and the �rst subdiagonal. In the two decoupled symbol models we chose to model

the observations ut of the concept models as variable mean Gaussian processes with identical variances

at every concept state.2

The data set consisted of 136 examples of each symbol (thus, a total of 4� 136 examples). Symbols

were acquired from normalized3 mouse movements sampled at 100-ms intervals. To test the models'

performance we used the rotation error counting method [124]. Rotation error counting is a cross-

validation training/testing procedure, a trade-o� between the leave-one-out (LOO) method and the

holdout error counting. Let the complete data set consist of N examples. The data set is partitioned

into K disjoint subsets of cardinality N=K. Each model is then trained on K � 1 subsets and tested

on the remaining one data subset. The total error count for every model is formed as the average

misclassi�cation frequency over theN=K test sessions. In our experiments we chose 1=4 partition (K = 4)

of each symbol's data set. Therefore, for every symbol in each one of the four training sessions a symbol

model was trained on 3� 36 data samples and tested on 36 positive and 3� 136 negative examples. For

each test sample and each symbol model the likelihood of the sample was appropriately obtained. For

instance, in the case of mixed-state HMM modeled symbols, variational inference (see Chapter 5) with

2Even though it is a usual practice to allow the variance to vary from concept state to concept state, for sake of
compatibility with the �xed variance mixed-state HMM we decided to keep the other HMMs' observation variances �xed.

3Symbol were scaled to [0; 1]� [0; 1] unit area and directionally aligned.
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Figure 7.12 Estimates of concept states for \arrow" symbol. Top graph depicts the symbol and the
estimated driving force. Bottom graph shows estimates of concept states obtained using variational
inference (solid line) and Viterbi decoding (dashed line).

relative error threshold of :001 was used to estimate the lower bound on likelihood (upper bound on cost).

One example of mixed-state HMM-based decoding of \arrow" symbol is shown in Figure 7.12. For a

gradient-based LDS/HMM model, likelihood was obtained using standard HMM inference of Chapter 3.

Test error rates are summarized in Table 7.1 and shown in Figure 7.13. Each error estimate

was obtained as a biased MAP estimate of a Bernoulli probability in a binomial distribution of error

counts [125]. As is obvious from Table 7.1 and Figure 7.13, none of the three models (mixed-state HMM,

decoupled adapted LDS/HMM, and decoupled �xed LDS/HMM) performs signi�cantly better than the

other two.

A second set of experiments was aimed at testing the model's classi�cation performance under addi-

tive white noise corruption. Each example from the data set was corrupted by i.i.d. zero-mean Gaussian

noise with standard deviation of 0.01. Examples of noisy symbols are shown in Figure 7.14. Previously

trained models of the four symbols were now tested on the noisy data, in the same fashion as in the

noise-free case. Classi�cation results are summarized in Table 7.2 and Figure 7.15. Table 7.2 and Fig-

ure 7.15 in this case indicate that, with 95 percent con�dence (p = :05), completely coupled mixed-state

HMM models had signi�cantly better performance than both �xed and adapted decoupled LDS/HMM
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Figure 7.13 Classi�cation error estimates of four mouse-acquired symbols. Shown are 95 percent
con�dence intervals for error counts. All three models (mixed, LDS/HMM, and grad/HMM) performed
equally well in all cases but one. (\circle"). (5 - mixed-state HMM, 2 - �xed LDS/HMM, 3 - adapted
LDS/HMM.)

Table 7.1 Error estimates [%] and error estimate variances ([%]) for mouse symbol classi�cation.
Model Arrow Erase Circle Wiggle

mixed-state HMM 4.73 4.55 0.18 0.36
(0.92) (0.90) (0.26) (0.31)

gradient �xed 3.64 5.09 2.55 0.73
LDS/HMM (0.81) (0.95) (0.69) (0.40)

decoupled adapted 3.09 2.91 0.18 0.36
LDS/HMM (0.76) (0.74) (0.26) (0.31)

Table 7.2 Error estimates [%] and error estimate variances ([%]) for noisy mouse symbol classi�cation.
Model Arrow Erase Circle Wiggle

mixed-state HMM 4.36 4.36 0.18 0.18
(0.89) (0.89) (0.26) (0.26)

gradient �xed 9.45 14.55 14.73 8.18
LDS/HMM (1.25) (1.51) (1.51) (1.18)

decoupled adapted 24.91 25.09 0.55 35.64
LDS/HMM (1.84) (1.85) (0.36) (2.04)
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Figure 7.14 Samples of four mouse-acquired symbols corrupted by additive zero-mean white noise with
standard deviation of 0.01.
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Figure 7.15 Classi�cation error estimates of four noisy mouse symbols. Shown are 95 percent con�-
dence intervals for error counts. Unlike the noise-free case, the coupled mixed-state HMM performed
signi�cantly better than the decoupled adapted and �xed LDS/HMM models. (5 - mixed-state HMM,
2 - �xed LDS/HMM, 3 - adapted LDS/HMM.)
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classi�ers (with the exception of mixed-state and �xed LDS \circle" models). Of course, the trade-o� is

as always in increased computational complexity of the mixed-state models. Note, however, that on the

average the iterative scheme of the mixed-state models required only about 5 to 10 iterations to converge

(:001 relative change threshold).

7.4 Visually Observed Hand Gestures

In the previous section a model of directly measured hand motion was adopted. It is necessary now

to consider how one can, from visual images of the human hand, infer the underlying gestural action.

As mentioned in Section 7.1.5.1, most hand detection approaches rely on the unique appearance of the

human skin in color space, as well as on the hand shape. We extend that approach and present it in the

light of the DBN gesture model.

In the LDS gesture model of the previous section it was assumed that every observation corresponds,

unambiguously, to a hand position at some given time. In other words, the observation could not have

come from anything else but the hand position measurement. However, when a hand motion is observed

visually, it is always the case that a number of pixels in any \hand" image does not belong to the hand.

Such pixels could belong to a more or less stationary background or to other moving objects in the scene.

Yet such measurements are present in our observation sets, and the simple LDS model must be modi�ed

to reect this fact.

Recall from Chapter 4 the formulation of the mixture of DBN model. The model was formulated to

deal with the case of multiple measurements with probabilistic model associations. The analogy between

the mixture model and the one of visual hand tracking now becomes clear. Thus, we employ a modi�ed

mixture of DBN model for the visual tracking of the human hand.

Consider the case of the human hand moving according to the planar dynamics in Section 7.3. Sup-

pose that this motion is observed by a stationary camera. Furthermore, assume that the background

against which the hand is moving consists of stationary or almost stationary objects. A DBN model of a

gestural action in such a scene can then be represented by the dependency diagram in Figure 7.16. The

dependency graph in Figure 7.16 implies that every gestural action of duration T in a stationary back-

ground scene spatially sampled on M pixels can be thought of as generated by the following factorized

pdf:

P = Pr(c0)

T�1Y
t=1

Pr(ctjct�1)Pr(x
(f)
t jx

(f)
t�1; ct) (7.21)

�
T�1Y
t=0

Pr(x
(b)
t ) (7.22)
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Figure 7.16 Bayesian network model for visual tracking of the human hand in scenes with stationary
backgrounds. For convenience, only one time slice of observations and switching states is shown.

�
T�1Y
t=0

M�1Y
m=0

Pr(s
(m)
t ) (7.23)

�
T�1Y
t=0

M�1Y
m=0

Pr(y
(m)
t jx

(f)
t ; x

(b)
t ; s

(m)
t ; ct): (7.24)

The main factors of the pdf correspond to

� linear dynamics of hand motion x(f) controlled by concept c (Equation 7.21),

� stationary dynamics of background x(b) (Equation 7.22), and

� observation model in image space y with associations controlled by association state s (Equa-

tions 7.23 and 7.24).

First consider the observation space and the observation association and generation model. From Fig-

ure 7.16 it follows that observation y
(m)
t at time t corresponds to the mth pixel in the observation image.
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Assuming that each pixel possesses position and color attributes one arrives at

y
(m)
t =

2
4 position of mth pixel at time t

color of mth pixel at time t

3
5 =

2
4 �

(m)
t

&
(m)
t

3
5 :

Thus, �
(m)
t is the spatial coordinate of the m-th image pixel, �

(m)
t = [�

(m)
x;t �

(m)
y;t ]

0. Similarly, &
(m)
t is the

color coordinate of the same pixel.

Furthermore, each pixel m in the image corresponds to either the hand or the background. The

association of every pixel m with the hand or the background models is determined by the association

state s
(m)
t . Namely, s

(m)
t can take on values from the binary set ff; bg according to distribution Pr(s

(m)
t ),

indicating whether the mth pixel belongs to the hand (f) or the background (b). Since every pixel can be

associated with only one image object at any time t, we impose the following observation pdf structure:

Pr(y
(m)
t jx

(f)
t ; x

(b)
t ; s

(m)
t = f; ct) = Pr(y

(m)
t jx

(f)
t ; ct)

Pr(y
(m)
t jx(f)t ; x

(b)
t ; s

(m)
t = b; ct) = Pr(y

(m)
t jx(b)t ; ct):

In particular, we choose the following pdf observation models:

Hand/foreground model. Assume that distribution of spatial and color attributes in an image

of the human hand is conditionally independent4 and has the following structure:

Pr(y
(m)
t jx(f)t ; ct) = Pr(�

(m)
t ; &

(m)
t jx(f)t ; ct)

= Pr(�
(m)
t jx(f)t ; ct)Pr(&

(m)
t jx(f)t ):

Then, planar projection of the human hand at each time t has a Gaussian distribution in the image

coordinate space with mean x
(f)
t and one of Nc possible variances

5:

Pr(�
(m)
t jx(f)t ; ct = i) = (2�)�

1
2Ny jRij

� 1
2 exp

��
�
(m)
t � Cx(f)t

�0
Ri

�1
�
�
(m)
t � Cx(f)t

��
; (7.25)

where, as before, C = [1 0] and i = 0; : : : ; Nc�1 is the concept state index. Distribution of hand color is

modeled by either Gaussian or discrete tabularized pdf P
(f)

color
in the color space of choice. Each pixel's

color attribute is i.i.d. according to

Pr(&
(m)
t jx

(f)
t ) = P

(f)

color
(&
(m)
t ):

Note that we assume stationary distribution of color attributes. Joint distribution of every pixel attribute

(position and color) is now

Pr(y
(m)
t jx

(f)
t ; ct = i) = (2�)�

1
2Ny jRij

� 1
2 exp

��
�
(m)
t � Cx(f)t

�0
Ri

�1
�
�
(m)
t � Cx

(f)
t

��
P
(f)

color
(&
(m)
t ):

4Conditional independence of spatial and color attributes is assumed for convenience. However, a more realistic model
may need to eliminate this assumption.

5This assertion is not completely correct. Given that an image coordinate space is bounded by image edges one needs to

scale the Gaussian distribution by a normalization factor. The factor should guarantee that
R
�
(m)
t

2image
Pr(�

(m)
t ) d�

(m)
t =

1. For image sizes much larger than the hand size and hand positions su�ciently far from image edges the normalization
factor is very close to one.
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Background model. Spatial distribution of background image pixels is uniform over the observation

set (image)

Pr(�
(m)
t jx

(b)
t ) =

1

M
:

The color of every background pixel is i.i.d. with a Gaussian or discrete tabularized pdf P
(b)

color
:

Pr(&
(m)
t jx

(b)
t ) = P

(b)

color
(&
(m)
t ):

Joint conditional distribution of background image pixel attributes is

Pr(y
(m)
t jx(b)t ) = Pr(�

(m)
t ; &

(m)
t jx(b)t ) =

1

M
P
(b)

color
(&
(m)
t );

as the color and spatial pixel attributes are again assumed conditionally independent.

Data association model. The data association pdf is assumed to be identical for all image pixels

m at any �xed time instance, i.e.,

Pr(s
(m)
t = i) = P

(t)
assoc(i); i 2 ff; bg;

where P
(t)
assoc is the probability association table at time t. Therefore, for instance, the a priori probability

of pixel m belonging to the hand at time t is P
(t)
assoc(f).

Hand dynamics. What remains to be de�ned is the model of hand dynamics driven by gestural

concepts. As before, assume that this model coincides with that of Section 7.3, a model derived from

the mixed-state HMM model of Chapter 5. Hence,

Pr(x
(f)
t jx

(f)
t�1; ct) = N (Axt�1 +BDct; Q);

and

Pr(ctjct�1) = ct
0 Pconcept ct�1;

where Pconcept denotes the concept state transition matrix.

7.4.1 Inference

The ultimate goal of gestural action modeling is the ability to infer the underlying gestural concept

from a sequence of images of a moving hand. To achieve this goal one needs to e�ciently handle the

concept as well as the physical system state inference and decoding tasks. Given that the proposed model

of gestural actions combines two intractable DBN models (mixture of DBNs and mixed-state DBN), it

clearly follows that inference in the visually observed gestural action model is also not tractable. Thus,

one needs to consider an approximate tractable inference solution.

Chapters 4 and 5 approached the intractable inference problems using structured variational infer-

ence. Therefore, it only makes sense to combine the two approximate solutions obtained in the above two
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Figure 7.17 Factorized Bayesian network model for visual tracking of the human hand in scenes with
stationary backgrounds. For convenience, only one time slice of observations and switching states is
shown.

cases in order to solve my present inference problem. Combination of variational inference factorizations

of Chapters 4 and 5 is trivial. Figure 7.17 now depicts the total factorization of joint pdf P . More

precisely, factorized pdf Q can be written as

Q = Pr(c0)
T�1Y
t=1

Pr(ctjct�1)
T�1Y
t=0

Pr(�tjct)Pr(�tjct (7.26)

�Pr(x
(f)
0 ju0)

T�1Y
t=1

Pr(x
(f)
t jx

(f)
t�1; ut) (7.27)

�
T�1Y
t=0

Pr(x
(b)
t ) (7.28)

�
T�1Y
t=0

M�1Y
m=0

Pr(y
(m)
t jx(f)t ; x

(b)
t ; 

(m)
t ; �t) (7.29)

�
T�1Y
t=0

M�1Y
m=0

Pr(s
(m)
t )Pr(�

(m)
t js(m)

t ): (7.30)
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Recall from the previous section the forms of speci�c pdfs that constitute the model. Given those

particular forms, with the help of variational parameter derivations from Chapters 4 and 5, one easily

arrives at the following set of �xed-point equations that yield optimal values of variational parameters

�; �; , and �.

�(i)� = exp

�
(Bdi)

0Q�1

�D
x(f)�

E
�A

D
x
(f)
��1

E
�
1

2
Bdi

��
(7.31)

u� = D hc� i (7.32)

(m)
� =

D
s(m)
�

E
(7.33)

�(m)
� (f) =

Nc�1Y
j=0

�
(2�)�

1
2Ny jRj j

� 1
2 exp

�
�
1

2
tr(R�1

j R̂(m)
� )

��hc� (j)i

P
(f)

color
(&(m)
� ) (7.34)

�(m)
� (b) =

1

M
P
(b)

color
(&(m)
� ) (7.35)

�� (i) = jRij
� 1

2 exp

�
�
1

2
tr(R�1

j R̂� )

�
(7.36)

where i = 0; : : : ; Nc � 1 refers concept states and m = 0; : : : ;M � 1 corresponds to image pixels.

Furthermore, R̂
(m)
� is an estimate of hand region (spatial) variance at time t = � based on the mth

image pixel:

R̂(m)
� =

D
(�(m)

� � Cx(f)� )(�(m)
� � Cx(f)� )0

E
:

Similarly, R̂� is an estimate of hand shape variance at time � when all image pixels are taken into

account:

R̂� =

PM�1
n=0 R̂

(n)
�

D
s
(n)
� (f)

E
PM�1

n=0

D
s
(n)
� (f)

E : (7.37)

The above set of �xed-point equations is, of course, in addition to the inference equation used to obtain

su�cient statistics in each sub-net of factorization Q: hc� i,
D
x
(f)
�

E
,
D
x
(f)
� x

(f)
�

0
E
, and

D
s
(m)
�

E
. For in-

stance, as outlined in Chapter 5, hc� i is obtained from HMM inference on the sub-net with hidden state

variables c� and \observations" �� and ��. Similarly, one employs modi�ed Kalman smoothing (see Chap-

ter 4) on the set of observations fy
(0)
� ; : : : ; y

(M�1)
� g to obtain su�cient statistics

D
x
(f)
�

E
and

D
x
(f)
� x

(f)
�

0
E
.

Finally, su�cient statistics
D
s
(m)
�

E
are calculated using the Bayesian estimate of Equation 4.7:

D
s(m)
� (f)

E
=

�
(m)
� (f)P

(�)
assoc(f)

�
(m)
� (f)P

(�)
assoc(f) + �

(m)
� (b)P

(�)
assoc(b)D

s(m)
� (b)

E
=

�
(m)
� (b)P

(�)
assoc(b)

�
(m)
� (f)P

(�)
assoc(f) + �

(m)
� (b)P

(�)
assoc(b)

:

We summarize the newly obtained inference algorithm as follows:

error = 1;
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Initialize


x(f)

�
and hci;

while (error > maxError) f

Find ��, ��, and �� from y�, hx�i, and hc�i using Equations 7.34,7.35,7.36 and 7.31;

Estimate hs�i from �� using Bayesian rule;

Estimate hc�i from �� and �� using HMM inference;

Find u� from hc�i using Equation 7.32;

Find � from hs�i using Equation 7.33;

Estimate hx�i from u� and � using LDS inference;

Update Cost i.e., bound on P (Y);

error  ( oldCost - Cost ) / Cost;

g

7.4.2 Spatially localized analysis

In the generalized inference formulation of the previous section we subtlely introduced one assump-

tion: at each time instance a complete scene image is used as an observation set. Yet, in most applications

the hand occupies only a small portion of the whole scene (see Figure 7.9, for example). In such cases it

is not necessary to use all available image pixels to estimate the hand dynamics and concept states.6 It

is su�cient to concentrate on the region of interest (ROI) within an image where the hand is most likely

to be. Such an ROI is in fact easy to determine. Recall that the conditional distribution of the hand's

spatial attribute at time t is Gaussian with mean Cx
(f)
t and variance Ri (Equation 7.25). Therefore,

the exponent of that distribution, z =
�
�
(m)
t � Cx(f)t

�0
Ri

�1
�
�
(m)
t � Cx(f)t

�
, has �2 distribution with

Ny degrees of freedom. To �nd a spatial ROI where most of the hand pixels will lie one simply needs

to determine a high con�dence region of choice for z. Then, one only takes into account image pixels

within that region, as the ROI now plays the role of the whole image of the previous section. The size

and position of this ROI change in time. Hence, one needs to adjust the uniform spatial distribution of

background pixels to reect this change in size. Instead of analyzing an elliptical ROI, as de�ned by the

con�dence measure, it is sometimes more convenient to use a rectangular bounding box of the original

ROI (see Figure 7.9).

7.4.3 Prediction and on-line inference

In the previous section we studied the classical inference problem for my model of visually ob-

served hand gestures. The formulation of the problem assumes that all observation data points Y =

6In fact, it is to one's disadvantage to use all pixels since, as will be seen in Section 7.4.4, the estimates of the

hand association probability P
(t)
assoc(f) will become signi�cantly smaller than the corresponding background association

probability estimates. This will in turn bias all future variable estimates towards background.
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fy(0)0 ; : : : ; y
(M�1)
T�1 g are readily available and that one needs to estimate states of the corresponding hidden

variables in the same time interval, i.e., 0 to T � 1. However, in many cases new observation points

arrive constantly. For example, to track a gesturing hand in a live video stream one needs to predict

the hand's position in the next image frame as well as the ROI size. Given the topology of the gesture

model it readily follows that the predicted position of the hand is

x̂
(f)
T =

D
x
(f)
T jY

T�1
0

E
= A

D
x
(f)
T�1

E
+BDPconcept hcT�1i :

The predicted concept state is similarly

ĉT =


cT jY

T�1
0

�
= Pconcept hcT�1i :

ROI size depends on the variance of the hand's spatial distribution. It is trivial to show that predicted

hand shape variance becomes:

R̂T =


RjYT�10

�
=

Nc�1X
j=0

RiĉT :

Finally, one would like to have an initial estimate of association pdf at t = T , P
(T )
assoc. Our model states,

however, that the associations at time t only depend on image data at that particular time. We therefore

assume that the change in association probabilities is small between two consecutive time instances:

P̂
(T )
assoc = P

(T�1)
assoc :

Given the above four estimates x̂T , ĉT , R̂T , and P̂
(T )
assoc, one has su�cient information to determine

ROI at t = T . Once the new image data y
(0)
T ; : : : ; y

(M�1)
T has arrived one can use those estimates to

initialize the approximate inference algorithm.

With the arrival of new data, the inference algorithm not only reestimates su�cient statistics at the

current time (such as hsT i and hxT i), but also \smoothes" all the old ones (hsti ; t = 0; : : : ; T � 1, for

example). This means that, at least in theory, one needs to run the inference algorithm on the whole

data history fy0; : : : ; yT g. Needless to say, such a requirement is not practical for long data sequences.

In practice, fortunately, it is not necessary to smooth out the whole data sequence. Rather, one only

reestimates a \small" number of most recent variables. That \small" number is usually determined by

the largest time constant of the network in question.

7.4.4 Learning

The DBN model of visually observed hand gestures possesses several classes of parameters, each

corresponding to a particular subnet of the model. Concept parameter, for instance, is the concept state

probability transition table Pconcept. Hand motion parameters are the input force levels D and the

hand state variance Q, while hand shape and color are parameterized with the shape variance Ri and
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hand color probability table P
(f)

color
. Spatial distribution of background pixels is de�ned to be uniform,

whereas its color is parameterized with the background color probability table P
(b)

color
. Finally, the

pixel-to-model association is determined by the probability table Passoc.

To learn the above-mentioned parameters we resort again to the generalized EM learning introduced

in Chapter 2. Earlier in Section 7.4 we explained the origins of the model|it is a combination of

mixed-state HMM and mixture-of-DBN models from Chapters 4 and 5. Hence, parameter learning of

the visually observed hand gesture model simply carries over from the parameter update solutions of the

two simpler models. For the sake of completeness, we now state the parameter update equations using

the new model's notation.

Concept parameters.

Pconcept =

 
T�1X
t=1



ctc

0
t�1

�!
diag

 
T�1X
t=1

hcti

!�1

(7.38)

Hand motion parameters.

D =
�
B0Q(T )�1B

��1
B0Q(T )�1

 
T�1X
t=1

D
(x

(f)
t �Ax(f)t�1)ct

0
E! T�1X

t=1

hctct
0i

!�1

(7.39)

q =
1

2(T � 1)

tr

(
Q(T )�1

T�1X
t=1

D
(x

(f)
t �Ax(f)t�1)(x

(f)
t �Ax(f)t�1)

0
E
�BD

D
ct(x

(f)
t �Ax(f)t�1)

0
E)

: (7.40)

Hand shape parameters.

Ri =

PT�1
t=0

PM�1
m=0

�
�
(m)
t �

(m)
t

0 � C
D
x
(f)
t

E
�
(m)
t

0
�D

s
(m)
t (f)

E
hct(i)iPT�1

t=0

PM�1
m=0

D
s
(m)
t (f)

E
hct(i)i

(7.41)

Hand color parameters.

P
(f)

color
=

PT�1
t=0

PM�1
m=0 &

(m)
t

D
s
(m)
t (f)

E
PT�1

t=0

PM�1
m=0

D
s
(m)
t (f)

E : (7.42)

Background color parameters.

P
(b)

color
=

PT�1
t=0

PM�1
m=0 &

(m)
t

D
s
(m)
t (b)

E
PT�1

t=0

PM�1
m=0

D
s
(m)
t (b)

E : (7.43)

Association parameters.

P
(t)
assoc(f) =

PM�1
m=0

D
s
(m)
t (f)

E
PM�1

m=0

D
s
(m)
t (f)

E
+
D
s
(m)
t (b)

E (7.44)

P
(t)
assoc(b) =

PM�1
m=0

D
s
(m)
t (b)

E
PM�1

m=0

D
s
(m)
t (f)

E
+
D
s
(m)
t (b)

E (7.45)
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(a) BattleView Display Control (b) SmallWall Setup

Figure 7.18 Experimental testbed for integrated multimodal interaction. (a) User interaction with
BattleView simulation environment. (b) SmallWall frontal projection setup.

7.4.5 Experiment: Analysis and recognition of visually perceived hand

gestures

In this section we consider the task of visual hand tracking and hand gesture recognition. It appears

that this task is, at least in principle, analogous to the task of recognizing the \mouse gestures" of Sec-

tion 7.3.5. However, it introduces a signi�cant new burden not present in the simpler case of \mouse

gestures": the need for visual hand tracking of a gesturing hand.

The study of visually perceived hand gestures was conducted with one particular framework in mind.

Instead of focusing on a large and vaguely de�ned class of natural communicative gestures, we chose to

explore a novel domain of hand gestures for computer display control. Much like the mouse gestures,

hand gestures for computer display control are aimed at further easing the burden of old fashioned

human{computer interaction (HCI). However, free hand gestures eliminate the burden of device cables

and allow more natural interaction. More importantly, unlike the natural communicative gestures, their

display control counterpart can be highly structured and constrained. This fact was exploited to test

the feasibility of the DBN-based visual gesture model.

The testbed application was a simple virtual display control task. In this application the user ma-

nipulates a virtual display (terrain or an object on virtual terrain, for instance) shown on the projection

screen (see Figure 7.18(a)) using a set of eleven visually observed gestural actions. The set of commands

is summarized in Table 7.3. For example, the user would perform the \move left" gestural action to

change the viewing point of the 3D map along the horizontal axis. A \select" action would engage a

pointer with which one could select an object of interest. \Rotate" actions would cause an object or a

map to slowly rotate about some prede�ned axis. Finally, \stop" would terminate any currently engaged

action.
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Table 7.3Gestural commands for virtual display control. Dynamic stroke gestural actions involve highly
dynamic hand motion. Static stroke actions, on the other hand, exhibit limited hand motion during
gesture stroke phases. Two-letter codes in parentheses are used to denote respective gestural actions.

Commands

Dynamic stroke
move left (LT) move right (RT) move up (UP) move down (DN)

move forward (FW) move backward (BW) rotate left (RL) rotate right (RR)

Static stroke
stop (ST) select (SL) release (RS)

All gestural actions of the human user are observed visually with a color camera strategically mounted

on the display unit. This allows the system to obtain an unobstructed view of the freely moving user's

hands and head. Examples of video shots of all eleven gestural action commands are depicted in Fig-

ure 7.19.

7.4.5.1 Initial Hand Tracking

The �rst task was to obtain initial estimates of trajectories of the moving hand without explicit

knowledge of the underlying gestural concepts. This was needed because at the initial stage no gestural

concept model was available. To achieve this task, we used a simpli�ed (initializing) model of Section 7.4

for any hand motion. In the initializing model the mixed-state HMM structure (coupled concept/hand

dynamics model) is replaced by \one order higher" dynamical system, similar to the initialization of the

\mouse gesture" model (see Section 7.3.4). Again, in this simpli�cation we assume that the hand motion

driving force can be modeled as a noise-corrupted stationary state of the dynamical model. Since the

concept model does not exist in this initial formulation, we assume that the hand shape variance R is

allowed to vary freely with time, i.e., Rt = R̂t as in Equation 7.37.

With this visual gesture model in mind one still needs to somehow select the initial model parameters:

dynamic state noise variance q, foreground and background color distributions Pcolor, and assignment

pdf Passign. Dynamic state noise variance q was initially set to an arbitrary value and then adaptively

adjusted to maintain 99.9 percent con�dent innovation estimate [76]. Background and foreground color

distributions were estimated from color histograms of known (interactively selected) hand skin and

background image patches. Finally, foreground and background object assignments were chosen to be

equiprobable.

Concurrent with hand tracking, we also tracked the more stationary head in the same manner. The

tracking algorithm now assumes the following form:

for ( t = 0; : : : ) f
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(a) \Move up"

(b) \Move left"

Figure 7.19 Examples of free hand gestural actions. Shown are selected frames of \move up" (a) and
\move left" (b) gestural actions.

for ( head & hand ) f

error = 1;D
x
(f)
t

E
= A

D
x
(f)
t�1

E
+B

D
u
(f)
t�1

E
;

while (error > maxError) f

Find �t from yt and hxti using Equations 7.34 and 7.35;

Estimate hsti from �t using Bayesian rule;

Find t from hsti using Equation 7.33;

Estimate
D
x
(f)
t

E
and huti from � using LDS �ltering;

Estimate Rt using Equation 7.37;

Update Cost i.e., bound on P (Y);

error  ( oldCost - Cost ) / Cost;

g

g

g

Note that in the above tracking formulation all h�i operators refer to �ltered or predicted estimates

of the appropriate variables and not to their smoothed values as is the case in the general inference

algorithm. Of course, it is still possible, if necessary, to smooth out all the estimates (see Section 7.4.3).
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This initial tracking procedure in general yielded satisfactory results. Several sequences of hand

motions, each with more than 8000 frames, were tracked without any lost tracks. One example of an in-

termediate tracking step that includes foreground/background segmentation and spatial pdf reestimation

is shown in Figure 7.20.

7.4.5.2 Recognition of gestural actions

Data set. The data set for the experimental session consisted of two video sequences of 40 gestural

commands each. The two sequences are denoted GVS1 and GVS2.7 Each of the forty commands in

both video sequences was performed by a single gesturer and selected from the set of eleven possible

actions (see Table 7.3). Table 7.4 shows the transcript of both GVS1 and GVS2.

Concept model. For every gestural action in the set, the following semantical structure was im-

posed:

� Every gestural action consists of three phases: preparation, stroke, and retraction. This assumption

directly adheres to the known temporal structure of natural gestures, as outlined in Section 7.1.3.

� Every repetitive dynamic gestural stroke consists of a sequence of basic gestural movements referred

to here as gestimes. Each gestime represents one coherent unit of hand motion. For example, \move

up" gestural stroke consists of a sequence of \up" and \down" gestimes. Furthermore, the number

of repetitions of gestime pairs is assumed to have binomial distribution.

Complete semantics of the command language are depicted in the state diagram of Figure 7.21. Semantics

de�ne a simple probabilistic grammar where every gestural action is equally likely.8 Action models of

dynamic gestures such as \move up" and \mode down" that consist of identical gestimes di�er in

probabilistic weights associated with the unit transitions. Hence, a model of the \move up" gesture, for

example, is de�ned as shown in Figure 7.22. The concept behind every gestural unit (\preparation,"

\retraction," static stroke, or gestime) is in turn assumed to be modeled as a discrete Markov chain,

in accordance with the DBN-based visual gesture model. To reduce the complexity of inference we

constrain all concept Markov chain models to have \left-to-right" transition probability matrices and a

small number of states. In particular, \preparation" and \retraction" phase concepts are modeled as

three-state chains, static stroke concepts as �ve state chains, whereas all gestimes had four state concept

spaces. The above structures have been shown to yield the best inference results when compared to

other similar concept model topologies.

Given the semantics of the gestural command language, it follows readily that every concept of every

gestural action is itself a Markov chain. However, unlike the dynamics of isolated gestural units which

7GVS - gestural video sequence.
8In a more realistic situation some actions would be more likely than the others. Also, probabilistic weights could be

imposed within action-pairs or triplets, thus constructing bigram or trigram probabilistic language models [126].
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Figure 7.20 Hand and head tracking using DBN. Figure (a) depicts frame 300 of one complete gestural
video set. Shown are also hand trajectory estimates and hand ROI with segmented hand region. Elliptical
lines are isolevels of estimated spatial distribution of the hand. Figures (b) and (c) are examples of hand
and head segmentations, respectively. Left to right, top to bottom: ROIs, foreground spatial pdfs
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� ), foreground assignment estimates
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E
, and foreground ROI pixel sets.
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Table 7.4 Transcript of training (GVS1) and test (GVS2) gesture video sequences.
Index Action

001 select
002 up
003 left
004 forward
005 down
006 stop
007 release
008 forward
009 right
010 backward
011 rotright
012 forward
013 select
014 rotleft
015 release
016 backward
017 right
018 select
019 up
020 left
021 down
022 release
023 rotright
024 forward
025 stop
026 select
027 rotleft
028 up
029 backward
030 down
031 release
032 stop
033 right
034 left
035 stop
036 up
037 forward
038 stop
039 backward
040 rotright
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Figure 7.21 Grammar of gestural command language.
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Figure 7.22 Model state diagram of \move up" gestural action.
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are always (constrained to be) noncyclic (i.e., \left-to-right"), the dynamics of gestural action concepts

can be cyclic. Cyclic behavior occurs in models of dynamic stroke gestural actions, such as \move left,"

etc.

Hand dynamics. Hand motion dynamics of gestural action are, as before, modeled as linear

dynamic systems (see beginning of Section 7.4). For simplicity, assume that the hand motion model of

every gestural action is a �xed-parameter LDS. In other words, all units that make up any particular

gestural action have the same motion model parameters. Whereas this assumption may negatively reect

on the dynamics of the hand itself, it makes the overall DBN model more tractable.

Silence model. In addition to models of eleven gestural actions, we de�ned a model of any nongestu-

ral action, referred to as the silence model. The silence model was assumed to have no motion dynamics

and only a single concept state. Given the constrained structure of the data set, the silence model

in essence corresponded to the resting hand position and played the role of a \hand-up/hand-down"

detector.

Training. In the training phase, model parameters of gestural action concepts and the accompanying

hand motions are learned from the sequences of images that exemplify those actions. The general

learning algorithm for the DBN model was introduced in Section 7.4.4. Initial estimates of motion model

parameters were obtained from the concept-decoupled tracking procedure outlined in Section 7.4.5.1.

Concept parameters of every gestural unit including the coupling matrix D were initialized from the

tracking estimates of the driving input force following the initialization technique for mixed-state HMMs

(see Chapter 5). Parameters of the complete gestural actions were then reestimated in the general visual

gesture model learning framework of Section 7.4.4. On the average, the 0.1 percent relative error in the

cost function minimization was reached within ten iterations of the learning and inference algorithms.

Out of two video data sequences, one was designated the training set (GVS1) and the other the test

set (GVS2).

Recognition. The task of gesture recognition was to accurately identify gestural actions in the

test video sequence. Initially, gestural action periods were segmented from the video sequence using the

\hand-up/hand-down" silence detector. Following this, periods of gestural activity were classi�ed using

the DBN-based gestural action models of eleven gestural commands.

As a base-line comparison we employed two decoupled models of gestural actions with sets of linear

and nonlinear features derived from hand positional data augmented by available hand shape descriptors.

In particular, one of the models was simply a decoupled version of our model where the HMM observa-

tions were modeling the input of the LDS and the hand shape as a mixture of Gaussian distributions

(see Figure 7.23). In the other model a nonlinear mapping was introduced between the decoupled LDS

and the HMM, as depicted in Figure 7.23. The mapping was essentially a linear-to-polar coordinate

space transformation that was claimed to be successful in modeling hand gestural actions [121].
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y
ĉ
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Figure 7.23 Block diagrams of three gestural action classi�ers. Top to bottom: coupled mixture of
LDS/HMM classi�er uses approximate probabilistic inference to decode the states of gestural concepts
ĉ from images of moving hand y; decoupled LDS/HMM and its nonlinear counterpart estimate the hand
motion driving force and hand shape without the knowledge of underlying gestural actions.

All three models were trained on the GVS1 set and tested on set GVS2. Table 7.5 shows the

misclassi�cation error estimates for the three types of gestural action models. Error estimates were

obtained using standard counting methods (maximum likelihood estimates of binomial/Bernoulli model

probabilities [125]). From Table 7.5 it seems that, as expected, the coupled mixture of LDS/HMM model

performs better then the two decoupled models. However, strictly speaking, with a con�dence level of

p = :05, the performances of the three models cannot be distinguished (con�dence intervals are about

�13 percent). This is clearly due to the lack of data since only 40 action sequences of eleven actions are

available. Besides collecting and analyzing more data, additional discrimination of performances may

be achieved through cross-validation tests.

To gain more insight in the gesture classi�cation performance it is useful to consider the confusion

matrix associated with the classi�cation task. Confusion matrices in Tables 7.6, 7.7, and 7.8 depict

cumulative classi�cation results over all eleven action commands for the three tests. For instance,

column 1 of Table 7.6 indicates that out of four occurrence of the action \select" in the test set, three

were correctly recognized and one was misclassi�ed as \release." It is clear from Table 7.6 that majority

of misclassi�cations occur in the case of nonplanar forward/backward and rotate left/right actions. This

is somewhat expected since we assume a planar model of hand motion when in fact the forward/backward

actions are almost perpendicular to the camera plane. The other common source of errors stems from

inadequate discrimination of opposite gestural actions. For instance, it is sometimes the case that a

\move right" gestural action begins with a hesitant downward movement. Finally, static gestural actions
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Table 7.5 Misclassi�cation error estimates [%] and error estimate variances ([%]) for classi�cation of 40
gestural actions from GVS2 data set.

Action Coupled mixture Decoupled mixture Nonlinear decoupled
of LDS/HMM of LDS/HMM model

Error[%] (Var[%]) Error[%] (Var[%]) Error[%] (Var[%])

Select 25 (4.69) 25 (4.69) 25 (4.69)
Stop 40 (4.80) 60 (4.80) 80 (3.20)

Release 0 (0) 0 (0) 50 (6.25)
Up 0 (0) 0 (0) 25 (4.69)

Down 0 (0) 0 (0) 100 (0)
Left 0 (0) 33.3 (7.41) 66.7 (7.41)
Right 33.3 (7.41) 33.3 (7.41) 66.7 (7.41)

Forward 20 (3.20) 40 (4.80) 20 (3.20)
Backward 75 (4.69) 75 (4.75) 75 (4.69)
Rotate Left 50 (12.50) 100 (0) 100 (0)
Rotate Right 0 (0) 0 (0) 0 (0)
TOTAL 22.5 (0.43) 32.5 (0.55) 52.5 (0.62)

Table 7.6 Confusion table of gesture classi�cation with coupled mixture of LDS/HMM model. Columns
are original actions, rows are classi�ed actions.

SL ST RS UP DN LT RT FW BW RL RR
SL 3 0 0 0 0 0 0 0 0 0 0
ST 0 3 0 0 0 0 0 0 0 0 0
RS 1 1 4 0 0 0 0 1 0 0 0
UP 0 0 0 4 0 0 0 0 0 0 0
DN 0 0 0 0 3 0 0 0 0 0 0
LT 0 0 0 0 0 3 1 0 0 0 0
RT 0 0 0 0 0 0 2 0 0 0 0
FW 0 1 0 0 0 0 0 4 1 0 0
BW 0 0 0 0 0 0 0 0 1 0 0
RL 0 0 0 0 0 0 0 0 0 1 0
RR 0 0 0 0 0 0 0 0 2 1 3
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Table 7.7 Confusion table of gesture classi�cation with decoupled mixture of LDS/HMM model.
Columns are original actions, rows are classi�ed actions.

SL ST RS UP DN LT RT FW BW RL RR
SL 3 0 0 0 0 0 0 0 0 0 0
ST 0 2 0 0 0 0 0 0 0 0 0
RS 1 2 4 0 0 0 0 2 0 0 0
UP 0 0 0 4 0 0 0 0 0 0 0
DN 0 0 0 0 3 0 0 0 0 0 0
LT 0 0 0 0 0 2 1 0 0 0 0
RT 0 0 0 0 0 0 2 0 0 0 0
FW 0 1 0 0 0 0 0 3 1 0 0
BW 0 0 0 0 0 0 0 0 1 0 0
RL 0 0 0 0 0 0 0 0 0 0 0
RR 0 0 0 0 0 1 0 0 2 2 3

Table 7.8Confusion table of gesture classi�cation with decoupled nonlinear model. Columns are original
actions, rows are classi�ed actions.

SL ST RS UP DN LT RT FW BW RL RR
SL 3 1 2 0 0 0 0 0 0 0 0
ST 0 1 0 0 1 0 0 1 0 0 0
RS 0 1 2 0 0 0 0 0 1 0 0
UP 0 0 0 3 0 0 0 0 0 0 0
DN 0 0 0 0 0 0 0 0 0 0 0
LT 0 0 0 0 0 1 0 0 0 0 0
RT 0 0 0 0 1 1 1 0 0 1 0
FW 0 1 0 0 1 0 1 4 0 0 0
BW 0 0 0 0 0 0 0 0 1 0 0
RL 0 0 0 0 0 0 0 0 0 0 0
RR 1 1 0 1 0 1 1 0 2 1 3
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(\stop," \release," and \select") can only be distinguished by the hand posture itself. Unfortunately,

the second-order shape model in use does not alway manage to capture enough information to robustly

distinguish between the three hand shapes.

We conclude this example by noting that the relatively poor recognition performance of gestural

actions stems from several factors: large variability in the actions themselves, unmatched motion model

space (2D versus 3D), and insu�cient shape feature descriptors. One would thus contend that without

addressing the above issues �rst, automatic hand gesture recognition may remain far from being usable.

Fortunately, as will be seen in Chapter 6, one can exploit modalities beyond the visual to bring even the

seemingly poor gestural model back into the HCI �eld.
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CHAPTER 8

MULTIMODAL ANALYSIS AND RECOGNITION OF

HAND GESTURES AND SPEECH USING DYNAMIC

BAYESIAN NETWORKS

8.1 Introduction

The interaction of humans with their environment (including other humans) involves multiple, con-

current modes of communication. However, when it comes to HCI only one interface device is usually

used at a time|typing, clicking the mouse button, speaking, or pointing with a magnetic wand. The

\ease" with which this unimodal interaction allows one to convey her intent to the computer is far from

satisfactory. A number of reasons may lead one to consider multimodal HCI as opposed to the unimodal

one. One may consider such reasons to be of practical, biological, and mathematical nature, as discussed

in Section 1.2. Given the overwhelming evidence in favor of multimodal HCI, we next discuss di�erent

approaches to fusing multiple sensing modalities. The focus is on hand gestures and speech.

8.2 When to Integrate Gestures and Speech

Di�erent sensing modalities yield disparate signal forms and rates. For instance, auditory signals

occur at a rate of 20{20,000 Hz and are preprocessed by a human within 30 ms. Visual signals, on the

other hand, are perceived at about 25 Hz, and their early processing takes on the order of 150 ms. That

makes successful integration of such signals a di�cult and challenging task.

The answers on how closely coupled the two modalities are mostly originate in psycho-behavioral

studies concerned with the interaction of modalities. For instance, it is known that gestures and speech

are intimately connected and are claimed to arise from a single mental concept [127]. Gestures occur

synchronously with their semantically parallel speech units or just before them [127]. However, a question

remains as to whether such coupling persists when the modalities are used for HCI. Several \Wizard
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of Oz" type studies have con�rmed that it does. Similar conclusions have been drawn from a few

usability studies that involved systems with novel gesture/speech interfaces. Oviatt [6] has, for example,

extensively studied the interaction of drawing gestures and speech in palmtop HCI applications. She has

concluded that the integration occurs on a semantic level where gestures are used to convey information

on location while speech conveys the information on subject and action (verb) in a sentence. Overall, one

can say that on a semantic level speech and gestures can have one of two relationships: complementary or

reinforcing. The complementary role of speech and gestures often occurs in natural communication. For

example, as noted by Oviatt [6], gestures are often used to specify spatial properties and relationships

between objects, while speech is naturally better suited to express actions and certain nonspatial object

attributes that can be hard to express through hand movements. When one wants to specify that an

object's color should be changed to red, he usually points to an object and utters, \Make this red." On

the other hand, in certain situations gestures and speech can play reinforcing roles. For instance, to make

a person (or a virtual person) move leftward one can say \move left, move left" while simultaneously

performing a \move left" gesture.

Another interesting perspective that may shed more light on the study of the levels of multimodal

integration in HCI comes from the �eld of sensory data fusion. For the most part, three distinct levels of

integration can be distinguished [47]: data fusion, feature fusion, and decision fusion. Data fusion is the

lowest level of fusion. It involves integration of raw observations and can occur only in the case when

the observations are of the same type. This type of fusion cannot be associated with the integration

of gestures and speech because the two are observed using di�erent types of sensors (video camera and

microphone, for instance). What is known as feature fusion in sensory data literature is more commonly

found in integration of modalities for HCI. It assumes that each stream of sensory data is �rst analyzed

for features, after which the features themselves are fused. This type of fusion is appropriate for closely

coupled and synchronized modalities. In general, feature-level fusion retains less detailed information

than data fusion, but is also less sensitive to noise in raw data. The type of fusion most commonly found

in HCI is the so-called decision-level fusion. Decision-level fusion is based on the fusion of individual

mode decisions or interpretations. For example, once an arm movement is interpreted as a deictic

(pointing) gesture and a spoken sentence is recognized as \Make this box white," the two can be fused

to interpret that a particular object (box) needs to be painted white. Synchronization of modalities

in this case pertains to synchronization of decisions on a semantic level. From numerous studies in

the sensory fusion �eld, we know that decision fusion is quali�ed as the most robust and resilient to

individual sensor failure. It has a low data bandwidth and is generally less computationally expensive

than feature fusion. One disadvantage of decision-level fusion is that it potentially cannot recover from

loss of information that occurs at lower levels of data analysis, and thus does not exploit the correlation

between the modality streams at the lower integration levels.
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Figure 8.1 Generative multimodal model. Gestures and speech originate as a communication concept
C. It is arguable whether and to what extent there is interaction between the two modal concepts.
Speech and gestures are separated in the processing phase and expressed using di�erent modalities HV

and HA. Finally, they are perceived using hearing A and vision V .

Keeping in mind this general notion of possible semantic roles and fusion levels, we next focus

on modeling the interaction between spoken language and hand gesturing. In particular, we propose

a dynamic Bayesian network (DBN) framework that automatically extracts and models any possible

interaction between the two modalities.

8.3 How to Integrate Gestures and Speech

As mentioned in the previous section, the level at which the integration is done strongly inuences

the actual computational mechanism used for the integration. To tackle the integration task, we propose

an integration framework based on dynamic Bayesian networks (see Chapter 3).

8.3.1 A general integration model

To formulate the model for multimodal (speech/gesture) integration, consider �rst a feasible gener-

ative model, as depicted in Figure 8.1. The model separates the generation of speech and gestures at

some early stage of a mental concept, satisfying the observations noted in Section 8.2. To construct

an integration model for multimodal recognition, one can consider the inverse of the generative model.

From visual images and audio signals, one would independently process the individual modalities and

classify them to the point of obtaining some estimates of the individual multimodal concepts Ĝ and
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Ŝ. Finally, one would fuse them at that level to obtain an estimate of the communication concept Ĉ.

However, it is not clear whether links from one modality's concept lead to another modality. Moreover,

if they do, how strongly do they inuence each other? Hence, independent processing and recognition

of individual modalities to the point of their respective concepts may not be the best solution.

Recall now the coupled HMM discussed in Chapter 6. The framework was motivated by one's goal

to model interactions among systems with multiple and possibly di�erent discrete state dynamics and

di�erent observation spaces. Of course, this formulation �ts perfectly with the need to formalize variable

interactions between spoken and gestural language concepts. With a single coupled HMM-based multi-

modal concept model one can describe interactions anywhere from tightly coupled to loosely interacting

cases. Control over the interactivity of modes is accomplished through a combination of intermodal

parameters or intermodal weights, denoted as w in Chapter 6, and intermodal probabilistic couplings

P (m;n);m 6= n. It the next two sections we consider in more detail how one can impose desired interac-

tivity by varying the structure of the intermodal parameters.

8.3.2 Feature-level coupling

The case of tightly coupled speech and gestures can occur when the two modalities play either of their

two semantic roles (reinforcing and complementary). If speech and gestures complement each other, the

close coupling may be exhibited as the close coupling of all states of their conceptual models G and

S. However, even though their conceptual spaces are coupled it is still reasonable to assume that each

mode has unique concept dynamics di�erent from the other mode. Hence, the mixed HMM model with

stationary weights of Section 6.3.2.2 can be employed to describe this case. The \intensity" of coupling

can be measured through the value of intermodal weights w(m)(n) and intermodal conditional pdfs:

the more tightly coupled the two modalities, the more highly peaked the pdfs. If the coupling is tight

to the point of identical or almost identical concept dynamics, then the model reduces to the classical

HMM with concatenated observations (see Section 6.3.1). On the other hand, the tight coupling can

be exhibited only over small temporal segments. For instance, in the \move this tank to region A"

command, the onset of deictic action can be correlated with the beginning of the word \this." In that

case the temporally adaptive mixed HMM from Section 6.3.2.3 can be a better choice.1 Based on the

values of intermodal weights w
(m)
t (n) one can pinpoint to the intervals of stronger and weaker couplings.

8.3.3 Decision-level coupling

Loose coupling of speech and gestures implies that while the two modalities still may describe the

same concept (\move left," for instance) the concept states themselves are uncorrelated on the feature

1Note, however, that the mixed HMM with stationary weights can also be seen as a special case of the variable temporal
weight model.
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level. In the example of the \move left" action, this would mean that the dynamics of the gesturing

hand have nothing in common with the dynamics of the verbal mode. Hence, given the action concept

C, all concept states of the two modes G and S are independent. In terms of the usual HMM models

this means that an independent HMM can be assigned to model each modality separately. However,

the same e�ect can be achieved using a �xed-weight coupled HMM with intermodal weights set to zero,

w(m)(n) = 0;m 6= n. As in the case of feature-level couplings, the noninteractivity of weights can be

learned from data. Thus, one can initially employ an adaptive-weight coupled HMM and \learn" that

the modes are uncorrelated.

8.4 Previous Work

Interest in fusion of multiple modalities, such as speech and hand gestures, has been around for

more than a decade. Numerous feature- and decision-level approaches have been studied, mostly with

emphasis on practical, sometimes ad hoc, solutions.

8.4.1 Feature-level coupling

Feature fusion context was introduced into the multimodal realm with HMMs whose observations

were modeled as concatenated multimodal feature vectors. Such essentially unimodal2 integration ar-

chitectures have been considered for the fusion of speech and lip movements [128]. However, such initial

architectures did not perform well. One of the �rst DBN-like multimodal architectures was the Boltz-

mann zipper [80]. In Boltzmann zipper for each hidden state can \belong" to only one of the multiple

modalities (audio or video, for example) but not to both, as is the case in the unimodal HMMs. This

architecture was applied to bimodal speech recognition and shown to yield an improvement in coupled

interpretation [17] over the unimodal approach. A basis for coupled HMM architectures was established

by the work of Brand [81, 75]. He introduced a coupled HMM architecture similar to that of Chapter 6

with �xed, unbiased intermodal weights, and he developed a Viterbi-like approximate inference scheme.

8.4.2 Decision-level coupling

Coupling of multiple modalities on the decision-level is the most frequently followed approach to

multimodal integration. It involves fusion of concepts (decisions) from the individual modes to form a

unique multimodal concept. An underlying assumption of this type of fusion is that the basic features

of the individual modes are not su�ciently correlated to be fused at the feature level. Most of the

decision-level fusion mechanisms commonly found in HCI systems are based on the concept of frames.

2Unimodal here refers to the fact that the process dynamics are unimodal, i.e., both audio and video are assumed to
have identical dynamics.
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The concept of frames is commonly found in arti�cial intelligence literature. A frame is a unit of a

knowledge source describing an object [129]. Each frame has a number of slots associated with it. The

slots represent possible properties of the object, actions, or the object's relationship with other frames.

This last property facilitates a mechanism for designing networks of frames for a particular context with

links describing contextual semantics. Such networks are also known as semantic networks [130]. In the

multimodal HCI context, di�erent modalities can be associated with individual frame slots. Di�erent

modalities can describe particular properties of a virtual object. Speech can, for instance, designate the

object's color while gestures can imply the object's location. This is a case of the complementary role of

the modalities. It is also possible that multiple modalities indicate the same property of an object. In

such cases, fusion can be achieved by selecting the property with the lowest joint cost. In the Bayesian

framework, this is equivalent to choosing the highest prior or posterior joint probability. An alternative

may be to consider the Dempster-Shafer combination of evidence [131].

Frame-based multimodal HCI systems have been utilized ever since the famed Bolt's \Put-that-

there" system [132] that employed speech, gaze, and hand gestures to manipulate virtual objects. Nigay

and Coutaz [133] proposed a frame-based multifeature system design space that emphasized duality

in modalities' roles and occurrences. They distinguished between parallel and sequential use of multi-

ple modalities that may have a complementary or reinforcing role. Many recent systems used similar

mechanisms. For example, [122] used speech and pen gesture frame fusion to design an interface for

a calendar program \Jeanie." As classi�ers for the individual modes it employed MS-TDNNs [122]

for gesture recognition and the JANUS [134] speech translation system for the recognition of speech.

Another, more complicated frame-based architecture was developed as a part of QuickSet [123, 135],

a multimodal interface for control of military simulations using hand-held personal digital assistants

(PDAs). Utilizing the arti�cial neural network and hidden Markov model classi�ers for concurrent

gesture recognition, multiple modalities in QuickSet played re-enforcing roles. The modalities could

automatically disambiguate each other using joint ML estimation. Alternatively, unimodal interaction

could be enabled when one of the modes become unreliable. Numerous other systems, such as \Finger-

pointer" [106], \Virtual-World" [136], ALIVE [137], \Smart Rooms" [138], and \Neuro Baby" [139, 140],

utilized similar frame-based architecture for integration of speech and simple gestures.

Many simple framed-based approaches have also been implemented for bimodal (audio and video)

speech recognition [128, 141, 142]. Such approaches basically assume one frame|one-slot networks for

each of the two modalities. The slots describe phonemes observed through speech and lip movements.

Two frames are fused by selecting the phoneme with the highest joint probability. The classi�ers for the

individual modes are commonly of the HMM type.

128



Table 8.1 Spoken commands for virtual display control. Dynamic and static actions are associated with
their respective gestural counterparts.

Commands

Dynamic actions
move/go left move/go right move/go up move/go down

move/go forward move/go backward rotate left rotate right

Static stroke
stop select this release

8.5 Experiment: Coupled Interpretation of Hand Gestures and

Speech for Display Control

Recall the visual gesture recognition experiment from Section 7.4.5. In it a set of hand gestural

commands was utilized to control a large-scale display application. In this new experiment, in the

identical setup, we augmented the set of gestural commands with a number of verbal actions. The verbal

set was selected so as to globally reinforce the appropriate gestural commands. The decision to employ

this type of interaction was twofold. As seen in Section 7.4.5, unimodal visual gesture recognition su�ers

from inadequacies related to visual analysis of hand movements. Hence, it was reasonable to assume

that the presence of reinforcing speech can straightforwardly help enhance the recognition performance.

Secondly, the reinforcing setup enabled me to easily investigate behavior of model parameters with some

a-priori guess as to how they should behave.

Data set. In the new experimental setup each gestural action in data sets GVS1 and GVS2 was

\duplicated" with one of the verbal commands from Table 8.1. Hence, a \rotate left" gesture was

accompanied by \rotate left" utterance while the \select this" spoken command occurred at the same

time as the \select" gesture.

Modeling. As with visual gestures, we employed two baseline \classical models" of multimodal

integration for the purpose of comparison with the coupled HMM framework. One model enforced a

priori the decision-level integration, i.e., we used a �xed-weight coupled HMM (see Section 6.3.2.1) with

zero intermodal weights. The second baseline model, on the other hand, imposed strong feature-level

coupling between concept states; a unimodal HMM with concatenated audio/video features was used for

this purpose. The two baseline models were contrasted to �xed, adaptive time-invariant, and adaptive

time-varying weight-coupled HMMs of Chapter 6. This is depicted in Figure 8.2. In addition to the �ve

multimodal models, independent models of gestural and verbal actions were also constructed.

To exploit the possible correlation of speech and gestures, we focused on modeling the complete

actions in question. Namely, each action expressed concurrently through audio and visual streams was
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Figure 8.2 Competing inference models for bimodal gesture/speech recognition. Top to bottom:
decision-level inference, highly coupled feature-level inference, naively coupled inference, coupled in-
ference with adaptive time-invariant weight HMM, and coupled inference with adaptive time-varying
weight HMM.

modeled using one of the �ve model types. Thus, the \move right" action was modeled as a single

gesture/speech model that draws its observations from both audio and video streams.

Training. For all of the models in question we used auditory and visual features extracted inde-

pendently of their respective concept models. Namely, audio features were selected to be ten MFCC

coe�cients and their temporal derivatives and were computed every 33 ms on frames of 50-ms duration

(see [5] for details, for instance). Visual features were obtained using the decoupled hand tracking de-

scribed in Section 7.4.5.1. Hence, they were the estimates of hand driving force and second-order hand

shape descriptors.

Given the sets of available features derived from data set GVS1, each of the �ve models was trained

using its own learning procedure. We consider the example of the \move left" action to outline the

intermediate modeling steps for the �ve model types. All coupled models of \move left" were initialized

using independent models of the underlying speech and visual hand movements. Hence, the gestural

concept of \move left" from Section 7.4.5 was used for that purpose. The independent concept model

of the verbal part of this action was obtained by combining the word-level HMMs of the words \move"

and \left" with appropriate silence models. The decision-level model of the \move left" action therefore
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consisted of the above two models. A highly coupled unimodal model of \move left" was obtained when

the independent gestural action model was retrained with concatenated audio/visual features. The two

independent models also served as initial conditions for model parameter reestimation of the �xed- and

the adaptive-weight coupled models (see Chapter 6). In the �xed-weight coupled model we imposed a

higher degree of concept correlation by constraining all coupling weights to be equal, w(n)(m) = 0:5.

All parameter learning techniques converged, on the average, within 5 and 10 iterations to yield 0.1

percent relative error in the cost function. This is, of course, in addition to the number of iterations

necessary for variational inference of the coupled model states. With 0.1 percent relative error threshold,

variational inference usually converged within the �rst ten steps.

It is interesting to consider the results of model parameter training. In particular we focus on the

state transition parameters of three coupled HMM networks. Figures 8.3(a), 8.3(b), and 8.3(c) depict

state transition probability matrices, both intra- and intermodal, of the action \move/go up." As a

reference, Figure 8.4 shows segmentation of one training example of the same action. One can conclude

from these �gures that, in fact, there is relatively little correlation between gestural and spoken concept

states. The correlation exists primarily between periods of silence in speech and preparation/retraction

phases of gestures. Low state level interaction between the two modalities is also con�rmed through

adapted weight values. Their estimated distributions are highly peaked around intramodal transitions.

For example, for action \up"


w(v)(v)

�
= 0:9950 while



w(v)(a)

�
= 0:0050.

Recognition. As for recognition of gestural actions in Section 7.4.5, the task was to accurately

interpret the actions of one user, this time by analyzing both his gestural hand movements and his

verbal commands. Two sets of experiments were performed. One involved classi�cation of unaltered

audio/visual data from GVS2. The other set examined the inuence of high levels of audio noise on joint

action classi�cation. Namely, the audio signal from GVS2 was corrupted with zero-mean white noise to

yield a 5 dB signal-to-noise ratio.3

Classi�cation performance results on the original GVS2 data are shown in Table 8.2. Misclassi�cation

rates are in general lower for all coupled methods than for the independent ones with the exception of

the highly coupled unimodal model (AV2). This clearly con�rms the fact that most correlation between

speech and gestures tends to occur on the semantic level [143]. More insight into performance of our

models can be gained by considering the second (\noisy") experimental task (see Table 8.3). In this

task the isolated audio misclassi�cation rate (A) increases to 37.5 percent, on the same order as the

visual gesture classi�cation. It is hoped that the joint gesture/speech recognition may do better than

that, and in fact it does. Table 8.3 indicates that the coupled classi�cation methods outperform the

independent speech and gesture interpretations. Most notably, the adapted time-varying weight model

achieves the lowest misclassi�cation rate of 22.5 percent. The other two coupled models from Chapter 6

3The unaltered audio signal had a SNR of close to 30 dB.
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Figure 8.3 State transition probability matrices for three coupled HMM models of speech/gesture action
\up." Superscripts (v; v), (v; a), (a; v), and (a; a) denote visual intramodal, audio-to-visual intermodal,
video-to-audio intermodal, and visual intramodal transition pdfs.
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(c) Adaptive Time-Varying Weight Coupled HMM

Figure 8.3 Continued.

are comparable to the decision-level coupling method. Again, the highly coupled AV2 method falls out

of the group of \good performers." Of course, one needs to keep in mind the computational complexity

associated with the coupled model inference techniques. As is obvious from Chapter 6, every iteration

of the variational inference algorithm involves two classical HMM inferences, one for each modality.

On the average, convergence within 0.1 percent relative error in approximation was reached within �ve

iterations. This in turn implies that on the average the complexity of the coupled inference is �ve-

fold the complexity of the decoupled one. Finally, we include in the presentation of results the details

of confusion matrices for all covered test cases (see Tables 8.4 to 8.15 in this chapter and Tables 7.6

through 7.8 in Chapter 7.)
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Table 8.2 Misclassi�cation error estimates [%] and error estimate variances ([%]) for classi�cation of
40 audio-visual actions from GVS2 data set. Columns correspond to di�erent classi�cation models: A
- independent audio, V - independent video, AV1 - decision-level coupled, AV2 - state level coupled,
CAV1 - coupled with �xed weights, CAV2 - coupled with adapted time-invariant weights, and CAV3
- coupled with adapted time-varying weights.

Action A V AV1 AV2 CAV1 CAV2 CAV3

SL 0 (0) 25 (4.68) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
ST 0 (0) 60 (4.80) 0 (0) 20 (3.20) 0 (0) 0 (0) 0 (0)
RS 25 (4.68) 0 (0) 25 (4.68) 0 (0) 0 (0) 0 (0) 25 (4.68)
UP 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
DN 33 (7.41) 0 (0) 0 (0) 100 (0) 100 (0) 100 (0) 0 (0)
LT 0 (0) 33 (7.41) 0 (0) 100 (0) 0 (0) 0 (0) 33 (7.41)
RT 0 (0) 33 (7.41) 0 (0) 33 (7.41) 0 (0) 0 (0) 0 (0)
FW 0 (0) 40 (4.80) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
BW 0 (0) 75 (4.68) 25 (4.68) 100 (0) 0 (0) 0 (0) 0 (0)
RL 100 (0) 100 (0) 100 (0) 100 (0) 0 (0) 0 (0) 0 (0)
RR 33 (7.41) 33 (7.41) 0 (0) 0 (0) 33 (7.41) 33 (7.41) 33 (7.41)

TOTAL 12.5 (2.73) 32.5 (0.55) 10 (0.22) 35 (0.57) 10 (0.22) 10 (0.22) 7.5 (0.17)

Table 8.3 Misclassi�cation error estimates [%] and error estimate variances ([%]) for classi�cation of 40
audio-visual actions from GVS2 data set with 5dB SNR on audio.

Action A V AV1 AV2 CAV1 CAV2 CAV3

SL 25 (4.68) 25 (4.68) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
ST 100 (0) 60 (4.80) 100 (0) 100 (0) 100 (0) 100 (0) 80 (3.20)
RS 0 (0) 0 (0) 0 (0) 100 (0) 0 (0) 0 (0) 25 (4.68)
UP 25 (4.68) 0 (0) 0 (0) 0 (0) 100 (0) 0 (0) 0 (0)
DN 100 (0) 0 (0) 100 (0) 33 (7.41) 33 (7.41) 100 (0) 66.7 (7.41)
LT 0 (0) 33 (7.41) 0 (0) 100 (0) 0 (0) 0 (0) 0 (0)
RT 0 (0) 33 (7.41) 0 (0) 67.7 (7.41) 0 (0) 0 (0) 0 (0)
FW 0 (0) 40 (4.80) 0 (0) 40 (4.80) 0 (0) 0 (0) 0 (0)
BW 100 (0) 75 (4.68) 50 (6.25) 100 (0) 50 (6.25) 50 (6.25) 0 (0)
RL 100 (0) 100 (0) 0 (0) 100 (0) 0 (0) 0 (0) 50 (12.5)
RR 33 (7.41) 33 (7.41) 33 (7.41) 33 (7.41) 33 (7.41) 33 (7.41) 33 (7.41)

TOTAL 37.5 (0.58) 32.5 (0.55) 27.5 (.50) 60 (0.60) 30 (0.52) 27.5 (.50) 22.5 (0.44)
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Table 8.4 Confusion table of audio action classi�cation with an HMM. Columns are original actions,
rows are classi�ed actions.

SL ST RS UP DN LT RT FW BW RL RR
SL 4 0 0 0 0 0 0 0 0 0 0
ST 0 5 0 0 0 0 0 0 0 0 0
RS 0 0 3 0 0 0 0 0 0 0 0
UP 0 0 0 4 1 0 0 0 0 0 0
DN 0 0 0 0 2 0 0 0 0 0 0
LT 0 0 0 0 0 3 0 0 0 0 0
RT 0 0 0 0 0 0 3 0 0 0 1
FW 0 0 1 0 0 0 0 5 0 0 0
BW 0 0 0 0 0 0 0 0 4 0 0
RL 0 0 0 0 0 0 0 0 0 0 0
RR 0 0 0 0 0 0 0 0 0 2 2

Table 8.5 Confusion table of audio/video action classi�cation under decision-level fusion.
SL ST RS UP DN LT RT FW BW RL RR

SL 4 0 0 0 0 0 0 0 0 0 0
ST 0 5 0 0 0 0 0 0 0 0 0
RS 0 0 3 0 0 0 0 0 0 0 0
UP 0 0 0 4 0 0 0 0 0 0 0
DN 0 0 0 0 3 0 0 0 0 0 0
LT 0 0 0 0 0 3 0 0 0 0 0
RT 0 0 0 0 0 0 3 0 0 0 0
FW 0 0 1 0 0 0 0 5 1 0 0
BW 0 0 0 0 0 0 0 0 3 0 0
RL 0 0 0 0 0 0 0 0 0 0 0
RR 0 0 0 0 0 0 0 0 0 2 3

Table 8.6 Confusion table of audio/video action classi�cation with unimodal HMMs.
SL ST RS UP DN LT RT FW BW RL RR

ST 0 4 0 0 0 0 0 0 0 0 0
RS 0 0 4 0 0 0 0 0 0 0 0
UP 0 0 0 4 0 0 0 0 0 0 0
DN 0 0 0 0 0 0 0 0 0 0 0
LT 0 0 0 0 0 0 0 0 0 0 0
RT 0 0 0 0 0 0 2 0 0 0 0
FW 0 1 0 0 3 3 1 5 4 0 0
BW 0 0 0 0 0 0 0 0 0 0 0
RL 0 0 0 0 0 0 0 0 0 0 0
RR 0 0 0 0 0 0 0 0 0 2 3
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Table 8.7 Confusion table of audio/video action classi�cation with �xed-weight coupled HMM model.
Columns are original actions, rows are classi�ed actions.

SL ST RS UP DN LT RT FW BW RL RR
SL 4 0 0 0 0 0 0 0 0 0 0
ST 0 5 0 0 0 0 0 0 0 0 0
RS 0 0 4 0 0 0 0 0 0 0 0
UP 0 0 0 4 3 0 0 0 0 0 0
DN 0 0 0 0 0 0 0 0 0 0 0
LT 0 0 0 0 0 3 0 0 0 0 0
RT 0 0 0 0 0 0 3 0 0 0 0
FW 0 0 0 0 0 0 0 5 0 0 0
BW 0 0 0 0 0 0 0 0 4 0 0
RL 0 0 0 0 0 0 0 0 0 2 1
RR 0 0 0 0 0 0 0 0 0 0 2

Table 8.8 Confusion table of audio/video action classi�cation using coupled HMM with variable time-
invariant weights.

SL ST RS UP DN LT RT FW BW RL RR
SL 4 0 0 0 0 0 0 0 0 0 0
ST 0 5 0 0 0 0 0 0 0 0 0
RS 0 0 4 0 0 0 0 0 0 0 0
UP 0 0 0 4 3 0 0 0 0 0 0
DN 0 0 0 0 0 0 0 0 0 0 0
LT 0 0 0 0 0 3 0 0 0 0 0
RT 0 0 0 0 0 0 3 0 0 0 0
FW 0 0 0 0 0 0 0 5 0 0 0
BW 0 0 0 0 0 0 0 0 4 0 0
RL 0 0 0 0 0 0 0 0 0 2 1
RR 0 0 0 0 0 0 0 0 0 0 2

Table 8.9 Confusion table of audio/video action classi�cation using coupled HMM with variable time-
varying weights.

SL ST RS UP DN LT RT FW BW RL RR
SL 4 0 1 0 0 0 0 0 0 0 0
ST 0 5 0 0 0 0 0 0 0 0 0
RS 0 0 3 0 0 0 0 0 0 0 0
UP 0 0 0 4 1 0 0 0 0 0 0
DN 0 0 0 0 2 0 0 0 0 0 0
LT 0 0 0 0 0 3 0 0 0 0 0
RT 0 0 0 0 0 0 3 0 0 0 0
FW 0 0 0 0 0 0 0 5 0 0 0
BW 0 0 0 0 0 0 0 0 4 0 0
RL 0 0 0 0 0 0 0 0 0 2 1
RR 0 0 0 0 0 0 0 0 0 0 2
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Table 8.10 Confusion table of noisy audio action classi�cation with an HMM.
SL ST RS UP DN LT RT FW BW RL RR

SL 3 0 0 0 0 0 0 0 0 0 0
ST 0 0 0 0 0 0 0 0 0 0 0
RS 0 0 4 0 0 0 0 0 0 0 0
UP 0 0 0 3 0 0 0 0 0 0 0
DN 0 0 0 0 0 0 0 0 0 0 0
LT 1 4 0 1 3 3 0 0 3 0 0
RT 0 0 0 0 0 0 3 0 1 0 0
FW 0 0 0 0 0 0 0 5 0 0 0
BW 0 0 0 0 0 0 0 0 0 0 0
RL 0 1 0 0 0 0 0 0 0 2 1
RR 0 0 0 0 0 0 0 0 0 0 2

Table 8.11 Confusion table of noisy audio/video action classi�cation under decision-level fusion.
SL ST RS UP DN LT RT FW BW RL RR

SL 4 0 0 0 0 0 0 0 0 0 0
ST 0 0 0 0 0 0 0 0 0 0 0
RS 0 2 4 0 0 0 0 0 0 0 0
UP 0 0 0 4 3 0 0 0 0 0 0
DN 0 0 0 0 0 0 0 0 0 0 0
LT 0 0 0 0 0 3 0 0 0 0 0
RT 0 0 0 0 0 0 3 0 0 0 0
FW 0 2 0 0 0 0 0 5 2 0 0
BW 0 0 0 0 0 0 0 0 2 0 0
RL 0 1 0 0 0 0 0 0 0 2 1
RR 0 0 0 0 0 0 0 0 0 0 2

Table 8.12 Confusion table of noisy audio/video action classi�cation with unimodal HMMs.
SL ST RS UP DN LT RT FW BW RL RR

SL 4 4 4 0 0 0 0 0 1 0 0
ST 0 0 0 0 0 0 0 0 0 0 0
RS 0 0 0 0 0 0 0 0 0 0 0
UP 0 0 0 4 1 0 0 0 0 0 0
DN 0 0 0 0 2 0 0 0 0 0 0
LT 0 0 0 0 0 0 0 0 0 0 0
RT 0 1 0 0 0 0 1 0 0 0 1
FW 0 0 0 0 0 0 0 3 1 0 0
BW 0 0 0 0 0 0 0 0 0 0 0
RL 0 0 0 0 0 0 0 0 0 0 0
RR 0 0 0 0 0 3 2 2 2 2 2
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Table 8.13 Confusion table of audio/video action classi�cation with �xed-weight coupled HMM model.
Columns are original actions, rows are classi�ed actions.

SL ST RS UP DN LT RT FW BW RL RR
SL 4 0 0 0 0 0 0 0 0 0 0
ST 0 0 0 0 0 0 0 0 0 0 0
RS 0 3 4 0 2 0 0 0 0 0 0
UP 0 0 0 4 1 0 0 0 0 0 0
DN 0 0 0 0 0 0 0 0 0 0 0
LT 0 1 0 0 0 2 0 0 0 0 0
RT 0 0 0 0 0 1 3 0 0 0 0
FW 0 1 0 0 0 0 0 5 2 0 0
BW 0 0 0 0 0 0 0 0 2 0 0
RL 0 0 0 0 0 0 0 0 0 2 1
RR 0 0 0 0 0 0 0 0 0 0 2

Table 8.14 Confusion table of noisy audio/video action classi�cation using coupled HMM with variable
time-invariant weights.

SL ST RS UP DN LT RT FW BW RL RR
SL 4 0 0 0 0 0 0 0 0 0 0
ST 0 0 0 0 0 0 0 0 0 0 0
RS 0 4 4 0 0 0 0 0 0 0 0
UP 0 0 0 4 3 0 0 0 0 0 0
DN 0 0 0 0 0 0 0 0 0 0 0
LT 0 0 0 0 0 3 0 0 0 0 0
RT 0 0 0 0 0 0 3 0 0 0 0
FW 0 1 0 0 0 0 0 5 2 0 0
BW 0 0 0 0 0 0 0 0 2 0 0
RL 0 0 0 0 0 0 0 0 0 2 1
RR 0 0 0 0 0 0 0 0 0 0 2

Table 8.15 Confusion table of noisy audio/video action classi�cation using coupled HMM with variable
time-varying weights.

SL ST RS UP DN LT RT FW BW RL RR
SL 4 1 1 0 0 0 0 0 0 0 0
ST 0 1 0 0 0 0 0 0 0 0 0
RS 0 1 3 0 0 0 0 0 0 0 0
UP 0 0 0 4 2 0 0 0 0 0 0
DN 0 0 0 0 1 0 0 0 0 0 0
LT 0 0 0 0 0 3 0 0 0 0 0
RT 0 0 0 0 0 0 3 0 0 0 0
FW 0 0 0 0 0 0 0 5 0 0 0
BW 0 2 0 0 0 0 0 0 4 0 0
RL 0 0 0 0 0 0 0 0 0 1 1
RR 0 0 0 0 0 0 0 0 0 1 2
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CHAPTER 9

CONCLUSIONS

Rapid development of novel computing, communication, and display technologies has brought into

focus the inadequacies of existing HCI techniques. Keyboards and mice remain the major HCI modes

just as ten years ago, yet the information ow between the user and computer has grown tremendously.

Thus in recent years there has been a surge of interest in novel modalities for HCI that will potentially

resolve the interaction bottleneck. Despite the abundance of interaction devices, the level of naturalness

and e�ciency of HCI has remained low. This is due in particular to the lack of robust sensory data

interpretation techniques. For instance, automatic speech recognition (ASR) still performs satisfactorily

only in highly restrictive, single-user, low-noise setups. Natural gesture interpretation is con�ned to its

infancy. Moreover, even though it is clear that natural human-to-human interaction involves multiple

communication modalities, current HCI narrowly focuses on interpretation of single sensing modalities.

Potential bene�ts of multimodal interaction are numerous: reinforcement of an individual mode's in-

terpretations, substitution of missing or unreliable HCI modes, etc. However, joint interpretation of

multiple modalities is not a trivial task.

This dissertation presents a probabilistic approach to analysis and interpretation of data acquired

by computer sensory modalities. The approach is based on modeling of user's intentions, actions, and

their realizations using the framework of dynamic Bayesian networks or DBNs. Dynamic Bayesian

networks are a generalization of the successful statistical time-series models such as hidden Markov

models, commonly found in ASR, and Kalman �lters, the essential tools of dynamic systems. Hence, it

is natural to consider the DBN models as a basis of the general spatio-temporal action interpretation

task. The framework of Bayesian networks provides one with a mathematically rigorous foundation for

model learning and data classi�cation in light of probabilistic Bayesian inference. It also gives one a

powerful set of tools and techniques to generalize from and build upon the basic models. Three cases of

novel DBN-inspired complex temporal models were introduced in this dissertation: mixtures of DBNs

in Chapter 4, mixed-state DBNs in Chapter 5, and coupled HMMs in Chapter 6.
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A mixture of dynamic Bayesian networks can describe a set of dynamic systems that all draw their

observations from a common pool of data. This situation occurs if one attempts to infer the motion of

several objects, whose appearances are all captured in a single image frame. The tasks of associating

every observations from the pool with an object and inferring the object's state were solved in this

dissertation from the perspective of Bayesian inference. Moreover, the same perspective yields learning

of the model parameters a well-de�ned and easy task.

Mixed-state DBNs are introduced to bridge the gap between discrete- and continuous-state dynamic

models. For instance, HMMs have excelled greatly in modeling discrete language concepts behind natural

processes such as speech. Continuous-state dynamic systems, on the other hand, are the basic descriptors

of the physical systems employed in production and perception of speech or hand movements|the

carriers of concepts. Until now, the modeling of the concepts and physical systems has largely remained

separated. Under the auspices of the dynamic Bayesian network framework in Chapter 5, this dissertation

formulated the mixed-state DBN model, a uni�cation of the concept HMMs and dynamic systems. Such

networks yield an optimal solution for joint modeling of temporal events whose concepts remain highly

coupled with the physical systems.

Finally, DBNs allow us to model the concepts that are expressed and sensed through a number of

di�erent but concurrent modalities. With that in mind three coupled DBN architectures were established

in Chapter 6. Coupled HMMs are suitable for modeling of multiple modality observations coming from

di�erent concepts with varying levels of coupling. As before, Bayesian network inference provides an

elegant framework to e�ciently infer from multimodal data what the underlying concepts are. Moreover,

the same framework yields adapted parameters that accurately model the level of interaction among the

concepts.

Experimental validation of the proposed approaches was done in a setup for control of a virtual

display. Attention was focused on modeling of visually perceived free hand gestures and speech. Hand

gestures and speech are often used in conjunction in natural human-to-human communication. A com-

bination of the mixture of DBNs and mixed-state networks was used in Chapter 7 to describe concepts

and realizations of visually perceived hand gestures. We obtained encouraging results in the domain

of restricted unimodal gesture interpretation. Interpretation of a small gestural command set with this

model achieved recognition rates of close to 80 percent, an improvement of 8 to 20 percent over standard

techniques. Furthermore, the same model was used for concurrent estimation of hand motion dynamics,

a crucial step in gestural analysis. By doing so we introduced the constraints of higher-level knowledge,

usually only present in the recognition phase, to dynamic system state estimation.

Finally, we considered the role of DBNs in multimodal interpretation within the HCI context. Clas-

sical unimodal concept models, such as HMMs when applied directly to multiple observation domains,

perform satisfactorily if the concepts behind multiple observations are either highly independent or very
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dependent. Coupling between speech and gestures, two most expressive communication modalities, can

be e�ciently tackled within the coupled HMM framework. Experiments described in Chapter 8 con-

�rmed that, compared to the extremes of highly coupled and highly decoupled concept models, adaptive

coupled HMM structures perform favorably. This is particularly emphasized in situations where neither

of the two modalities is dominant. Whereas independent classi�cation of speech and gestures yielded

misclassi�cation rates in the vicinity of 35 percent the coupled inference brought them down to 22.5 per-

cent. Of course, the price to pay was not always small. Adaptive coupled methods add a computational

burden of iterative inference that can be overwhelming. In essence, they require that the decoupled

inference be repeated a number of times. In my experiments this only meant a �ve-fold increase in

complexity. More practical situations, however, may require that the trade-o� between computational

complexity and recognition performance be evaluated on a case-by-case basis.

9.1 Future Work

The use of Bayesian networks for modeling and interpretation of spatio-temporal actions, especially

computer-sensed human communication modalities, is well-founded and general enough to open the

door to a variety of possible extensions. This dissertation addressed some initial aspects and introduced

basic models of complex communication processes. Future work can be carried on with the same DBN

philosophy in mind. In particular, two possible avenues can be taken.

One may focus on improved modeling of visually observed hand motions. The model presented in

this work in Chapter 7 simpli�es the motion of the arm and the hand to the one of an independent

Newtonian object|the hand itself. To model an articulated structure such as the arm one can construct

a mixture-of-DBN model where the dynamic systems inuence each other. For example, one (\root")

dynamic system can be devoted to modeling the motion and appearance of the human torso whereas the

other dynamic systems can model the motion and shape of the upper and the lower arm with respect

to the torso and each other. Equivalent models have in fact been presented lately in some computer

vision literature, but without the rigorous mathematical framework that DBN o�ers. In addition, as

presented in Chapter 7, the DBN framework allows one not only to specify generic motion dynamics but

also to include the models of concepts that drive those dynamics. This can be used to model not only

the appearance of communicative concepts but also a number of natural human actions such as running,

walking, etc.

Another avenue of work stems from the modeling of coupled communication concepts. Coupled

HMMs of Chapter 6 in the form presented in this dissertation emphasize coupling of fairly low-level

concept states. Nonetheless, the same architecture can be utilized to describe interaction of modes on a

higher, possibly semantic level. This can of course be applied to more general speech/gesture language
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modeling. On the other hand, the tools of approximate analysis of coupled HMMs can serve as a basis

for a whole suite of similar models. For instance, some of those models can address the interacting

modalities that occur at naturally di�erent sampling rates. Finally, the merger of multiple coupled

hidden Markov modeled concepts with the mixed-state DBNs has enormous future potential deserving

another thorough look.

Conclusions and tools of this study are general enough to be used by future researchers as a basis

for novel probabilistic information fusion architectures. The author hopes that this study serves as an

important stepping stone in the quest for a thorough mathematical foundation behind the ever practical

HCI.
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APPENDIX A

VARIATIONAL INFERENCE THEOREM

Consider the following form of distribution Q:

Q(X ) =
e�HQ(X ;Yj�)

ZQ
; (A.1)

where HQ is the Hamiltonian of the distribution, and ZQ is the normalization factor chosen such thatP
X Q(X ) = 1. Furthermore, let HQ be de�ned as

HQ(X ;Yj�) = �
X
i

fi(X ;Y)gi(�): (A.2)

In other words, consider a particular family of exponential distributions Q whose su�cient statistics

are hfii. Most of the commonly encountered distributions (Gaussian, etc.) belong to this family. For

instance, for a normally distributed x with mean � and variance �, the Hamiltonian is

HQ(xj�;�) =
1

2

�
log(2�) + log(j�j) + (x� �)0��1(x� �)

�
: (A.3)

The goal of variational inference is to minimize the Kullback{Leibler (KL) divergence D(QjjP ) by

varying the parameters �. Formally,

�� = argmin
�

X
X

Q(Xj�) log
P (XjY)

Q(Xj�)
: (A.4)

The following theorem from Ghahramani [56] leads to a set of necessary conditions that � has to

satisfy in order to minimize the KL divergence between the distributions.

Theorem 1 For any distribution P (XjY) de�ned over a set of variables X , where H(X ;Y) is de�ned

so that

P (X ) =
1

Z
e�H(X ;Y)

and any approximating distribution Q in the exponential family parameterized by �, the KL divergence

D(QjjP ) can be minimized by iteratively solving the set of following �xed point equations:

@ hHQ(X ;Y)i

@ hfi(X ;Y)i
�
@ hH(X ;Y)i

@ hfi(X ;Y)i
= 0; 8i; (A.5)

where h�i is taken over the approximating distribution Q.
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Proof. From the de�nition of KL divergence it follows that

D(QjjP ) =
X
X

Q(X ) log
P (X )

Q(X )

= hH(X ;Y)i � hHQ(X ;Y)i � logZQ + logZ: (A.6)

To minimize D one �rst needs to �nd its derivative with respect to parameter �:

dD

d�
=
d hH(X ;Y)i

d�
�
d hHQ(X ;Y)i

d�
�
d logZQ
d�

:

We now look speci�cally at each of the three terms in this expression. Given the form of distribution Q

from Equation A.2 the terms can be expanded as

d hHi

d�
=

X
i

@ hHi

@ hfii

d hfii

d�

d hHQi

d�
=

d

d�

"
�
X
X

X
i

fi(X ;Y)gi(�)Q(X )

#

= �
X
X

X
i

fi(X ;Y)

�
dgi(�)

d�
Q(X ) + gi(�)

dQ(X )

d�

�

= �
X
i

dgi(�)

d�
hfi(X ;Y)i �

X
i

gi(�)
d

d�
hfi(X ;Y)i

d logZQ
d�

=
1

ZQ

d

d�

 X
X

e�HQ(X ;Y)

!

= �
1

ZQ

X
X

e�HQ(X ;Y) dHQ(X ;Y)

d�

=
X
i

X
X

Q(X )
dgi(�)

d�
fi(X ;Y)

=
X
i

dgi(�)

d�
hfi(X ;Y)i :

Combining the three terms together yields

dD

d�
=

X
i

�
gi(�) +

@ hHi

@ hfii

�
d hfii

d�

=
X
i

�
@ hHQi

@ hfii
�
@ hHi

@ hfii

�
d hfii

d�
:

Finally, setting dD=d� to zero leads to expression in Equation A.5. 2

Note (i): The solution of the KL divergence minimization satis�es the expectation step of GEM

algorithm in Section 2.3. Clearly,

dB(P;Q; �)

d�
=
dD

d�
=
d hH(X ;Y)i

d�
�
hHQ(X ;Y)i

d�
�
d logZQ
d�

:
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Hence, variational inference (in general) provides an optimal solution for the expectation step of GEM.

Note (ii): Theorem 1 also holds in the case of deterministic annealing variant of GEM. Distribution

Q in expressions h�i is, nevertheless, raised to the power of � = 1=Tanneal.
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APPENDIX B

MIXTURE OF DYNAMIC BAYESIAN NETWORKS

From the de�nitions of the joint and factorized pdf Hamiltonians in Equations 4.3 and 4.4 it follows

that

hH �HQi =
M�1X
m=0

N�1X
n=0

T�1X
t=0

�D
s
(m)
t (n)

E
� h(m)

t (n)
�D

logPr(y
(m)
t jx(n)t )

E

+

M�1X
m=0

N�1X
n=0

T�1X
t=0

D
s
(m)
t (n)

E
log q

(m)
t (n): (B.1)

To minimize the divergence between the original pdf P and the approximating pdf Q, according to The-

orem 1, partial derivatives of hH �HQi with respect to the su�cient statistics of Q need to vanish.

Su�cient statistics of distribution Q are
D
s
(m)
t (n)

E
and the statistics determined by the observation

distribution Pr(y
(m)
t jx(n)t ). However, regardless of what the observation pdf su�cient statistics are, the

quantity hH �HQi vanishes by choosing

h
(m)
t (n) =

D
s
(m)
t (n)

E
= Pr(st(m) = n):

On the other hand, partial derivative of hH �HQi with respect to
D
s
(m)
t (n)

E
is

@ hH �HQi

@
D
s
(m)
t (n)

E = log q
(m)
t (n)�

D
logPr(y

(m)
t jx(n)t )

E
:

Equating the above quantity with zero yields

q
(m)
t (n) = exp

D
log
�
Pr(y

(m)
t jx

(n)
t )
�E
:
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APPENDIX C

MIXED-STATE DYNAMIC BAYESIAN NETWORKS

Given the de�nitions of the coupled DBN Hamiltonian from Equation 5.8 and the approximating DBN

Hamiltonian from Equation 5.11 and Theorem 1 of variational inference parameters from Section 2.2.3,

one �nds

hH �HQi =
T�1X
t=1

(hxti �A hxt�1i)
0
Q�1 (ut �D hsti)

+
1

2

T�1X
t=1

tr
�
D0Q�1D hsts

0
ti
	
�
1

2

T�1X
t=1

(ut)
0Q�1 (ut)

+ hx0iQ
�1
0 (u0 �D hs0i) +

1

2
tr
�
D0
0Q

�1
0 D0 hs0s

0
0i
	
�
1

2
(u0)

0Q0
�1 (u0)

+
T�1X
t=0

hsti
0 log qt: (C.1)

Derivatives of the above quantity with respect to the su�cient statistics of Q, hx� i and hs� i1, are

@ hH �HQi

@ hx� i
=

8>>><
>>>:

Q�1 (u� �D hs� i) � = T � 1

Q�1 (u� �D hs� i) +A0Q�1 (u�+1 �D hs�+1i) 0 < � < T � 1

Q�1
0 (u� �D hs� i) +A0Q�1 (u�+1 �D hs�+1i) � = 0

(C.2)

and

@ hH �HQi

@ hs� (i)i
=

8<
: �d

0
iQ

�1 (hx� i �A hx��1i) +
1
2d

0
iQ

�1di + log q� (i) 0 < � < T

�d0iQ
�1
0 hx0i+

1
2d0

0
iQ

�1
0 d0i + log q0(i) � = 0

: (C.3)

Setting the above partial derivatives to zero results in the �xed-point variational parameter equations

of Section 5.3.2.

1Derivatives of


H �HQ

�
with respect to hx�x0� i,



x�x

0

��1

�
, and



s� s

0

��1

�
are zero
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APPENDIX D

COUPLED HIDDEN MARKOV MODELS

D.1 Fixed-Weights Coupled Hidden Markov Model

To �nd the optimal values of variational parameters for the �xed-weight factorized model, one em-

ploys Theorem 1. The mean di�erence of Hamiltonians of the original and the approximating network

is

hH �HQi =

�
T�1X
t=1

M�1X
n=0

M�1X
m=0;m 6=n

w(n)(m)
D
s
(n)
t

E
0 logP (n;m)

D
s
(m)
t�1

E

+

T�1X
t=0

M�1X
n=0

D
s
(n)
t

E
0 log q

(n)
t :

Su�cient statistics of each of the HMM submodels Q
(l)
q are

D
s
(l)
�

E
and

D
s
(l)
� s

(l)
��1

0
E
. Taking a partial

derivative of the mean Hamiltonian di�erence with respect to
D
s
(l)
�

E
yields

@ hH �HQi

@
D
s
(l)
�

E =

8>>>>>><
>>>>>>:

�
PM�1

m=0;m6=l w
(m)(l) logP (m;l)0

D
s
(m)
1

E
+ log q

(l)
� � = 0

�
PM�1

m=0;m6=l w
(l)(m) logP (l;m)

D
s
(m)
��1

E
�
PM�1

m=0;m6=l w
(m)(l) logP (m;l)0

D
s
(m)
�+1

E
+ log q

(l)
� 0 < � < T � 1

�
PM�1

m=0;m6=l w
(l)(m) logP (l;m)

D
s
(m)
T�2

E
+ log q

(l)
� � = T � 1:

(D.1)

The partial derivative with respect to
D
s
(l)
� s

(l)
��1

0
E
is always zero, for any � .

D.2 Adaptive-Weights Coupled Hidden Markov Model

The mean di�erence of Hamiltonians of the original distribution P de�ned in Equation 6.10 and the

approximating distribution Q de�ned in Equation 6.11 is

hH �HQi =
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T�1X
t=1

M�1X
n=0

h
(c(n) �

D
w(n)(n)

E
tr
n
logP (n;n)

D
s
(n)
t�1s

(n)
t

0
Eo

�
M�1X

m=0;m6=n

D
w(n)(m)

ED
s
(n)
t

0
E
logP (n;m)

D
s
(m)
t�1

E35

+

T�1X
t=0

M�1X
n=0

D
s
(n)
t

E
0 log q

(n)
t

+(T � 1)
M�1X
n=0

D
w(n)

E
0 log r(n):

Partial derivatives with respect to su�cient statistics of the distribution Q are

@ hH �HQi

@
D
s
(l)
� s

(l)
��1

0
E = c(n) �

D
w(n)(n)

E
; (D.2)

@ hH �HQi

@
D
s
(l)
�

E =

8>>>>>><
>>>>>>:

�
PM�1

m=0;m6=l



w(m)(l)

�
logP (m;l)0

D
s
(m)
1

E
+ log q

(l)
� � = 0

�
PM�1

m=0;m6=l



w(l)(m)

�
logP (l;m)

D
s
(m)
��1

E
�
PM�1

m=0;m6=l



w(m)(l)

�
logP (m;l)0

D
s
(m)
�+1

E
+ log q

(l)
� 0 < � < T � 1

�
PM�1

m=0;m6=l



w(l)(m)

�
logP (l;m)

D
s
(m)
T�2

E
+ log q

(l)
� � = T � 1

(D.3)

and
@ hH �HQi

@


w(l)(k)

� = �
T�1X
t=1

tr
nD
s
(l)
t s
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Partial derivatives with respect to the remaining su�cient statistics are zero.

D.3 Adaptive Time-Varying Coupled Hidden Markov Weights

Model

The mean di�erence of Hamiltonians in the time-varying model takes a form similar to that of the
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Partial derivatives with respect to the su�cient statistics of pdf Q which are not identically zero are

given as
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