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Abstract—Recent work on filter banks and related expansions
has revealed an interesting insight: Different filter bank trees can
be regarded as different ways of constructing orthonormal bases
for linear signal expansion. In particular, fast algorithms for
finding best bases in an operational rate-distortion (R/D) sense
have been successfully used in image coding. Independently of
this work, recent research has also explored the design of filter
banks that optimize energy compaction for a single signal or a
class of signals. In this paper, we integrate these two different
but complementary approaches to best-basis design and propose
a coding paradigm in which subband filters, tree structure, and
quantizers are chosen to optimize R/D performance. These coder
attributes represent side information. They are selected from a
codebook designed off-line from training data, using R/D as the
design criterion. This approach provides a rational framework
in which to explore alternatives to empirical design of filter
banks, quantizers, and other coding parameters. The on-line
coding algorithm is a relatively simple extension of current R/D-
optimal coding algorithms that operate with fixed filter banks
and empirically designed quantizer codebooks. In particular, it
is shown that selection of the best adapted filter bank from the
codebook is computationally elementary.

Index Terms— Adaptive coding, best basis methods, filter
banks, image compression, rate-distortion methods, subband
coding, vector quantization.

I. INTRODUCTION

T RANSFORM coding has become thede factostandard
for image and video compression. It is based on the

principle that a (linear) transformed version of a given image
is often easier to compress (i.e., has better energy compaction
and decorrelation properties) than the original signal. The
traditional approach has been to use a fixed transform(e.g.,
the discrete cosine transform, the discrete wavelet transform,
etc.). Although this may suffice for fixed classes of signals
that are well suited in some sense (e.g., in statistical time-
frequency characterization) to the fixed transform, it is
limiting when dealing with arbitrary classes of signals having
unknown or time-varying characteristics. For example, for
image or image segments having high-frequency stationary
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components, the wavelet transform, which has good frequency
selectivity at lower frequencies and good spatial localization at
higher frequencies, is a bad fit. This has motivated alternative
approaches that are adaptive in their representation and more
robust in dealing with a large class of signals of unknown
characteristics. The goal is then to make the transform signal-
adaptive, i.e., to make vary with the signal . This leads to
a search for the “optimal”

argmin Cost (1)

for some specified cost function. While minimizing (1) over
“all possible” is infeasible, choosing a large but finite library
of ’s that can be searched efficiently would make finding the
optimal both feasible and desirable.

Recently, wavelets and filter bank theory, along with their
generalizations like (adaptive) wavelet packets, have appeared
as alternatives to the classic Fourier expansions [1]. An
interesting insight to emerge from the work on filter banks
and related expansions is that different filter bank trees can
be regarded as different ways of constructing signal expansion
bases. These trees (termed wavelet packets in [2]) represent a
huge library of orthonormal bases having rich space-frequency
diversity with easy-to-search capability thanks to the tree
structure. Despite the tree structure, the number of library
entries is huge, e.g., a depth-5 two-dimensional (2-D) wavelet
packet decomposition has a library of 5.610 bases! This
paradigm, whose main strength is its ability to be signal-
adaptive without needing explicit training models, has led to
an exciting new area of research on adaptive signal decomposi-
tions for compression using wavelet packets and was originally
introduced in [2]. The idea is to decompose a discrete signal
using all possible wavelet packet bases of a given wavelet
kernel and then to find the “best” wavelet packet basis. For
signal and image coding, a fast algorithm for finding the best
basis in an operational rate-distortion (R/D) sense, i.e., to find
a combination of best basis and best set of quantizers,
has been introduced in [3]. In this case, the “optimal” choice is

argmin Cost (2)

where Cost represents the operational R/D cost of
the quantized, transformed image data . This approach
assumes a fixed overhead cost for encoding the index of the
basis and the set of quantizers . The algorithm prunes
a complete tree, signifying the entire library of admissible
wavelet packet bases, into that best basis subtree that mini-
mizes the global distortion for a given coding bit budget or
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conversely that minimizes the total coding bit rate for a target
quality. This algorithm has been subsequently generalized in
[4] and [5] to provide for spatial adaptation in addition to
frequency adaptation. Such expansions give rise to arbitrary
orthonormal tilings of the time–frequency plane.

Independently of these developments, recent efforts have
led to the design of orthogonal subband filter banks that are
optimally adapted to input signal statistics, in the sense that
they maximize the energy compaction of the two-channel
filter bank [6]–[10]. The original paper [6] demonstrated
some of the advantages of this approach in multiresolution
image coding. Until recently, an obstacle to the use of such
adaptive methods was the limited performance and substantial
numerical complexity of the optimization algorithms involved.
However, [9] and [10] showed that the optimization problem
may be reformulated in terms of theproduct filter

associated with the lowpass filter and becomes
a linear semi-infinite programming problem. This formulation
provides a framework for analyzing the performance of signal-
adapted filter banks, as well as fast and reliable algorithms
for computing globally optimal filter banks. The filter
is obtained by spectral factorization of the optimal product
filter. The solution is not unique; a typical choice is the
minimum-phase solution. The coding gain for filter banks
adapted to lowpass processes is marginally higher than that for
conventional filter banks, but significant improvements have
been obtained with image textures [6], [10].

The authors in [2]–[5] on the one hand, and [6]–[10], on
the other hand, approach the problem of designing best bases
using filter banks from different but complementary angles.
Our main objective in this paper is to integrate these paradigms
and to propose a new coding framework in which the subband
filters, tree structure, and quantizers are jointly designed adap-
tively. In this sense, our proposed paradigm can be viewed
as a generalization of the adaptive tree-structured best basis
framework of [2]–[5] to include the freedom to change the
filters at each node of the subband tree. Additionally, as
will be detailed later, due to the information gleaned during
the training phase, our paradigm results in potentially much
improved on-line speed due to two factors. First, the candidate
set of filter bank tree structures over which to search for the
best basis can be smaller than the traditionally considered
set of all pruned subtrees of a full tree of (sufficiently) large
depth. Second, the list of candidate quantizer options can be
potentially much trimmer than anad hoc set of needlessly
large number of choices.

Despite these computational advantages, we wish to empha-
size that the main contribution of our work, as we see it, is
the formulation of a systematic framework in which to study
fundamental problems of selection and coding of subband
coder parameters. The particular optimization algorithms used
in this paper are only a first step toward an extremely ambitious
goal, and future research on optimization techniques should
further improve practical performance of the coder.

A. Notation

Filter bank and quantizer parameters are represented by
vectors and , respectively. For clarity of the exposition,

we restrict our attention to uniform scalar quantizers, in
which case, is a single parameter, the quantizer step
size. However, the concepts presented here apply to more
complex quantizers, such as nonuniform scalar quantizers and
vector quantizers. The tree structure may be described by
the splitting decision at each node of the
tree. Our transform is described by the collection of pairs

; likewise, the quantizers are described by
a collection . A particular choice of transform and
quantizers is viewed as a codeword; the collection of all
codewords is a codebook. We use the symbol to denote
codeword length.

B. On Codebook Complexity

Our proposed generalization of the best-basis framework of
[2]–[5] raises two important issues: computational complex-
ity and the increased overhead cost for coding applications.
Node-split decisions are binary-valued and losslessly encoded.
However, quantizer step sizes can be arbitrary positive real
numbers, and filter bank parameters belong to a continuum
of admissible values as well. Clearly, all these parameters
must somehow be quantized, and a fundamental tradeoff arises
between accuracy of this quantization (hence, amount of the
side information) and adaptation performance. We reformulate
the R/D optimization problem (2) to include the overhead cost
for encoding the index of and . The optimal choice for

and becomes

argmin Cost Cost (3)

The fundamental tradeoff between the two terms on the right-
hand side of (3) may be dealt with in a number of ways.
At a higher level, these may be classified as belonging to
nontraining-based versus training-based methods. The former
is attractive when statistical priors are explicitly available. One
approach is to assume a uniform prior, and assume that the
overhead cost is independent of and . This approach
has been used in [3]–[5]. When training data is available,
however, training-based frameworks can be more efficient as
they “learn the prior” from the training data. This second
approach (training-based) is central to the new framework we
propose. We briefly enumerate the two popular approaches
cited above.

1) Empirical Design [3]–[5]: A prespecified collection of
quantizers is assigned to each node. A typical choice
in practical image coding applications is to use a discrete set of
uniform scalar quantizers, with step sizes equally spaced over
a prespecified range. Quantizer indices are encoded using a
fixed-length code, implicitly assuming a uniform distribution
of the indices.1 The depth of the tree is typically limited in
practice to three or four resolution levels. For example, for
a 512 512 image, a quantizer set of 32 choices, and a
maximum depth-3 tree, the total overhead for the quantizer and
tree description comes to less than 0.001 34 b/pixel, which is
certainly negligible for even low bit rate coding applications.

1Note that it is the quantizer step-size choice that is coded using a
fixed-length code. The quantized symbol stream can be coded using a variable-
length entropy code.
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The set of possible filter banks should also be
discretized, and one may empirically choose the accuracy with
which the filter bank parameters are to be represented. For
instance, if 32 prespecified candidate filter banks are allowed
at each node, the total overhead for the filter bank description
is the same as above.

2) Training: One disavantage of the codebook design
method above is that the set of quantizers at each node of the
tree, the set of filters, and the number of resolution levels in
the tree are chosen empirically instead of by optimizing the
fundamental tradeoff between Cost and Cost
in (2). In particular, uniform quantization and weighting of
quantizer and (more importantly) filter bank parameters, is
inefficient. The underlying assumption of uniform parameter
distribution does not reflect the high likelihood of certain
filter banks (such as the classical designs in [1]) relative to
other admissible but pathological choices. This observation
motivates an alternative approach, namely, optimal design of
the codebook with respect to some broad ensemble of image
sources. Training data are used for learning the statistics of
this ensemble and designing the codebook. Codebook design
might be computationally intensive but is performedoff-line,
unlike the actual test image to be encodedon-line.

Off-line optimization of the filters (into filter classes based
on statistical training data) is attractive not only from an
overhead cost but also from a computational complexity
viewpoint as on-line operation reduces to an elementary low-
complexity classification task rather than a complicated filter
design operation (see Section III).

C. Overview of the Approach

Each element of the codebook contains attributes of the
transform and the quantizers. The codeword is viewed as the
first part of a code for encoding the test image, and the image
data encoded with respect to these attributes are viewed as the
second part of the code. This simple but powerful paradigm
has been used for constructing coders that perform well on a
variety of sources with (partially) unknown statistics [11], [12].

The total number of bits for encoding the test imageis the
sum of the lengths and for the first and second parts
of the code, respectively. Denote bythe image reconstructed
by the decoder. We define the operational distortion as
the mean-squared value of the reconstruction error . In
order to apply our formulation to various R/D tradeoffs, we
take the classical approach of minimizing the Lagrangian cost
function

(4)

where is the Lagrangian multiplier that trades off rate
against distortion. This criterion is of the general form (3). The
Lagrangian optimization problem (4) arises when the encoder
needs to mimimize distortion subject to a rate constraint, or
vice-versa: represents the slope at the operating point on the
R/D curve.2 The first stage of the encoder minimizes (4) over

2As has been pointed out in [3], there is a convex relationship between the
targetR and the target�, which results in a fast bisection-type algorithm to
relate the two constraints.

, producing an optimal codeword . We solve this
problem using a fast optimization algorithm to be described
in Section III.

The design of the codebook is described in Section II.
The goal is to construct this codebook in a R/D optimal
fashion over some broad ensembleof image sources. More
specifically, it is desired to minimize the average cost

where is the underlying probability distribution over
. While is unknown, atraining set of images

representative of is available; therefore, the actual codebook
design problem consists of minimizing the empirical average

(5)

The solution consists of partitioning the ensembleinto
appropriate subsets and assigning to each subset a repre-
sentative transform and quantizer, encoded using a variable-
length codeword . In other words, the codebook design is
a classification problem. Our design problem bears obvious
similarities to entropy-constrained vector quantizer (ECVQ)
design [13], which we briefly describe in the Appendix for
completeness. While the spirit of our approach is captured by
the above ECVQ codebook design algorithm, in our case, the
codewords represent attributes of the transform and quantizers
rather than image data, as would be the case in ECVQ. The
theoretical foundations for such an approach are described in
[11].

Although the approach embodied by (5) is conceptually
appealing, its solution appears to be beyond reach, due to
the large dimensionality of the set of attributes and nonlinear
interactions between these attributes. This difficulty is com-
pounded by the dependency ofeach attribute onall image
pixels! The optimization problem would be simplified if block
transforms were used since in this case, transform/quantizers
attributes would depend only on local image blocks [12]. Even
so, the optimization problem (5) remains highly nonlinear,
and it is necessary to construct an approximation to the
optimal solution. We use the theoretical coding gain [1], [13]
approximation to (5) for the design of the filter banks. This
is a critical approximation that might be questionable at low
bit rates. We can retain the original formulation (5) for the
design of quantizers.

A possible generalization of our approach is outlined in
Section IV. Numerical results illustrating important aspects of
the design are presented in Section V, and conclusions are
presented in Section IV.

II. CODEBOOK DESIGN

The algorithm uses a training setmade of images assumed
to be representative of the ensembleof images of interest.
Our codebook design algorithm is motivated by a number
of practical considerations. We first design the filters and
then the quantizers. While our filter design is independent of
rate constraints, the design of the tree and quantizers is very
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much dependent on the filters. The primary motivation for our
sequential design is that the filters are meant to capture the
statistical properties of the input, and their design is guided by
the theoretical coding gain cost function that is independent of
specific coding bit budget constraints. We also note that even
though the inclusion of a R/D design constraint in the filters
would clearly be a reasonable alternative to our approach, the
resulting design problem currently appears to be intractable; it
would also heavily complicate the storage requirements as well
as the complexity of design during both training and coding
phases. This arises from the nonlinear form of (5) as well as
from the existence of coupled dependencies betweenall filter
banks and quantizers.

A. Filter Bank Design

Define thetheoretical coding gainfor the two-channel filter
bank applied to input as

(6)

where and are the energies of the signals in the
two channels. This definition in terms of energies instead
of variances is adopted for the sake of consistency with
our operational R/D approach. Assuming the simple model

for the R/D characteristic in each band,
high-rate quantization, and optimal bit allocation between
subbands, the theoretical coding gain (6) represents the ratio of
distortions produced by the subband coder and a PCM coder
operating at the same bit rate. The quantity
represents the bit rate reduction over PCM, when both coders
operate at the same distortion level [13].

Computation of Optimal Filter Banks:Due to the orthog-
onality of the filter bank, may be maximized by
maximizing over . Although this is a highly nonlinear
optimization problem with a large number of local extrema,
the theoretical coding gain solely depends on the product filter

(7)

when the following assumptions are satisfied [9], [10].
Assumption 1:The input signal is extended beyond its

boundaries using periodic extensions.
Assumption 2:The energies of the signal before and after

decimation of the output of are identical.
Under these assumptions, the optimization problem may be

formulated in terms of and becomes a semi-infinite linear
optimization problem with linear objective function

(8)

and infinitely many linear inequalities (7). In this formulation,
are the empirical correlation coefficients for the input. The

optimization problem may be solved using fast algorithms
based on a discretization of the frequency interval [0, 0.5]
and a standard simplex algorithm.

On the Assumptions Used:Although Assumption 2 is ap-
proximately satisfied for stationary or slowly varying signals,
it remains to be seen whether the assumption holds for
real-world images, at various resolution levels. This issue
is examined in Section V. Another interesting point is that
while maximization of implies maximization of the coding
gain (6) under the various assumptions above, maximization
of is still optimal in the R/D sense when some of these
assumptions are not satisfied. Consider, for instance, scalar
quantizers with operational R/D functions of the form

, where is independent of and is strictly
monotonically decreasing(but not necessarily convex) over
the positive half real line. This model includes the standard
model as a special case. Property 1 below
shows that the filter banks that maximize are still optimal
in the R/D sense for any strictly montonic and for
any bit allocation. This property applies to arbitrary classes

of orthonormal filter banks, including constrained-length
filter banks.

Property 1: Let be the set of filter banks that max-
imize (or, equivalently, minimize ) over some subset

of the set of orthonormal filter banks. Then, for a fixed bit
allocation where , the set of minimizers of
the overall distortion function
is identical to . For , any filter bank in is
optimal.

Proof: For , we have
for all filter banks in . For ,

let be the distortion attained using a filter bank in , and
let and be the corresponding channel variances. We
have and .
Hence, , with
equality if and only if .

Optimization of Cascaded Filter Banks:The practical lin-
ear optimization algorithms above (as well as the nonlinear
optimization algorithms in [6] and others) apply to opti-
mization of two-channelfilter banks, and extending these
methods to the case of cascaded filter banks appears to be
a formidable problem. The approach recommended in [6] is to
successively optimize filter banks, starting from the root node
of the tree, using the “local” coding-gain cost function above
rather than a global measure of R/D performance for the entire
tree-structured subband coder. With this approach, the filters
designed at a given node of the tree depend only on the filters
designed at the ancestor nodes. Despite its suboptimality, the
“local” optimization approach is often used based on the
assumption that good energy compaction at local nodes should
lead to good coding performance.

Filter Codebook Design:In the filter design phase, we visit
nodes in a top-down fashion and design a separate codebook

for each node . A training set for
node is obtained by filtering and decimating images from
the training set for the parent node , using the optimal
filter assignment from . (The root node uses the original
training set .) Partition the training set into classes

(or class , for short) of images that use the same filter
bank . The codebook is designed to minimize the
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theoretical bit rate that is normalized for convenience relative
to a PCM coder operating at the same distortion level

(9)

where

size of the image at node;
given by (6);
codelength for .

We use thetheoretical codelength ,
where is the relative size, or popular-
ity, of class . Under the various assumptions made above,
minimizing (9) is equivalent to minimizing (5) over a subset
of (filter banks at node ). We re-emphasize the sequential
(top–down) nature of this design.

Each class contains images that are assigned the same
filter bank . This is not to say that these images
have the same, or even similar, correlation structure. As we
have observed experimentally, two images may have widely
different empirical correlation coefficients yet identical
optimal filter banks.

Classification Algorithm:The classification is performed
using an algorithm similar to the Lloyd algorithm for ECVQ
design [12], [13], choosing an initial (possibly large) set of
filter banks and codewords , and iterating between
three steps:

1) (Weighted nearest neighbor condition) : Find
the class assignment that minimizes (9) by evaluation of
new possible memberships for each individual image in
the training set.

2) Update theoretical codelengths
based on current class popularities .

3) (Centroid condition) : Compute the optimal
for class by exhaustive evaluation of all current candi-
dates and selection of the one that minimizes the inner
summation in (9). The quantity is obtained
from (6), where the energy is evaluated using (8) for
each filter bank candidate.

This algorithm is greedy, and the iterations are stopped when
improvements in the cost function fall below a specified
threshold. On completion of the iterations, each training sam-
ple is assigned to a classwith attribute , as repre-
sented pictorially at the top of Fig. 1. One possible initial set
of filter banks would consist of the optimal filter banks adapted
to each individual image in the training set plus a few of the
standard (nonadapted) filter banks that have been extensively
used in the image coding literature, e.g., Daubechies’ filter
banks [1], [14]. An interesting question is: how large are
the classes represented by these nonadapted filter banks on
convergence of the codebook design algorithm? This question
is answered in Section V.

In addition, note that the computation of the optimal
for class in Step 3 of the classification algorithm

does not require expensive adapted filter design. We use
the semi—infinite programming algorithm only in the

Fig. 1. Classification of filter banks, quantizers, and node-split decisions at
a particular node of the subband tree.

initialization phase to find the optimal filter banks adapted
to each individual image in the training set.

B. Tree and Quantizer Design

Having designed the filters, we address the design of quan-
tizers in the codebook . This design is done based on
filtered data and, hence, depends on the filter bank codebook
designed in Section II-A. The design may be done using
standard bit allocation formulas based on the theoretical coding
gain, as in [12]. However, it is also feasible to optimize the
original cost function (5) directly, exploiting the additivity of
(4) over nodes of the tree. We also design weights for the
splitting decisions. The design of quantizers and node-split
weights is donejointly. Each training sample is
filtered using the assigned filter bank, and the filtered data
are viewed as a new training set . The design is done
using a Lloyd-like greedy iterative algorithm once again,
alternating between the assignment of training samples to
quantizer classes based on a Lagrangian cost function (Step
1—weighted nearest neighbor condition) and the optimization
of the quantizer for samples mapping to the same class
(Step 2—centroid condition), with the quantizer weights being
updated according to the quantizer’s relative popularity from
one iteration to the next (Step 3). The algorithm requires
an initial (possibly large) set of quantizers and associated
codewords. Typically, all quantizers are initially assumed to
be equally probable [ constant].

1) a) For fixed quantizers and weights, optimize assign-
ment of quantizers to training samples for each
tree node using a Lagrangian metric

, where and
are, respectively, the operational distortion and rate
associated with quantizer at node , and is
the codelength for .

b) Optimize the tree structure for each training sample
using the single tree algorithm of [3], as shown
in Fig. 2. This involves growing the full subband
tree to some fixed depth and populating each tree
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(a)

(b)

Fig. 2. Single tree algorithm finds the best basis subtree for a given 1-D signal. (a) Algorithm starts from a full tree and prunes back from the leaf
nodes to the root node until the best pruned subtree is obtained. (b) At each node, the split-merge decision is made according to the criterion: prune if
J(parent node) � J(child 1) + J(child 2) + �(overhead cost for splitting).

node with the Lagrangian cost (for a fixed) of
encoding each associated subband (or the original
signal for the root node). A bottom-up tree prun-
ing operation is then performed from the leaves
(coarsest scales) toward the root. At each node, a
comparison is made between the best Lagrangian
cost associated with the
parent versus the sum of the Lagrangian costs for
each child plus times
the overhead cost for splitting, as measured by the
codelengths and for the filter banks and
splitting decisions. The single tree algorithm can be
summarized as follows.

• Grow a full tree to some fixed depth.
• For a fixed , populate each node of the full

tree with the best Lagrangian cost .
• Prune the full tree recursively, starting from

the leaf nodes.

This results in an optimal node-split classification
of training samples for each tree node, given the
current codebook .

2) Optimize the quantizer vector for each class and
for each tree node. Note that the node-split decisions
from Step 1(b) will prune the class memberships of
training samples at certain deeper nodes.

3) Update the codelengths and of the quan-
tizers and the node-split decisions for each node, and
revisit Step 1.

After convergence, the algorithm results in optimized quan-
tizer designs, as well as codewords for the quantizers and the

node-split decisions for each node of the tree; see Fig. 1. The
primary motivation for including splitting decisions into the
algorithm is not to economize on , which is no more than
1 bit/node, but rather to affect quantizer design through the
class pruning operation of Step 2.

III. CODING ALGORITHM

The “on-line” coding algorithm is similar to the dynamic-
programming based single tree algorithm of [3]. However,
unlike the latter algorithm, which is based on fixedad hoc
choices for filter banks and quantizer sets, the proposed
algorithm uses optimized sets of filter and quantizer classes
(together with their “weights” as measured by their entropies)
as designed off-line based on statistical training data; see
Section II. Like the single tree algorithm of [3], our algorithm
finds the optimal tree-structure (or so-called best basis) and
quantizer choice for each tree node jointly in an image-
adaptive manner. However, in addition, the proposed algorithm
also finds the best filter bank choices (from among the class
of filter banks designed off-line) for each tree node. The
algorithm proceeds as follows.

1) For the given subband image, find the optimal filter
bank (i.e., select optimally from the set of candidates)
for successive nodes of the tree using the theoretical
coding gain criterion. Note that this is computationally
very attractive as the coding gain computation is based
only on the input correlation vector at each node of the
tree and does not require expensive adapted filter design.
Specifically, at each node, the correlation coefficients
for the image (see Section II-A) are computed, and the
energy is evaluated using (8) for each filter bank
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(each ). The latter step requires only arithmetic
operations per filter bank, where is the length of
the filters, independently of subband size. This step is
computationally straightforward and does not involve
any expensive filter design. We then select the filter bank
that minimizes the R/D cost

where is obtained from (6).
2) Populate each node of the tree with the Lagrangian

costs

(10)

associated with each quantizer . Note that
the inclusion of in (10) reflects the cost of the
quantizer that is based on its relative “popularity” as
gleaned during training.

3) Apply the single tree algorithm of [3] as described in the
quantizer design phase [see Step 1(b) of Section II-B] to
find the optimal quantizers and node-split (pruning) deci-
sions using a dynamic-programming based “bottom-up”
approach from the leaves of the tree toward the root. This
step results in the jointly optimal combination of tree and
quantizer choices for the test image. In combination with
the first step, this results in the optimal combination of
filters, tree structure, and quantizer choices for the test
image.

A novel aspect of our coding algorithm is that it efficiently
balances the advantages of off-line training with the flexibility
of on-line R/D based optimization. This flexibility helps alle-
viate susceptibility to mismatches between the statistics of the
test data and that of the training data.

The decoupling of the filter bank optimization and that of the
tree structure and quantizer is made possible by the choice of
the coding gain cost function for the filter bank optimization. A
R/D cost function to select the optimal filter bank would make
the joint optimization of the filters, tree-structure, and quantiz-
ers much more difficult due to the complex interdependencies
introduced between different nodes.

A salient advantage of the new approach over the method in
[3] is that the on-line coding algorithm iscomputationally more
efficientthan that in [3]. This apparently surprising advantage
occurs because codebook design produces a relatively small
number of candidate quantizers, which is the “right” set of
quantizer choices to use. This avoids the need to “blindly”
consider a needlessly large set of choices, as in [3]. An
even greater practical benefit brought about by the off-line
training phase is the potentially significant on-line complexity
reduction in the tree optimization phase. While the typical
approach of [3] is to populate the full subband tree to anad
hoc depth and prune it optimally, our proposed framework
allows for the potential to start from an optimal subtree
rather than the full tree. The optimal subtree is learned during
training based on the zero probability of certain tree nodes
with respect to the representative training data. Furthermore,
the starting tree depth no longer needs to bead hocbut can

be learned from training. As an example, when dealing with
a class of lowpass processes that favor a logarithmic split
of the frequency subband tree (as learned during training),
it is unnecessary to start from the computationally expensive
fullband tree, as in [3]. In fact, the complexity bottleneck in
the on-line algorithm is in the tree population phase, which
involves expensive filtering operations. Minimizing this phase
is the key to reducing overall on-line complexity. In this
regard, if further complexity reduction is desired at the cost of
slight suboptimality, it is possible to employ simpler greedy
top–down optimization algorithms [15] rather than the optimal
bottom–up tree-pruning algorithms advocated earlier.

One drawback of our current method is that it does not
exploit spatial inhomogeneity; in the next section, we suggest
an extension of the method that might address this limitation.

IV. EXTENSION TO SPACE-FREQUENCY TREES

A natural extension of the adapted-transform paradigm
considered in [3] and in this paper consists of allowing the
transform to be not only frequency adaptive butspatially
adaptive as well. One of the drawbacks of the frequency-
adaptive wavelet packet framework is that although it selects
the best tree adapted to a signal, it retains that tree for the
entire signal. If the signal is nonstationary, the algorithm will
choose a basis that works best “on average” for the whole
signal but cannot adapt the tree to different segments of the
signal. The double tree structure of [4] alleviates this problem
by admitting a dyadic spatial segmentation of wavelet packet
(frequency) trees together with a fast tree-pruning algorithm
to find the best double tree basis. This structure has been
extended to the balanced space-frequency tree (SFT) structure
of [16], which represents the most general form of dyadic
segmentation in both space and frequency and includes both
the best wavelet packet basis and the best double tree basis as
special cases. A fast algorithm to find the resulting transform

represents the best SFT basis for the given signal has been
described in [16]. Since the transform still admits a tree-
structured representation, the codebook design and on-line
coding algorithms are, at least conceptually, straightforward
extensions of the algorithms presented in Sections II and III.
The on-line SFT coding algorithm now evaluates node splits,
candidate quantizers, and candidate filter banks at each node
of the tree.

V. EXPERIMENTAL RESULTS

We describe some experiments that illustrate the concepts
introduced in this paper. The primary goal of these experiments
was to gain a better understanding of the nature of the adaptive
subband coding process, by examining complexity tradeoffs,
in particular, the relation between subband image statistics and
adapted filter responses, and the need for adaptation at various
levels of the tree. We also report preliminary coding results.

First, we selected a training set assumed to be representative
of five types of images:

1) fingerprints;
2) faces;
3) fabrics;
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Fig. 3. Training set fingerprints (images 001–004), faces (images 005–008), grains (images 009–014), food (images 015–018), and fabrics (images 019–028).

4) food;
5) grains.

This training set consists of 28 128 128 images and is
shown in Fig. 3. The set was chosen in order to highlight the
possible advantages of filter bank optimization rather than to
provide a typical image set. Fig. 4 depicts our node-indexing
scheme in a depth-2 subband quad tree. In our experiments, we
used depth-3 trees (with 85 nodes) and eight-tap filters. The
individual codebooks for the filter banks, node-split decisions,
and quantizers were constructed as described in Section II.

A. Adapted Filter Banks

The following operations are performed at each internal
node of the subband tree: first, vertical filtering (along columns
of the image) and then horizontal filtering of the two vertically
filtered images.3 There are three filter banks per internal
node, for a total of 63 filter banks. Each initial codebook
consisted of the filter banks optimally adapted to each of
the 28 images in the training set, plus Daubechies’ eight-tap
nonadapted D4 filter bank [14, p. 195]. The optimality (in the
theoretical coding gain sense) of the adapted filter banks relies
on Assumption 2 in Section II-A. We found this assumption to

3Note that this is an arbitrary choice and that switching the order of
horizontal and vertical filtering operations would, in general, produce a
different codebook.

Fig. 4. Indexing of nodes in a depth-2 subband quad tree. Each node has
four children ranked according to energy, going from HH (high vertical/high
horizontal) to LL (low/low).

be reasonably well satisfied, as the mismatch between energies
before and after decimation was typically less than 10%. We
may expect the initial codebook to consist of 29 different filter
banks, but the actual number is lower; the same adapted filter
bank is often optimal for multiple images.

The initial set of filter banks was subsequently pruned by the
classification algorithm in Section II-A, resulting in a smaller
codebook on convergence of the algorithm. The D4 filter banks
were pruned out of most codebooks. Fig. 5 shows adapted
frequency responses in the high-energy channel. In Fig. 5(a),
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(a) (b)

(c) (d)

Fig. 5. Class of training images and the corresponding adapted frequency responses. Left side: Classes of images and their estimated log power spectra along
columns. Right side: Adapted frequency response. (a) Adapted filter for lowpass processes resembles a conventional frequency-selective lowpass filter. (b) and
(c) Adapted filters for exotic processes are also exotic. (d) Processes with seemingly different frequency statistics share the same adapted filter.

eight training images with similar lowpass characteristics
share a common lowpass filter. The frequency response of
the adapted filter is consistent with the theory in [8], which
predicts that the “ideal” (without length constraint) adapted
filter is a brickwall lowpass filter with cut-off frequency
and with the analysis in [10], which predicts that optimal
adapted FIR filters have zeros on the unit circle. We routinely
observed the presence of frequency-selective filters of the type
shown in Fig. 5(a) in codebooks at various nodes of the tree.
However, it is also known that adapted filter banks improve
only marginally over standard nonadapted filter banks when
the input process is lowpass [10]. In Fig. 5(b) and (c), the
benefits of adaptation are more visible as the class is made of a
single image with complex frequency characteristics. Observe
the good match between power spectrum of the image and the
frequency response of the adapted filter. In Fig. 5(d), the class
is made of 13 images with complex frequency characteristics.

The popularity of that class and others at node 9 is shown in
Fig. 6(a). The figure also shows the frequency response of the
adapted filter for each of the eight classes constructed by the
classification algorithm. Similar plots are given in Fig. 6(b)
for node 13, which features a smaller codebook (only two
classes). The size of the codebook for all nodes of the tree is
shown in Fig. 7. Observe that codebooks at nodes deep down
the tree tend to be smaller. We conjecture that this is mainly
due to the heavier penalty imposed by the cost function (9) on
complex codebooks [as measured by the second entropy term
in (9)] when the subband image size is small.

B. Adapted Tree and Quantizers

Node-split and quantizer codebooks were designed for five
different values (0, 1, 10, 100, and ) of the Lagrange
multiplier . The codebooks were designed as described in
Section II-B. Each quantizer codebook initially contained 40
equally weighted, scalar uniform quantizers with step sizes in
the set . Note that this set is consistent
with the dynamic range of the subband coefficients for typical
classes of images of interest. The results of the quantizer
codebook design are shown in Fig. 9. A significant benefit of
the off-line training algorithm, in addition to the nonuniform
codelengths of the quantizers based on their popularity of
usage, is the reduction in on-line complexity that it affords
by tailoring the set of quantizer choices at each node to the
target quality level, as captured by the Lagrange multiplier.
This is easily seen from Fig. 9, where the set of quantizers
corresponding to the lower quality operating point
is much coarser than the corresponding set associated with
the higher quality operating point . For each value
of , a small subset of the initial large suite of quantizers is
thus elegantly retained in an automatic manner. This subset is
efficiently matched to the desired target bit rate without the
need to resort toad hocmethods based on empirical trial and
error, as is typically done.

Node-split decisions were initially assumed to be equiprob-
able. The node-split codebooks on convergence of the classi-
fication algorithm are shown in Fig. 8 for all five values of.
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(a)

(b)

Fig. 6. “Vertical” filter bank codebooks for (a) node 9 (eight codewords) and (b) node 13 (two codewords). In each case, the top graph shows the
class assignment for each training image. The middle and the bottom graphs, respectively, show the filter responses in the high-energy channel and
the popularity of each class.

Fig. 7. “Vertical” filter bank codebook. Popularity of codewords at internal
nodes of the subband tree. The popularityp(i) 2 [0; 1] is represented as a
shade of gray; see intensity scale at right.

As expected, there is a strong dependence onsince node-
split decisions become increasingly unlikely at low bit rates
(high ).

Storage Considerations:We would like to address the stor-
age requirements associated with our algorithm. A definite
bottleneck is the dependence of the codebook parameters on
the rate-distortion slope “quality” criterion embodied by the

Fig. 8. Node-split codebook. The probability of each node split is repre-
sented as a shade of gray and is shown for five values of�: 0, 1, 10, 100,
and1.

Lagrange multiplier . Theoretically, we need a codebook
for every value of . The storage burden associated with this
is well-known from ECVQ codebook design theory (see the
Appendix). One solution is to have only a few values of
and deal with the issue of codebook mismatch (we discuss
this in the next section). Another option is to build a tree-
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(a)

(b)

Fig. 9. Quantizer codebooks for� = 10 and� = 100. Intensity represents
quantizer popularity.

structured codebook that is analogous to the tree-structured
vector quantizer and entropy-constrained tree structured vector
quantizer codebook designs that are well known in the VQ
community [13]. Modifications of our design methodology
to a tree-structured framework remain an attractive avenue
of future research to address the storage requirements for
practical implementations. It is also useful to note that as the
number of nodes increases exponentially with tree depth, using
a different codebook at each node of a deep tree might present
significant storage problems. Practical storage considerations
might force us to limit tree depth to some reasonably small
number, like 3 or 4.

C. Coding Results

To test our codebook design, we first selected a test image of
one of the five types considered above: a fingerprint. The test
image, shown in Fig. 10(a), was not part of the training set.
We tested the performance of our on-line coder against that of
the coder in [3] using Daubechies’ nonadapted filter banks but
adapted tree structures and quantizers [3]. We compared both

coding schemes under bit rate constraints. We selected a target
bit rate of 0.755 b/pixel, in which case, the Lagrange multiplier
was , and the appropriate codebook could be used. The
coder from [3], which does not use a codebook, met the 0.755
b/pixel bit rate specification using . The compressed
images are shown in Fig. 11(a) and (b). We obtained a 0.54
dB PSNR improvement and substantial visual improvements
as well. In particular, the ridges of the coded fingerprint in
Fig. 11(a) are less jagged than those in Fig. 11(b). This result
is consistent with earlier coding results using wavelet trees and
fixed quantizers on textured images [6]. Similar results were
obtained at other bit rates, e.g., using , we obtained a
bit rate of 1.828 b/pixel and a 0.42-dB improvement over [3].
The performance of our optimized coder was also compared
with that of a coder using the same filter bank codebook but
a simpler tree, which was obtained by recursively splitting the
high-energy branch of the tree. At the target, bit rate of 0.755
b/pixel, we obtained a 0.70-dB improvement over the latter
scheme. The results are summarized in Table I.

In another experiment, we investigated the potential effects
of codebook mismatch. We encoded our test fingerprint image
at higher rate ( ), but since no codebook corresponding
to that value of was designed, we successively used code-
books designed for and instead. In the first
case, we obtained a bit rate of 0.900 b/pixel and a PSNR of
32.35 dB, which is a 0.45-dB improvement over the coder
in [3] operating at the same bit rate (using ). In the
second case, we obtained a bit rate of 1.392 b/pixel and a
PSNR of 35.43 dB, which is a mere 0.07-dB improvement
over the coder in [3] operating at the same bit rate (using

). This shows that there is a penalty for using a severely
mismatched codebook. This issue is mitigated with the use of
tree-structured codebooks, as discussed in the previous section.

We also applied the method to images such asDotted Array4

in Fig. 10(b) orLena in Fig. 10(c), which are different from
those in the training set. In that case, the coding results were
comparable (slightly better or even slightly worse) with those
using the coder in [3]. We believe this is due not only to a
mismatch between the test image and the training set but to
three other factors as well:

1) the use of the theoretical coding gain criterion for
designing the filters, which does not guarantee im-
provements in actual R/D performance when standard
assumptions are not satisfied;

2) the spatial inhomogeneity of some images (Section IV
addressed some possible extensions to address this lim-
itation);

3) the marginal gain of using adapted filter banks for some
images. We discuss this important point in more detail
below.

D. On Signal-Adapted Cascaded Filter Banks

Here, we describe some elementary properties of signal-
adapted cascaded filter banks and compare them with tradi-
tional cascaded designs in terms of theoretical coding perfor-

4This image is from the MIT vision texture database, at http://www-
white.media.mit.edu/vismod/.
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(a)

(b)

(c)

Fig. 10. Test images (128� 128 pixels) and their horizontal log spectra. (a) Fingerprint. (b) Dotted array. (c) Lena.

mance. Consider, for simplicity, the case of unconstrained-
length filters, which offer maximum theoretical performance,
and 1-D signals with absolutely continuous spectral density

. Assume that trees are limited to a fixed depth. The
performance of a hierarchical subband coder, measured by
the log geometric mean , approaches
the R/D lower bound when the spectrum of the
input signal is relatively flat in each subband [17], [18]. If the
standard subband coder already satisfies this flatness property,
adaptive subband coding cannot provide tangible benefits. In
contrast, if has sharp variationsand the tree depth
is small, the potential advantage of the adaptive scheme is
significant. Below, we have some elementary properties of the

log geometric means and for the adapted and
conventional subband coding schemes, respectively. See [18]
for typical values of for AR(1) signals.

Property 1: for all
.

Property 2: The sequences and are nonin-
creasing in .

Property 3:
.

Note that the difference is not nec-
essarily monotonic. Consider, for instance,

. In this case,
. In addition, note that convergence of and
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TABLE I
CODING RESULTS USING OUR ADAPTIVE SUBBAND CODING METHOD (WITH � = 100) AS WELL AS THE METHOD IN [3], USING DAUBECHIES’ D4 FILTER BANKS

(a)

(b)

Fig. 11. Coding fingerprint test image in Fig. 10(a) at 0.755 b/pixel. (a)
Encoded using our adaptive subband coding method (PSNR= 31.29 dB). (b)
Encoded using the method in [3], using Daubechies’ D4 filter banks (PSNR=

30.75 dB).

to the lower-bound limit is faster for smooth spectra.
Hence, we conclude that adapted designs are unlikely to be
worth the additional design complexity for deep trees or for
relatively featureless spectra .

In our coding experiments, the tree depth . The log
spectrum fordotted array in Fig. 10(b) exhibits distinctive
features. Even though this test image is very different from
those in the training set, the adaptive subband algorithm
manages to identify filter banks that are well adapted to those
spectral features, as indicated by the coding results in Table I.
In contrast, not only is Lena very different from the images
in the training set, but in addition, its log spectrum appears
to be quite “featureless.” The unimpressive numerical results
for Lena are consistent with the observations above. Similar
conclusions are expected to hold for images made of many
different textured regions, as the distinctive spectral features

of each region would be averaged out. In this case, the use of
adaptive space-frequency trees could be advantageous due to
their spatial adaptivity properties.

VI. CONCLUSION

We have explored the application of signal-adapted filter
banks to image coding and proposed a new best-basis design
in which filter banks, subband tree structure, and quantizers
are chosen to optimize R/D performance. This design raises
fundamental issues of library complexity, both in a coding
sense (description of the chosen basis is potentially costly side
information) and in a computational sense (efficient evaluation
of all candidate bases). The problem is particularly involved
because filter bank parameters belong to a continuum of
admissible values. Some form of quantization of the filter
bank parameters is necessary, but the construction of a suitable
codebook of representative filter banks is itself a challenging
problem. Our approach is based on training. We construct a
codebook based on a set of training images using the theo-
retical coding gain approximation to R/D performance as the
codebook design criterion. We also construct a codebook for
the node-split decisions and quantizers at each node, using true
R/D performance as the design criterion. Using the theoretical
coding gain approximation and designing separate codebooks
for filter banks and for the node-split decisions and quantizers
is primarily motivated by practical considerations, owing to the
near-intractability of the original R/D optimization problem.
The encoder evaluates all candidate filter banks, node-split
decisions, and quantizers and selects the best ones using a
dynamic programming algorithm. There are typically, at most,
a dozen candidate filter banks and quantizers per node.

Two salient computational advantages of the new approach
(relative to [3]) are that 1) the on-line coding algorithm need
evaluate only a suitable reduced set of candidate quantizers,
and 2) our proposed framework allows for the potential of
reducing the recursive evaluation of all possible trees to some
optimal subtree (determined during the training phase). Since
populating the full tree with Lagrangian costs is, in fact, the
complexity bottleneck in [3], minimizing this phase is the key
to reducing overall on-line complexity. Further complexity
reduction may be obtained (at the cost of slight suboptimality)
using simpler greedy top-down optimization algorithms [15].

We have obtained encouraging preliminary coding results
on textured images such as fingerprints, both visually and
in terms of PSNR (typically 0.5 dB improvement over [3]).
However, in order to address the lack of spatial adaptivity
of the current method (which we conjecture is one reason
for unimpressive gains over [3] for spatially inhomogeneous
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images), we suggest that the proposed paradigm should be
extended to include spatial adaptivity. This involves the exten-
sion of the simple frequency trees in our current framework to
more powerful space-frequency trees, as described in [5]. This
approach requires the use of node-split decisions that indicate
space or frequency splits. Optimal weights for these decisions
may be determined by classification, extending the method
described in Section II.

Another promising avenue of future research involves using
an R/D rather than the theoretical coding gain criterion for
filter bank design that, however, would lead to a considerable
increase in both conceptual and computational complexity
due to the complex interdependencies that would result. This
could significantly enhance the performance of the theoretical
framework presented here. As complexity of the algorithm
is likely to increase extremely rapidly with tree depth, the
use of limited-depth trees (for both theoretical and practical
reasons) would improve the feasibility of such an approach.
Short of achieving this ultimate goal, reliable optimization
techniques should be developed to optimize the theoretical
coding gain for cascaded filter banks. One of the limitations
of the current algorithm is that the method for optimizing the
global coding gain using “local” coding gain cost functions
is suboptimal. While developing efficient optimization algo-
rithms will ultimately establish the performance of the adaptive
subband coding paradigm, the computational details of these
optimization algorithms are somewhat orthogonal to the main
contribution of our work: developing a systematic, R/D-based
framework for selection and quantization of subband coder
parameters, which provides a theoretically sound alternative
to empirical designs.

Several extensions of our framework are possible. First, we
would like to have the flexibility to choose from filters with
different lengths. This cannot be done in the current frame-
work because the theoretical coding gain criterion inevitably
favors long filters. Second, using quantizers that are more
sophisticated than the uniform scalar quantizers considered
here would further improve coding performance, especially
at low bit rates. Third, the current method requires that
a different codebook be designed for every value ofof
interest, as in ECVQ [13]. A practical solution to that problem
consists in designing tree-structured codebooks at the cost of
a (possibly slight) suboptimality. The analogy is similar to
unstructured entropy constrained vector quantization (ECVQ)
versus tree-structured VQ (TSVQ) [13]. In the latter, a single
tree-structured codebook is designed for all values of, with
different pruned subtrees of the full-tree corresponding to
different values of . Finally, codebook storage by the encoder
and decoder might be a problem, especially if the tree is large;
designing a size-constrained codebook from which filter banks
at all nodes are selected would alleviate that difficulty.

APPENDIX A
ENTROPY-CONSTRAINED QUANTIZATION

Chou, Lookabaugh, and Gray proposed an iterative descent
algorithm for designing vector quantizers having minimum
distortion subject to an entropy constraint. Although we refer

to [19] for a detailed description of this work, we briefly
summarize here the steps of their iterative algorithm since
it provides the basis for our approach to improving the
performance of wavelet-based compression algorithms.

Let denote an -dimensional VQ codebook
( ) indexed by index set , and let
denote the transmitted symbol lengths of the codewords. Let
a stationary vector source generate vectors from
independently with distribution . Let be a Lagrange
multiplier controlling the entropy constraint, and let
specify a distortion measure. Each iteration of the design
algorithm consists of three steps, none of which can increase
the value of the Lagrangian cost function. (Here, we ignore the
processing associated with checking conditions for stopping
the iteration).

1) Define an entropy-constrained mapping of input vectors
(modified nearest neighbor condition)

arg min

2) Update transmitted symbol lengths to reflect codeword
entropy (codelength update condition):

3) Optimize reproduction codebook (centroid condition):

4) Iterate until stopped.
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