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Abstract—Recent work on filter banks and related expansions components, the wavelet transform, which has good frequency
has revealed an interesting insight: Different filter bank trees can  selectivity at lower frequencies and good spatial localization at
be regarded as different ways of constructing orthonormal bases pigner frequencies, is a bad fit. This has motivated alternative

for linear signal expansion. In particular, fast algorithms for hes that daptive in thei tati d
finding best bases in an operational rate-distortion (R/D) sense approaches that areé adaptive In their representation and more

have been successfully used in image coding. Independently offobust in dealing with a large class of signals of unknown
this work, recent research has also explored the design of filter characteristics. The goal is then to make the transform signal-

banks that optimize energy compaction for a single signal or a adaptive, i.e., to makd vary with the signalz. This leads to
class of signals. In this paper, we integrate these two different a search for the “optimal’A*

but complementary approaches to best-basis design and propose
a coding paradigm in which subband filters, tree structure, and A* = argmin, Cos{Ax). (1)
guantizers are chosen to optimize R/D performance. These coder

attributes represent side information. They are selected from a for some specified cost function. While minimizing (1) over
codebook designed off-line from training data, using R/D as the “all possible” A is infeasible, choosing a large but finite library

design criterion. This approach provides a rational framework , - -
in which to explore alternatives to empirical design of filter of A’s that can be searched efficiently would make finding the

banks, quantizers, and other coding parameters. The on-line Optimal A* both feasible and desirable.
coding algorithm is a relatively simple extension of current R/D- Recently, wavelets and filter bank theory, along with their

optimal coding algorithms that operate with fixed filter banks  generalizations like (adaptive) wavelet packets, have appeared
and empirically designed quantizer codebooks. In particular, it - o¢ giernatives to the classic Fourier expansions [1]. An
is shown that selection of the best adapted filter bank from the . o .
codebook is computationally elementary. interesting insight tp emerge from the wprk on filter banks
and related expansions is that different filter bank trees can
be regarded as different ways of constructing signal expansion
bases. These trees (termed wavelet packets in [2]) represent a
huge library of orthonormal bases having rich space-frequency
diversity with easy-to-search capability thanks to the tree
. INTRODUCTION structure. Despite the tree structure, the number of library
RANSFORM coding has become thie factostandard €ntries is huge, e.g., a depth-5 two-dimensional (2-D) wavelet
for image and video Compression_ It is based on tr@Cket decomposition has a Iibrary of 5¢6107® bases! This
principle that a (linear) transformed version of a given imagearadigm, whose main strength is its ability to be signal-
is often easier to compress (i.e., has better energy compac@éiaptive without needing explicit training models, has led to
and decorrelation properties) than the original signal. T exciting new area of research on adaptive signal decomposi-
traditional approach has been to use a fixed transtarge.g., tions for compression using wavelet packets and was originally
the discrete cosine transform, the discrete wavelet transforfifroduced in [2]. The idea is to decompose a discrete signal
etc.). Although this may suffice for fixed classes of signalssing all possible wavelet packet bases of a given wavelet
that are well suited in some sense (e.g., in statistical timgernel and then to find the “best” wavelet packet basis. For
frequency characterization) to the fixed transforn it is Signal and image coding, a fast algorithm for finding the best
limiting when dealing with arbitrary classes of signals havingasis in an operational rate-distortion (R/D) sense, i.e., to find
unknown or time-varying characteristics. For example, fé combination of best basiA and best set of quantize@,
image or image segments having high-frequency stationms been introduced in [3]. In this case, the “optimal” choice is

Index Terms— Adaptive coding, best basis methods, filter
banks, image compression, rate-distortion methods, subband
coding, vector guantization.
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conversely that minimizes the total coding bit rate for a targete restrict our attention to uniform scalar quantizers, in
quality. This algorithm has been subsequently generalizedvithich case,} is a single parameter, the quantizer step
[4] and [5] to provide for spatial adaptation in addition tesize. However, the concepts presented here apply to more
frequency adaptation. Such expansions give rise to arbitraxymplex quantizers, such as nonuniform scalar quantizers and
orthonormal tilings of the time—frequency plane. vector quantizers. The tree structure may be described by
Independently of these developments, recent efforts habe splitting decisions € {0, 1} at each noden of the
led to the design of orthogonal subband filter banks that aree. Our transform is described by the collection of pairs
optimally adapted to input signal statistics, in the sense thgtF B, s(™)}; likewise, the quantizers are described by
they maximize the energy compaction of the two-channel collection {Q™}. A particular choice of transform and
filter bank [6]-[10]. The original paper [6] demonstratedjuantizers is viewed as a codewaotdthe collection of all
some of the advantages of this approach in multiresolutiondewords is a codebodk We use the symbdl-) to denote
image coding. Until recently, an obstacle to the use of suclhdeword length.
adaptive methods was the limited performance and substantial
numerical complexity of the optimization algorithms involved. On Codebook Complexity

However, [9] and [10] showed that the optimization problem Our proposed generalization of the best-basis framework of

may be reformulated in terms of thoduct filter P(f) = [2]-[5] raises two important issues: computational complex-
|H(f)|*> associated with the lowpass filtéf( f) and becomes : ; b ’ putat mp
ity and the increased overhead cost for coding applications.

a linear semi-infinite programming problem. This formulation . . .
) : .~ Node-split decisions are binary-valued and losslessly encoded.
provides a framework for analyzing the performance of signgl: . . . o
owever, quantizer step sizes can be arbitrary positive real

adapted filter banks, as well as fast and reliable algorithms ) .
for computing globally optimal filter banks. The filte( f) nimbers, and filter bank parameters belong to a continuum

. . o . of admissible values as well. Clearly, all these parameters

IS obtained by ;pec_tral factor.|zat|on of the optmal p.rOdu%ust somehow be quantized, and a fundamental tradeoff arises

mﬁﬁ:ma—rze ;leuetlosrl)llljstior;]m Tuhnelqgiéji? tygicnal f(;:rhﬁ‘)illgeer 'Ea;hk%etween accuracy of this quantization (hence, amount of the
P : 99 ide information) and adaptation performance. We reformulate

adapted to lowpass processes is marginally higher than thatt X RID optimization problem (2) to include the overhead cost

conventional filter banks, but significant improvements ha . . . .
been obtained with image textures [6], [10]. \f(graennd(:?;iﬂgctcr:riégdex o and A. The optimal choice for
n

The authors in [2]-[5] on the one hand, and [6]-[10], o
thg othgr hand, approach. the problem of designing best baggs, A*) = argming, 4 [Cos{Q, A) + Cos(QAxz)]. (3)
using filter banks from different but complementary angles.

Our main objective in this paper is to integrate these paradigifise fundamental tradeoff between the two terms on the right-
and to propose a new coding framework in which the subbahdnd side of (3) may be dealt with in a number of ways.
filters, tree structure, and quantizers are jointly designed add-a higher level, these may be classified as belonging to
tively. In this sense, our proposed paradigm can be viewadntraining-based versus training-based methods. The former
as a generalization of the adaptive tree-structured best basiattractive when statistical priors are explicitly available. One
framework of [2]—-[5] to include the freedom to change thapproach is to assume a uniform prior, and assume that the
filters at each node of the subband tree. Additionally, averhead cost is independent € and A. This approach

will be detailed later, due to the information gleaned durinigas been used in [3]-[5]. When training data is available,
the training phase, our paradigm results in potentially muttowever, training-based frameworks can be more efficient as
improved on-line speed due to two factors. First, the candiddatey “learn the prior” from the training data. This second
set of filter bank tree structures over which to search for tla@proach (training-based) is central to the new framework we
best basis can be smaller than the traditionally considenempose. We briefly enumerate the two popular approaches
set of all pruned subtrees of a full tree of (sufficiently) largeited above.

depth. Second, the list of candidate quantizer options can bel) Empirical Design [3]-[5]: A prespecified collection of
potentially much trimmer than aad hoc set of needlessly quantizers{(Q™} is assigned to each node. A typical choice
large number of choices. in practical image coding applications is to use a discrete set of

Despite these computational advantages, we wish to emphaiform scalar quantizers, with step sizes equally spaced over
size that the main contribution of our work, as we see it, B prespecified range. Quantizer indices are encoded using a
the formulation of a systematic framework in which to studfixed-length code, implicitly assuming a uniform distribution
fundamental problems of selection and coding of subbanél the indicest The depth of the tree is typically limited in
coder parameters. The particular optimization algorithms uspdhctice to three or four resolution levels. For example, for
in this paper are only a first step toward an extremely ambitioas512 x 512 image, a quantizer set of 32 choices, and a
goal, and future research on optimization techniques shoumdximum depth-3 tree, the total overhead for the quantizer and
further improve practical performance of the coder. tree description comes to less than 0.001 34 b/pixel, which is

certainly negligible for even low bit rate coding applications.

A. Notation
Fil bank d . d INote that it is the quantizer step-size choice that is coded using a
liter bank and quantizer parameters are represente fi é(d-length code. The quantized symbol stream can be coded using a variable-

vectorsF'B and @, respectively. For clarity of the exposition,length entropy code.
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The set{FB™} of possible filter banks should also be: € C, producing an optimal codeworé ). We solve this

discretized, and one may empirically choose the accuracy wjtoblem using a fast optimization algorithm to be described

which the filter bank parameters are to be represented. ForSection IIl.

instance, if 32 prespecified candidate filter banks are allowedThe design of the codebook is described in Section Il.

at each node, the total overhead for the filter bank descripti®@he goal is to construct this codebook in a R/D optimal

is the same as above. fashion over some broad ensembBlef image sources. More
2) Training: One disavantage of the codebook desigspecifically, it is desired to minimize the average cost

method above is that the set of quantizers at each node of the

tree, the set of filters, and the number of resolution levels in J1(C) = / J(EDIHP(dI)

the tree are chosen empirically instead of by optimizing the I

fundamental tradeoff between COAx) and CostQ, A) where P(dI) is the underlying probability distribution over
in (2). In particular, uniform quantization and weighting ofZ. While P(dl) is unknown, atraining set7 of images
quantizer and (more importantly) filter bank parameters, jgpresentative of is available; therefore, the actual codebook

inefficient. The underlying assumption of uniform parametgfesign problem consists of minimizing the empirical average
distribution does not reflect the high likelihood of certain

filter banks (such as the classical designs in [1]) relative to jl(c) 2 i Z J(&(D)|I). (5)
other admissible but pathological choices. This observation 7] IeT
motivates an alternative approach, namely, optimal design%fio

the codebook with respect to some broad ensemble of ima ¢ solution consists of partitioning the ensemiieinto
ropriate subsets and assigning to each subset a repre-

sources. Training data are used for learning the statistics X ; : .
this ensemble and designing the codebook. Codebook deﬁsg%qtatlve transform and quantizer, encoded using a yanaple-
might be computationally intensive but is performefd-line, gth ggdeyvordc. In other words., the codebook de3|gn.|s
unlike the actual test image to be encodedline a c[asslflcatlon problem. Our _de3|gn problem bgars obvious
Off-line optimization of the filters (into filter classes base&'m'_l"’mtIes to e_ntropy-cor_lstramed vector quantizer (E.CVQ)
on statistical training data) is attractive not only from aﬂleagn [13], Wh'Ch_ we brlef_ly describe in the Appendlx for
overhead cost but also from a computational Complexi\‘%)mpleteness. While the spirit o.f our approach is captured by
viewpoint as on-line operation reduces to an elementary lo e above ECVQ codebqok design algorithm, in our case, the
complexity classification task rather than a complicated f”t&odewords represent attributes of the transform a nd quantizers
design operation (see Section I1l). rather t_han image _data, as would be the case in ECVQ. The
theoretical foundations for such an approach are described in
[11].
Although the approach embodied by (5) is conceptually
Each element of the codebook’ contains attributes of the appealing, its solution appears to be beyond reach, due to
transform and the quantizers. The codeword is viewed as the large dimensionality of the set of attributes and nonlinear
first part of a code for encoding the test image, and the imaggeractions between these attributes. This difficulty is com-
data encoded with respect to these attributes are viewed asgbended by the dependency efch attribute onall image
second part of the code. This simple but powerful paradigpixels! The optimization problem would be simplified if block
has been used for constructing coders that perform well onransforms were used since in this case, transform/quantizers
variety of sources with (partially) unknown statistics [11], [12]attributes would depend only on local image blocks [12]. Even
The total number of bits for encoding the test imdge the so, the optimization problem (5) remains highly nonlinear,
sum of the length#(c) andi(!|c) for the first and second partsand it is necessary to construct an approximation to the
of the code, respectively. Denote byhe image reconstructed optimal solution. We use the theoretical coding gain [1], [13]
by the decoder. We define the operational distorfi®fif|c) as approximation to (5) for the design of the filter banks. This
the mean-squared value of the reconstruction efrer!. In is a critical approximation that might be questionable at low
order to apply our formulation to various R/D tradeoffs, wéit rates. We can retain the original formulation (5) for the
take the classical approach of minimizing the Lagrangian cat#sign of quantizers.
function A possible generalization of our approach is outlined in
Section IV. Numerical results illustrating important aspects of
the design are presented in Section V, and conclusions are
é)resented in Section IV.

C. Overview of the Approach

J(ell) £ D(|e) + A\[I(c) + I(I]e)] (4)

where A is the Lagrangian multiplier that trades off rat

against distortion. This criterion is of the general form (3). The

Lagrangian optimization problem (4) arises when the encoder Il. CODEBOOK DESIGN

needs to mimimize distortion subject to a rate constraint, or The algorithm uses a training sEtmade of images assumed

vice-versa: represents the slope at the operating point on the be representative of the ensemBlef images of interest.

R/D curve? The first stage of the encoder minimizes (4) ovebur codebook design algorithm is motivated by a number
2As has been pointed out in [3], there is a convex relationship between %]:a practical co_nmderanqns. We. first d‘?s'g.” .the filters and

. fen the quantizers. While our filter design is independent of

targetR and the targef, which results in a fast bisection-type algorithm to ’ ! . )
relate the two constraints. rate constraints, the design of the tree and quantizers is very
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much dependent on the filters. The primary motivation for our On the Assumptions UsedAlthough Assumption 2 is ap-
sequential design is that the filters are meant to capture timximately satisfied for stationary or slowly varying signals,
statistical properties of the input, and their design is guided ity remains to be seen whether the assumption holds for
the theoretical coding gain cost function that is independent gfal-world images, at various resolution levels. This issue
specific coding bit budget constraints. We also note that evienexamined in Section V. Another interesting point is that
though the inclusion of a R/D design constraint in the filtenghile maximization ofs7 implies maximization of the coding
would clearly be a reasonable alternative to our approach, dj&n (6) under the various assumptions above, maximization
resulting design problem currently appears to be intractablepft 52 is still optimal in the R/D sense when some of these
would also heavily complicate the storage requirements as wgdsumptions are not satisfied. Consider, for instance, scalar
as the complexity of design during both training and codinguantizers with operational R/D functions of the fodh =
phases. This arises from the nonlinear form of (5) as well agﬁ(R), where ﬁ(.) is independent ofz2 and is strictly
from the existence of coupled dependencies betvadiefiter monotonically decreasingbut not necessarily convex) over

banks and quantizers. the positive half real line. This model includes the standard
model D(R) = v272% as a special case. Property 1 below
A. Filter Bank Design shows that the filter banks that maximiz@ are still optimal
Define thetheoretical coding gairfor the two-channel filter in the R/D sense for any strictly montonib(1z) and for
bank FB applied to input/ as any bit allocation. This property applies to arbitrary classes

F of orthonormal filter banks, including constrained-length
(02 +02)/2 .
ARG Vi (6) filter banks.

(a,%ag)l/? Property 1: Let F,,; be the set of filter banks that max-
) ) ) ) ) imize o}, (or, equivalently, minimizes;) over some subset
where o, and o, are the energies of the signals in ther ot the set of orthonormal filter banks. Then, for a fixed bit

two channels. This definition in terms of energies i”Steaﬂlocation{R; R,} whereR;, > R,, the set of minimizers of
of variances is adopted for the sake of consistency wime overall dis’torﬁon functioD = f’[a%ﬁ(Rh)JraQﬁ(R )]
our operational R/D approach. Assuming the simple modigl zLn 9 g

identical toF,,:. For R, = R,, any filter bank inF is
D(R) « o*272F for the R/D characteristic in each bandy, i a rt ’ ar AN
high-rate quantization, and optimal bit allocation between Pro.of' For R
subbands, the theoretical coding gain (6) represents the ratio @j ' i

dIStOI’tI.OI’]S produced by Fhe subband codgr and a PCM co eé[D* be the distortion attained using a filter bankAp,., and
operating at the same bit rate. The quanfjtyog, G(FB|I) 5 5 . .

: ) let o5, and oz, be the corresponding channel variances. We
represents the bit rate reduction over PCM, when both COdﬁg’ve%(R ) gﬁ(R ) < 0 ando? 5 (0? 2 ) <

i ; h)— Oj, — 05 = —(0,—0,,) =5 0.
operate at the same (_1|st0rt|_on level [13]. Hence.D — D +l?02 2 )(ﬁ](R )]—ﬁ(R )!J) - lﬂ) with
Computation of Optimal Filter BanksDue to the orthog- Y T T2 TR T T h g)) Z e

onality of the filter bank,G(¥B|I) may be maximized by €auality if and only ifo;, = o, S
maximizing o2 over F'B. Although this is a highly nonlinear  OPtimization of Cascaded Filter Banksthe practical lin-
optimization problem with a large number of local extrem&ar optimization algorithms above (as well as the nonlinear

the theoretical coding gain solely depends on the product fili@ptimization algorithms in [6] and others) apply to opti-
mization of two-channelfilter banks, and extending these

G(FB|I) =

= R, we have D = 1(o} +

D(Ry,) = 02D(Ry,) for all filter banks inF. For Ry, > R,

P(f) =|H(H)I? methods to the case of cascaded filter banks appears to be
=142 Z ay cos(2r(2n+1)f) >0 a formidable problem. The approach recommended in [6] is to
n successively optimize filter banks, starting from the root node
0<f<05 (7) of the tree, using the “local” coding-gain cost function above

rather than a global measure of R/D performance for the entire
A tion 1-The inout sianal i tended b q it tree-structured subband coder. With this approach, the filters
ssumption 1:The Input signal 1S extende eyond 1 Sdesigned at a given node of the tree depend only on the filters

boundanes- usmg periodic extensions.. designed at the ancestor nodes. Despite its suboptimality, the
Assumption 2:The energies of the signal before and afte‘rlocal” optimization approach is often used based on the
decimation of the output off(f) are identical.

. mption th ner mpaction at local n houl
Under these assumptions, the optimization problem may %SU ption that good energy compaction at local nodes should

formulated in terms of’( /) and becomes a semi-infinite Iineareaq to good coding pgrf(?rmancg. : -
L A . ) Filter Codebook Design:In the filter design phase, we visit
optimization problem with linear objective function

nodes in a top-down fashion and design a separate codebook
ol =70/2+ Z UnTn 8) F™ = {FB"™} for each noden. A training set7™ for

n noden is obtained by filtering and decimating images from
and infinitely many linear inequalities (7). In this formulationthe training se? """ for the parent noder, using the optimal
r,, are the empirical correlation coefficients for the input. Thiilter assignment fron#). (The root node uses the original
optimization problem may be solved using fast algorithri&ining set7") Partition the training se? ™) into classes
based on a discretization of the frequency interval [0, 0.8]"" (or classi, for short) of images that use the same filter
and a standard simplex algorithm. bankFBi("). The codebookF(™) is designed to minimize the

when the following assumptions are satisfied [9], [10].
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theoretical bit rate that is normalized for convenience relative
to a PCM coder operating at the same distortion level

% {— N ;n) log, G(FB|t) + z(FB§">)} 9)

[ teT(”)

where
N® size of the image at node;
G(FB™|t) given by (6);
I(FBM™)  codelength forB(™.
We use thetheoretical codelength](FBi(")) = —log, p(7),
wherep(i) = |Z,"™|/|T(™)]| is the relative size, or popular-
ity, of classi. Under the various assumptions made above,
minimizing (9) is equivalent to minimizing (5) over a subset
of C (filter banks at node). We re-emphasize the sequential
(top—down) nature of this design. Fig. 1. Classification of filter banks, quantizers, and node-split decisions at
Each classi contains images that are assigned the sarfgarticular node of the subband tree.
filter bank FBi("). This is not to say that these images
have the same, or even similar, correlation structure. As watialization phase to find the optimal filter banks adapted
have observed experimentally, two images may have widdly each individual image in the training set.
different empirical correlation coefficients,, yet identical
optimal filter banks. B. Tree and Quantizer Design

F:Iassificatiorj Algo_ritr_lm:The classification_ is performed Having designed the filters, we address the design of quan-
using an algorithm similar to the Lloyd algorithm for ECVQtizersQE") in the codebookd(™). This design is done based on

design [12], [13], choosing an ('g;t'al (possibly large) set Gfjiereq data and, hence, depends on the filter bank codebook
filter banks and codeword§ F'B;"), and iterating between designed in Section II-A. The design may be done using
three steps: standard bit allocation formulas based on the theoretical coding
1) (Weighted nearest neighbor conditjorit € 7(™): Find  gain, as in [12]. However, it is also feasible to optimize the
the class assignment that minimizes (9) by evaluation efiginal cost function (5) directly, exploiting the additivity of
new possible memberships for each individual image @) over nodes of the tree. We also design weights for the

the training set. splitting decisions. The design of quantizers and node-split
2) Update theoretical codelength@ B{™) = —log, p(i) weights is dongjointly. Each training sample € 7 is
based on current class popularitigS). filtered using the assigned filter bank, and the filtered data

3) (Centroid conditiop Vi: Compute the optimaJFBi(") are viewed as a new training sg&t(®. The design is done
for classi by exhaustive evaluation of all current candiusing a Lloyd-like greedy iterative algorithm once again,
dates and selection of the one that minimizes the innelternating between the assignment of training samples to
summation in (9). The quantit@(FBi(")U) is obtained quantizer classes based on a Lagrangian cost function (Step
from (6), where the energy; is evaluated using (8) for 1—weighted nearest neighbor condition) and the optimization
each filter bank candidate. of the quantizer for samples mapping to the same class

This algorithm is greedy, and the iterations are stopped wheptep 2—centroid condition), with the quantizer weights being
improvements in the cost function fall below a specifiePdated according to the quantizer’s relative popularity from
threshold. On completion of the iterations, each training safi0€ iteration to the next (Step 3). The algorithm requires
ple ¢ is assigned to a clagswith attributeFBf"), as repre- an initial (possibly large) set of quantizers and associated
sented pictorially at the top of Fig. 1. One possible initial sédewords. Typically, all quantizers are initially assumed to
of filter banks would consist of the optimal filter banks adaptRf €qually probablel(@) = constant].

to each individual image in the training set plus a few of the 1) a) For fixed quantizers and weights, optimize assign-

standard (nonadapted) filter banks that have been extensively ment of quantizers to training samples for each
used in the image coding literature, e.g., Daubechies’ filter tree node using a Lagrangian metri™(Q) =
banks [1], [14]. An interesting question is: how large are DO(Q)+ARM(Q)+1(Q)), whereD™ and R(™)
the classes represented by these nonadapted filter banks on are, respectively, the operational distortion and rate
convergence of the codebook design algorithm? This question associated with quantiz€p at noden, andi(Q) is
is answered in Section V. the codelength folQ.

In addition, note that the computation of the optimal b) Optimize the tree structure for each training sample
FBi(") for class: in Step 3 of the classification algorithm using the single tree algorithm of [3], as shown
does not require expensive adapted filter design. We use in Fig. 2. This involves growing the full subband

the semi—infinite programming algorithm only in the tree to some fixed depth and populating each tree
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— . . :

(@)

slope=- A A

slope=- A

—hE® D

[
arent node A

P slope=- A

——

child2
R

(b)

Fig. 2. Single tree algorithm finds the best basis subtree for a given 1-D signal. (a) Algorithm starts from a full tree and prunes back from the leaf
nodes to the root node until the best pruned subtree is obtained. (b) At each node, the split-merge decision is made according to the criterion: prune if
J(parent nodg < J(child 1) + J(child 2) + A(overhead cost for splitting

node with the Lagrangian cost (for a fixed of node-split decisions for each node of the tree; see Fig. 1. The
encoding each associated subband (or the origimaimary motivation for including splitting decisions into the
signal for the root node). A bottom-up tree prunalgorithm is not to economize difs), which is no more than
ing operation is then performed from the leave$ bit/node, but rather to affect quantizer design through the
(coarsest scales) toward the root. At each node,ckass pruning operation of Step 2.

comparison is made between the best Lagrangian

COStJ}:arem = minQ Jparent(Q) associated with the I1l. CODING ALGORITHM

h f the L [ f . . . N .
parent versus the sum of the Lagrangian costs OrThe “on-line” coding algorithm is similar to the dynamic-

each childJ¢&Md = ming JM(Q) plus A times . . ,
the overhead cost for splitting, as measured by yRLogramming based single tree algorithm of [3]. However,

codelengthg(F B) andl(s) for the filter banks and uﬁgkfe;hiolraﬁ;ralgggfgmz’ir‘:éhmh;;t.bgfesegn f['r)](:d ?gcose q
splitting decisions. The single tree algorithm can peholc ! o quantiz , the  prop

. algorithm uses optimized sets of filter and quantizer classes
summarized as follows. ; A , . ;

(together with their “weights” as measured by their entropies)

*  Grow a full tree to some fixed depth. as designed off-line based on statistical training data; see

+  For a fixed), populate each node of the fullSection Il. Like the single tree algorithm of [3], our algorithm

tree with the best Lagrangian cabt+ \R. finds the optimal tree-structure (or so-called best basis) and

«  Prune the full tree recursively, starting fromguantizer choice for each tree node jointly in an image-

the leaf nodes. adaptive manner. However, in addition, the proposed algorithm

) ) ) _ ~also finds the best filter bank choices (from among the class

This results in an optimal node-split classificationyf fiiter banks designed off-line) for each tree node. The

of training samples for each tree node, given thggorithm proceeds as follows.

F:urrent codebong(“’). ) 1) For the given subband image, find the optimal filter
2) Optimize the quantizer vectdy;" for each class and bank (i.e., select optimally from the set of candidates)
for each tree node. Note that the node-split decisions  for successive nodes of the tree using the theoretical
from Step 1(b) will prune the class memberships of  coding gain criterion. Note that this is computationally
training samples at certain deeper nodes. very attractive as the coding gain computation is based
3) Update the codelengtti&{™) andi(s™) of the quan- only on the input correlation vector at each node of the
tizers and the node-split decisions for each node, and tree and does not require expensive adapted filter design.
revisit Step 1. Specifically, at each node, the correlation coefficients

After convergence, the algorithm results in optimized quan-  for the image (see Section 1I-A) are computed, and the

tizer designs, as well as codewords for the quantizers and the energyo; is evaluated using (8) for each filter bank
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(each a). The latter step requires onlyv arithmetic be learned from training. As an example, when dealing with
operations per filter bank, wher®aV is the length of a class of lowpass processes that favor a logarithmic split
the filters, independently of subband size. This step @ the frequency subband tree (as learned during training),
computationally straightforward and does not involvé is unnecessary to start from the computationally expensive
any expensive filter design. We then select the filter barfillband tree, as in [3]. In fact, the complexity bottleneck in

that minimizes the R/D cost the on-line algorithm is in the tree population phase, which
N involves expensive filtering operations. Minimizing this phase
— log, G(FB§")|I) +Z(FB§")) is the key to reducing overall on-line complexity. In this
2 regard, if further complexity reduction is desired at the cost of
where G(FBi(")|I) is obtained from (6). slight subopti_ma_llityZ it is po;sible to employ simpler gre_edy
2) Populate each node of the tree with the Lagrangian top—down opt|m|zat|qn algorlthms [15] rather than t_he optimal
costs bottom—up tree-pruning algorithms advocated earlier.

One drawback of our current method is that it does not
JM(Q) = D(Q) + )\(R(")(Q) + Z(Q)) (10) exploit spatial inhomogeneity; in the next section, we suggest
an extension of the method that might address this limitation.

associated with each quantizéy € Q. Note that

the inclusion ofl(@) in (10) reflects the cost of the IV. EXTENSION TO SPACE-FREQUENCY TREES

quantizer that is based on its relative "popularity” as A natural extension of the adapted-transform paradigm

gleaned during training. : . . . X .
3) Apply the single tree algorithm of [3] as described in thc0n5|dered in [3] and in this paper consists of aIIovx_/lng the
. ; : ransform A to be not only frequency adaptive bspatially
guantizer design phase [see Step 1(b) of Section II-B] o, ..
! . . . : adaptive as well. One of the drawbacks of the frequency-
find the optimal quantizers and node-split (pruning) deci- . . .
. X . . “ adaptive wavelet packet framework is that although it selects
sions using a dynamic-programming based “bottom-u

approach from the leaves of the tree toward the root, Tﬁge best tree adapted to a signal, it retains that tree for the

step results in the jointly optimal combination of tree angntwe signal. If the signal is nonstationary, the algorithm will

. ) : o .%hoose a basis that works best “on average” for the whole
guantizer choices for the test image. In combination wit] :
the first step, this results in the optimal combination O Ignal but cannot adapt the tree to different segments of the

. . . signal. The double tree structure of [4] alleviates this problem
filters, tree structure, and quantizer choices for the teg " . : .
image y admitting a dyadic spatial segmentation of wavelet packet

i ) . o (frequency) trees together with a fast tree-pruning algorithm
A novel aspect of our coding algorithm is that it efficiently iy the best double tree basis. This structure has been
balances the advantages of off-line training with the flexibility,:anded to the balanced space-frequency tree (SFT) structure
of on-line R/D based optimization. This flexibility helps alle¢ [16], which represents the most general form of dyadic
viate susceptibility to mismatches between the statistics of tg@gmentation in both space and frequency and includes both

test data and that of the training data. the best wavelet packet basis and the best double tree basis as
The decoupling of the filter bank optimization and that of thgneia| cases. A fast algorithm to find the resulting transform

tree structure and quantizer is made possible by the ChOiceAPfrepresents the best SFT basis for the given signal has been

the coding gain cost function for the filter bank optimization. Aascribed in [16]. Since the transforf still admits a tree-

R/D cost function to select the optimal filter bank would makg;; ;ctured representation, the codebook design and on-line
the joint optimizat_io_n of the filters, tree—strucfcure, and qua”ti_%'oding algorithms are, at least conceptually, straightforward
ers much more difficult due to the complex interdependenciggiensions of the algorithms presented in Sections Il and Ill.

introduced between different nodes. The on-line SFT coding algorithm now evaluates node splits,
A salient advantage of the new approach over the methoddn,gigate quantizers, and candidate filter banks at each node
[3] is that the on-line coding algorithm edomputationally more ¢ he tree.

efficientthan that in [3]. This apparently surprising advantage
occurs because codebook design produces a relatively small
number of candidate quantizers, which is the “right” set of
quantizer choices to use. This avoids the need to “blindly” We describe some experiments that illustrate the concepts
consider a needlessly large set of choices, as in [3]. Affroduced inthis paper. The primary goal of these experiments
even greater practical benefit brought about by the off-liféas to gain a better understanding of the nature of the adaptive
training phase is the potentially significant on-line complexityubband coding process, by examining complexity tradeoffs,
reduction in the tree optimization phase. While the typicdh particular, the relation between subband image statistics and
approach of [3] is to populate the full subband tree toadn adapted filter responses, and the need for adaptation at various
hoc depth and prune it optimally, our proposed frameworlevels of the tree. We also report preliminary coding results.
allows for the potential to start from an optimal subtree First, we selected a training set assumed to be representative
rather than the full tree. The optimal subtree is learned duri§ five types of images:

training based on the zero probability of certain tree nodesl) fingerprints;

with respect to the representative training data. Furthermore2) faces;

the starting tree depth no longer needs toadehochbut can 3) fabrics;

V. EXPERIMENTAL RESULTS



PAVLOVIC et al. INTEGRATED FRAMEWORK FOR ADAPTIVE SUBBAND IMAGE CODING 1031

001

_b‘-f.a-

o T .
ST e

o
}.

o7

Fig. 3. Training set fingerprints (images 001-004), faces (images 005-008), grains (images 009-014), food (images 015-018), and fabrics{@28ges 019

4) food; 1

5) grains. }
This training set consists of 28 128 128 images and is l ’ ’ }
shown in Fig. 3. The set was chosen in order to highlight the 2 3 4 5

possible advantages of filter bank optimization rather than to 1
provide a typical image set. Fig. 4 depicts our node-indexini/ ‘ ] ' ’ ‘ ; | 1 ‘ ‘ ‘ ’ ’ ‘ ‘
scheme in a depth-2 subband quad tree. In our experiments, we

used depth-3 trees (with 85 nodes) and eight-tap filters. The
individual codebooks for the filter banks, node-split decisions,

and quantizers were constructed as described in Section Il rer

7 10 11 8 9 12 13 14 15 18 19 16 17 20 21

HH HL LH LL|

A. Adapted Filter Banks _ . .
] ] ) Fig. 4. Indexing of nodes in a depth-2 subband quad tree. Each node has
The following operations are performed at each intern&lur children ranked according to energy, going from HH (high vertical/high

node of the subband tree: first, vertical filtering (along columfigrizontal) to LL (low/low).
of the image) and then horizontal filtering of the two vertically
filtered images. There are three filter banks per internabe reasonably well satisfied, as the mismatch between energies
node, for a total of 63 filter banks. Each initial codebookefore and after decimation was typically less than 10%. We
consisted of the filter banks optimally adapted to each afay expect the initial codebook to consist of 29 different filter
the 28 images in the training set, plus Daubechies’ eight-teanks, but the actual number is lower; the same adapted filter
nonadapted D4 filter bank [14, p. 195]. The optimality (in theank is often optimal for multiple images.
theoretical coding gain sense) of the adapted filter banks relieShe initial set of filter banks was subsequently pruned by the
on Assumption 2 in Section II-A. We found this assumption tolassification algorithm in Section II-A, resulting in a smaller
3 o . . L codebook on convergence of the algorithm. The D4 filter banks
Note that this is an arbitrary choice and that switching the order of .
horizontal and vertical filtering operations would, in general, produce \yere pruned out of most codebooks. Fig. 5 shows adapted
different codebook. frequency responses in the high-energy channel. In Fig. 5(a),
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Fig. 5. Class of training images and the corresponding adapted frequency responses. Left side: Classes of images and their estimated log @derey spectr
columns. Right side: Adapted frequency response. (a) Adapted filter for lowpass processes resembles a conventional frequency-selectiverldipasd fil
(c) Adapted filters for exotic processes are also exotic. (d) Processes with seemingly different frequency statistics share the same adapted filter.

eight training images with similar lowpass characteristid3. Adapted Tree and Quantizers

share a common _Iowpas_s filter. _The ffeq“e”CY response 0f\lode-split and quantizer codebooks were designed for five
the adapted filter is consistent with the theory in [8], Wh'daifferent values (0, 1, 10, 100, aneb) of the Lagrange

predicts that the "ideal” (without length constraint) adapte%ultiplier A. The codebooks were designed as described in

fl|tZI‘ 'S.tz ?[:Ckwa"l'owp?‘ss 1f|(|)ter V\r/:.thhwt'oc';f. ftreqtlrjletnoy/ t2 ection 1I-B. Each quantizer codebook initially contained 40
and wi e analysis in [10], which predicts that optima qually weighted, scalar uniform quantizers with step sizes in

adapted FIR filters have zeros on the unit circle. We routmetp{e set{5, 10, 15, - - -, 200}. Note that this set is consistent

observgd th_e presence of frequency-sel_ective filters of the ty\ﬁﬁh the dynamic range of the subband coefficients for typical
shown in Fig. 5(a) in codebooks at various nodes of the tre(?.sseS of images of interest, The results of the guantizer

However, it is also known that adapted filter banks improv% . - o .
only marginally over standard nonadapted filter banks Wh&qdeboqk des!g_n are shc_)wn n Fig. gA significant ber_1ef|t of
the input process is lowpass [10]. In Fig. 5(b) and (c), thtge off-line training algorlthm, in addition to thg nonumfc_)rm
benefits of adaptation are more visible as the class is made 8p§elengths of the guar_1t|zers_ based on t_helr populanty of
single image with complex frequency characteristics. Obseryg29€: is the reduction in on-line complexity that it affords
the good match between power spectrum of the image and Wetallorlng the set of quantizer choices at each nodg Fo the
frequency response of the adapted filter. In Fig. 5(d), the cld8&get quality level, as captured by the Lagrange multiplier
is made of 13 images with complex frequency characteristicd!is is €asily seen from Fig. 9, where the set of quantizers
The popularity of that class and others at node 9 is shownGArresponding to the lower quality operating point= 100
Fig. 6(a). The figure also shows the frequency response of #igmuch coarser than the corresponding set associated with
adapted filter for each of the eight classes constructed by the higher quality operating point = 10. For each value
classification algorithm. Similar plots are given in Fig. 6(bpf A, & small subset of the initial large suite of quantizers is
for node 13, which features a smaller codebook (only twibus elegantly retained in an automatic manner. This subset is
classes). The size of the codebook for all nodes of the treeef§iciently matched to the desired target bit rate without the
shown in Fig. 7. Observe that codebooks at nodes deep dov@ed to resort tad hocmethods based on empirical trial and
the tree tend to be smaller. We conjecture that this is mairgyror, as is typically done.
due to the heavier penalty imposed by the cost function (9) onNode-split decisions were initially assumed to be equiprob-
complex codebooks [as measured by the second entropy tedofe. The node-split codebooks on convergence of the classi-
in (9)] when the subband image si2&") is small. fication algorithm are shown in Fig. 8 for all five values af
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Fig. 6. “Vertical” filter bank codebooks for (a) node 9 (eight codewords) and (b) node 13 (two codewords). In each case, the top graph shows the
class assignment for each training image. The middle and the bottom graphs, respectively, show the filter responses in the high-energy channel and
the popularity of each class.
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Fig. 7. “Vertical” filter bank codebook. Popularity of codewords at internal ) . o
nodes of the subband tree. The populayity) € [0, 1] is represented as a Fig. 8. Node-split codebook. The probability of each node split is repre-
shade of gray; see intensity scale at right. sented as a shade of gray and is shown for five values: &, 1, 10, 100,

and oc.

As expected, there is a strong dependence\®@ince node-

split decisions become increasingly unlikely at low bit ratesagrange multiplierA. Theoretically, we need a codebook

(high ). for every value of\. The storage burden associated with this
Storage ConsiderationsWe would like to address the stor-is well-known from ECVQ codebook design theory (see the

age requirements associated with our algorithm. A definifgpendix). One solution is to have only a few valuesof

bottleneck is the dependence of the codebook parametersaod deal with the issue of codebook mismatch (we discuss

the rate-distortion slope “quality” criterion embodied by th¢his in the next section). Another option is to build a tree-
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coding schemes under bit rate constraints. We selected a target
bit rate of 0.755 b/pixel, in which case, the Lagrange multiplier
wasA = 100, and the appropriate codebook could be used. The
coder from [3], which does not use a codebook, met the 0.755
b/pixel bit rate specification using =~ 107. The compressed
images are shown in Fig. 11(a) and (b). We obtained a 0.54
dB PSNR improvement and substantial visual improvements
as well. In particular, the ridges of the coded fingerprint in
Fig. 11(a) are less jagged than those in Fig. 11(b). This result
is consistent with earlier coding results using wavelet trees and
fixed quantizers on textured images [6]. Similar results were
obtained at other bit rates, e.g., usiig= 10, we obtained a

bit rate of 1.828 b/pixel and a 0.42-dB improvement over [3].

: ; The performance of our optimized coder was also compared
e with that of a coder using the same filter bank codebook but
Cuantizarindsx, a simpler tree, which was obtained by recursively splitting the

(@ high-energy branch of the tree. At the target, bit rate of 0.755
b/pixel, we obtained a 0.70-dB improvement over the latter
scheme. The results are summarized in Table I.

In another experiment, we investigated the potential effects
of codebook mismatch. We encoded our test fingerprint image
at higher rate X = 50), but since no codebook corresponding
to that value of\ was designed, we successively used code-
books designed foh = 100 and A = 10 instead. In the first
case, we obtained a bit rate of 0.900 b/pixel and a PSNR of
32.35 dB, which is a 0.45-dB improvement over the coder
in [3] operating at the same bit rate (using= 80). In the
second case, we obtained a bit rate of 1.392 b/pixel and a
PSNR of 35.43 dB, which is a mere 0.07-dB improvement
over the coder in [3] operating at the same bit rate (using
A = 26). This shows that there is a penalty for using a severely

: . i " ‘ ; : mismatched codebook. This issue is mitigated with the use of
s L PO - w o de tree-structured codebooks, as discussed in the previous section.
(b) We also applied the method to images sucBated Array
Fig. 9. Quantizer codebooks for = 10 and A = 100. Intensity represents o FIg._lO(b) Or.l‘?nam Fig. 10(c), which are d.lﬁerent from
quantizer popularity. those in the training set. In that case, the coding results were
comparable (slightly better or even slightly worse) with those

using the coder in [3]. We believe this is due not only to a

structured codebook that is analogous to the tree-structutafimatch between the test image and the training set but to
vector quantizer and entropy-constrained tree structured VeGighe other factors as well:

guantizer codebook designs that are well known in the VQ
community [13]. Modifications of our design methodology
to a tree-structured framework remain an attractive avenue
of future research to address the storage requirements for : P

assumptions are not satisfied;

practical implementations. It is also useful to note that as the o . . .
: : : . ~2) the spatial inhomogeneity of some images (Section IV
number of nodes increases exponentially with tree depth, using . . L
addressed some possible extensions to address this lim-

a different codebook at each node of a deep tree might present itation);
significant storage problems. Practical storage consideration§) the ma,rginal gain of using adapted filter banks for some

might forc_e us to limit tree depth to some reasonably small images. We discuss this important point in more detail
number, like 3 or 4. below

Node index

70

80

<] B

70 : i

80

Node index
3 &8 &5 8
T T
I B B
u
]
I F T 8 W i CEeomm [ !

1) the use of the theoretical coding gain criterion for
designing the filters, which does not guarantee im-
provements in actual R/D performance when standard

C. Coding Results D. On Signal-Adapted Cascaded Filter Banks

To test our codebook design, we first selected a test image o ere. we describe some elementary properties of sianal-
one of the five types considered above: a fingerprint. The tes ' y prop 9

image, shown in Fig. 10(a), was not part of the training setaf. agltiisccf‘;:éjz(l;mﬁ; pna?grsmingf (t:r?:;?;r.iatlh;g.:wth etrr:)drl-
We tested the performance of our on-line coder against that i Igns 1 : ing p

the coder in [3] using Daubechies’ nonadapted filter banks but‘This image is from the MIT vision texture database, at http://www-
adapted tree structures and quantizers [3]. We compared baithe.media.mit.edu/vismod)/.
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Fig. 10. Test images (12& 128 pixels) and their horizontal log spectra. (a) Fingerprint. (b) Dotted array. (c) Lena.
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mance. Consider, for simplicity, the case of unconstrainelbg geometric mean§,;(d) and &.,(d) for the adapted and
length filters, which offer maximum theoretical performancesonventional subband coding schemes, respectively. See [18]
and 1-D signals with absolutely continuous spectral densifyr typical values of€.,(d) for AR(1) signals.

S(f). Assume that trees are limited to a fixed degthThe Property 1: [ In S(f)df < E.a(d) < E..(d) for all
performance of a hierarchical subband coder, measured dby> 0.

the log geometric meafi = (1/N)>". N, In o7, approaches  Property 2: The sequence§,q(d) and &, (d) are nonin-
the R/D lower bound| In S(f)df when the spectrum of the creasing ind.

input signal is relatively flat in each subband [17], [18]. If the Property 3: limg—oc Eoa(d) = limg_oo Een(d) =
standard subband coder already satisfies this flatness propeftin S(f) df.

adaptive subband coding cannot provide tangible benefits. IlNote that the differencef.,(d) — £,4(d) is not nec-
contrast, if S(f) has sharp variationand the tree depthi essarily monotonic. Consider, for instance; S(f) =
is small, the potential advantage of the adaptive schemeZig, 1/16)u2/16,3/16)(|f]). In this case,f..(d) — Eua(d)
significant. Below, we have some elementary properties of théi — 2). In addition, note that convergence 6f,(d) and
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CoDING REsULTS UsING OUR ADAPTIVE SUBBAND CODING METHOD (W|THT/\A2LI1£0(I)) As WELL As THE METHOD IN [3], USING DAUBECHIES D4 FILTER BANKS
Image Adapted tree Wavelet tree
Adapted filters D4 filters Adapted filters D4 filters
PSNR(dB) | R(bpp) || PSNR(dB) | R(bpp) | PSNR(dB) | R(bpp) || PSNR(dB) | R{bpp)
Fingerprint 31.29 0.755 30.75 0.775 30.72 0.753 30.02 0.743
Dotted array 29.26 1.126 29.04 1.126 29.28 1.205 29.45 1.195
Lena 31.48 0.5565 31.61 0.553 3L.70 0.636 31.32 0.610

of each region would be averaged out. In this case, the use of
adaptive space-frequency trees could be advantageous due to
their spatial adaptivity properties.

VI. CONCLUSION

We have explored the application of signal-adapted filter
banks to image coding and proposed a new best-basis design
in which filter banks, subband tree structure, and quantizers
are chosen to optimize R/D performance. This design raises
fundamental issues of library complexity, both in a coding
sense (description of the chosen basis is potentially costly side
information) and in a computational sense (efficient evaluation
of all candidate bases). The problem is particularly involved
because filter bank parameters belong to a continuum of
admissible values. Some form of quantization of the filter
bank parameters is necessary, but the construction of a suitable
codebook of representative filter banks is itself a challenging
problem. Our approach is based on training. We construct a
codebook based on a set of training images using the theo-
retical coding gain approximation to R/D performance as the
codebook design criterion. We also construct a codebook for
the node-split decisions and quantizers at each node, using true
R/D performance as the design criterion. Using the theoretical
coding gain approximation and designing separate codebooks
for filter banks and for the node-split decisions and quantizers
is primarily motivated by practical considerations, owing to the
near-intractability of the original R/D optimization problem.
Fig. 11. Coding fingerprint test image in Fig. 10(a) at 0.755 b/pixel. (a he. .enCOder evaluatgs all candidate filter banks, node-gpllt
Encoded using our adaptive subband coding method (PSNE.29 dB). (b) decisions, and quantizers and selects the best ones using a
Encoded using the method in [3], using Daubechies’ D4 filter banks (PSNRdynamic programming algorithm. There are typically, at most,
30.75 dB). a dozen candidate filter banks and quantizers per node.

Two salient computational advantages of the new approach
E..(d) to the lower-bound limit is faster for smooth spectrarelative to [3]) are that 1) the on-line coding algorithm need
Hence, we conclude that adapted designs are unlikely to éeluate only a suitable reduced set of candidate quantizers,
worth the additional design complexity for deep trees or f@nd 2) our proposed framework allows for the potential of
relatively featureless specti®(f). reducing the recursive evaluation of all possible trees to some

In our coding experiments, the tree depth= 3. The log optimal subtree (determined during the training phase). Since
spectrum fordotted arrayin Fig. 10(b) exhibits distinctive populating the full tree with Lagrangian costs is, in fact, the
features. Even though this test image is very different frooomplexity bottleneck in [3], minimizing this phase is the key
those in the training set, the adaptive subband algorithm reducing overall on-line complexity. Further complexity
manages to identify filter banks that are well adapted to thomuction may be obtained (at the cost of slight suboptimality)
spectral features, as indicated by the coding results in Tablaising simpler greedy top-down optimization algorithms [15].

In contrast, not only is Lena very different from the images We have obtained encouraging preliminary coding results
in the training set, but in addition, its log spectrum appeaos textured images such as fingerprints, both visually and
to be quite “featureless.” The unimpressive numerical results terms of PSNR (typically 0.5 dB improvement over [3]).

for Lena are consistent with the observations above. Simildowever, in order to address the lack of spatial adaptivity
conclusions are expected to hold for images made of maofythe current method (which we conjecture is one reason
different textured regions, as the distinctive spectral featuries unimpressive gains over [3] for spatially inhomogeneous
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images), we suggest that the proposed paradigm shouldtbg19] for a detailed description of this work, we briefly
extended to include spatial adaptivity. This involves the extesummarize here the steps of their iterative algorithm since
sion of the simple frequency trees in our current framework tb provides the basis for our approach to improving the
more powerful space-frequency trees, as described in [5]. Tpisrformance of wavelet-based compression algorithms.
approach requires the use of node-split decisions that indicatdet {3(:)};cz denote anL-dimensional VQ codebook
space or frequency splits. Optimal weights for these decisioffs) € R%) indexed by index sefZ, and let {I(i)}icr
may be determined by classification, extending the methdédnote the transmitted symbol lengths of the codewords. Let
described in Section II. a stationary vector source generate vectpis®} from R%
Another promising avenue of future research involves usimgdependently with distribution”y». Let A be a Lagrange
an R/D rather than the theoretical coding gain criterion fonultiplier controlling the entropy constraint, and letz, )
filter bank design that, however, would lead to a consideraldpecify a distortion measure. Each iteration of the design
increase in both conceptual and computational complexi#ygorithm consists of three steps, none of which can increase
due to the complex interdependencies that would result. Thie value of the Lagrangian cost function. (Here, we ignore the
could significantly enhance the performance of the theoretigalbcessing associated with checking conditions for stopping
framework presented here. As complexity of the algorithithe iteration).
is likely to increase extremely rapidly with tree depth, the 1) Define an entropy-constrained mapping of input vectors
use of limited-depth trees (for both theoretical and practical  (modified nearest neighbor condition)
reasons) would improve the feasibility of such an approach. ]
Short of achieving this ultimate goal, reliable optimization a(x) = arg min[p(z, A()) + Al(i)].
techniques should be developed to optimize the theoretical et
coding gain for cascaded filter banks. One of the limitations 2) Update transmitted symbol lengths to reflect codeword
of the current algorithm is that the method for optimizing the ~ €ntropy (codelength update condition):
global coding gain using “local” coding gain cost functions o~ ) ny s
is suboptimal. While developing efficient optimization algo- i) = —log, Pxfa(X") =i}
rithms will ultimately establish the performance of the adaptive 3) Optimize reproduction codebook (centroid condition):
subband coding paradigm, the computational details of these . n n .
optimization algorithms are somewhat orthogonal to the main A1) = BIX"a(X") = 4.
contribution of our work: developing a systematic, R/D-based 4) lterate until stopped.
framework for selection and quantization of subband coder
parameters, which provides a theoretically sound alternative
to empirical designs.
Several extensions of our framework are possible. First, weThe authors would like to thank Prof. Mallat and an anony-
would like to have the flexibility to choose from filters withmous reviewer for helpful comments.
different lengths. This cannot be done in the current frame-
work because the theoretical coding gain criterion inevitably
favors long filters. Second, using quantizers that are morg) wm. vetterli and J. Kovagvi, Wavelets and Subband CodingEngle-
sophisticated than the uniform scalar quantizers considered wood Cliffs, NJ: Prentice-Hall, 1995. '
here would further improve coding performance, especially? £, Gomar anc v Wickerasser, Enonyuased agorinns fr est
at low bit rates. Third, the current method requires that 1992
a different codebook be designed for every value \obf [3] K: Rar_nchandran’ and M. Vetterli, “Best Wave!et packet bases in a rate-
interest, as in ECVQ [13]. A practical solution to that problem dA'S:_Ong;e”se"EEE Trans. Image Processingol. 2, pp. 160-175,
consists in designing tree-structured codebooks at the cost @f C. Herley, J. Kovéevic, K. Ramchandran, and M. Vetterli, “Tilings of
a (possibly slight) suboptimality. The analogy is similar to the time-frequency plane: Construction of arbitrary orthogonal bases and
. o fast tiling algorithms,”IEEE Trans. Signal Processing, Special Issue on
unstructured entropy constrained vector quantization (ECVQ)  \wuyeletsyol. 41, pp. 3341-3359, Dec. 1993.
versus tree-structured VQ (TSVQ) [13]. In the latter, a singldg5] z. Xiong, K. Ramchandran, M. T. Orchard, and K. Asai, “Wavelet

ree-str r K i ian for all val ith packets-based image coding using joint space-frequency quantization,”
tree-structured codebook is des 9 ed for all values, kit in Proc. ICIP, Austin, TX, Nov. 1994, vol. 3, pp. 324-328.

different pruned subtrees of the full-tree corresponding tgs) p. pelsarte, B. Macq, and D. T. M. Slock, “Signal-adapted multiresolu-
different values of\. Finally, codebook storage by the encoder tion transform for image coding/EEE Trans. Inform. Theoryol. 38,

: ; ; ; . pp. 897-904, Apr. 1992.
and_de.coder mght be a problem, especially if th.e trge is Iarg%] H. Caglar, Y. Liu, and A. N. Akansu, “Statistically optimized PR-QMF
designing a size-constrained codebook from which filter banks™ design,”Proc. SPIE,vol. 1605, pp. 86-94, 1991.
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