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Abstract —The use of hand gestures provides an attractive alternative to cumbersome interface devices for human-computer
interaction (HCI). In particular, visual interpretation of hand gestures can help in achieving the ease and naturalness desired for HCI.
This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures.
We survey the literature on visual interpretation of hand gestures in the context of its role in HCI. This discussion is organized on the
basis of the method used for modeling, analyzing, and recognizing gestures. Important differences in the gesture interpretation
approaches arise depending on whether a 3D model of the human hand or an image appearance model of the human hand is used.
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3D hand models offer a way of more elaborate modeling of hand gestures but lead to computational hurdles that have not been
overcome given the real-time requirements of HCI. Appearance-based models lead to computationally efficient “purposive”
approaches that work well under constrained situations but seem to lack the generality desirable for HCI. We also discuss
implemented gestural systems as well as other potential applications of vision-based gesture recognition. Although the current
progress is encouraging, further theoretical as well as computational advances are needed before gestures can be widely used for
HCI. We discuss directions of future research in gesture recognition, including its integration with other natural modes of human-

computer interaction.

Index Terms —Vision-based gesture recognition, gesture analysis, hand tracking, nonrigid motion analysis, human-computer

interaction.

1 INTRODUCTION

ITH the massive influx of computers in society, human-

computer interaction, or HCI, has become an increas-
ingly important part of our daily lives. It is widely believed
that as the computing, communication, and display tech-
nologies progress even further, the existing HCI techniques
may become a bottleneck in the effective utilization of the
available information flow. For example, the most popular
mode of HCI is based on simple mechanical devices—
keyboards and mice. These devices have grown to be fa-
miliar but inherently limit the speed and naturalness with
which we can interact with the computer. This limitation
has become even more apparent with the emergence of
novel display technology such as virtual reality [2], [78],
[41]. Thus in recent years there has been a tremendous push
in research toward novel devices and techniques that will
address this HCI bottleneck.

One long-term attempt in HCI has been to migrate the
“natural” means that humans employ to communicate with
each other into HCI. With this motivation automatic speech
recognition has been a topic of research for decades. Tre-
mendous progress has been made in speech recognition,
and several commercially successful speech interfaces have
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been deployed [75]. However, it has only been in recent
years that there has been an increased interest in trying to
introduce other human-to-human communication modalities
into HCI. This includes a class of techniques based on the
movement of the human arm and hand, or hand gestures.
Human hand gestures are a means of non-verbal interac-
tion among people. They range from simple actions of us-
ing our hand to point at and move objects around to the
more complex ones that express our feelings and allow us
to communicate with others.

To exploit the use of gestures in HCI it is necessary to
provide the means by which they can be interpreted by
computers. The HCI interpretation of gestures requires that
dynamic and/or static configurations of the human hand,
arm, and even other parts of the human body, be measur-
able by the machine. First attempts to solve this problem
resulted in mechanical devices that directly measure hand
and/or arm joint angles and spatial position. This group is
best represented by the so-called glove-based devices [9], [32],
[88], [70], [101]. Glove-based gestural interfaces require the
user to wear a cumbersome device, and generally carry a
load of cables that connect the device to a computer. This
hinders the ease and naturalness with which the user can
interact with the computer controlled environment. Even
though the use of such specific devices may be justified by a
highly specialized application domain, for example simula-
tion of surgery in a virtual reality environment, the
“everyday” user will certainly be deterred by such cumber-
some interface tools. This has spawned active research to-
ward more “natural” HCI techniques.
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Fig. 1. Vision-based gesture interpretation system. Visual images of gesturers are acquired by one or more video cameras. They are processed in
the analysis stage where the gesture model parameters are estimated. Using the estimated parameters and some higher level knowledge, the

observed gestures are inferred in the recognition stage.

Potentially, any awkwardness in using gloves and other
devices can be overcome by using video-based noncontact
interaction techniques. This approach suggests using a set
of video cameras and computer vision techniques to inter-
pret gestures. The nonobstructiveness of the resulting vi-
sion-based interface has resulted in a burst of recent activity
in this area. Other factors that may have contributed to this
increased interest include the availability of fast computing
that makes real-time vision processing feasible, and recent
advances in computer vision techniques. Numerous ap-
proaches have been applied to the problem of visual inter-
pretation of gestures for HCI, as will be seen in the follow-
ing sections. Many of those approaches have been chosen
and implemented so that they focus on one particular as-
pect of gestures, such as, hand tracking, hand posture esti-
mation, or hand pose classification. Many studies have
been undertaken within the context of a particular applica-
tion, such as using a finger as a pointer to control a TV, or
interpretation of American Sign Language.

Until recently, most of the work on vision-based gestural
HCI has been focused on the recognition of static hand
gestures or postures. A variety of models, most of them
taken directly from general object recognition approaches,
have been utilized for that purpose. Images of hands, geo-
metric moments, contours, silhouettes, and 3D hand skele-
ton models are a few examples. In recent year, however,
there has been an interest in incorporating the dynamic
characteristics of gestures. The rationale is that hand ges-
tures are dynamic actions and the motion of the hands con-
veys as much meaning as their posture does. Numerous
approaches, ranging from global hand motion analysis to

independent fingertip motion analysis, have been proposed
for gesture analysis. There has thus been rapid growth of
various studies related to vision-based gesture analysis fu-
eled by a need to develop more natural and efficient hu-
man-computer interfaces. These studies are reported in
disparate literature and are sometimes confusing in their
claims and their scope. Thus there is a growing need to
survey the state-of-the-art in vision-based gesture recogni-
tion and to systematically analyze the progress toward vi-
sion-based gestural human-computer interface. This paper
attempts to bring together the recent progress in visual
gesture interpretation within the context of its role in HCI.

We organize the survey by breaking the discussion into
the following main components based on the general view
of a gesture recognition system as shown in Fig. 1:

e Gesture Modeling (Section 2)

e Gesture Analysis (Section 3)

e Gesture Recognition (Section 4)

» Gesture-Based Systems and Applications (Section 5)

The first phase of a recognition task (whether considered
explicitly or implicitly in a particular study) is choosing a
model of the gesture. The mathematical model may con-
sider both the spatial and temporal characteristic of the
hand and hand gestures. We devote Section2 to an in-
depth discussion of gesture modeling issues. The approach
used for modeling plays a pivotal role in the nature and
performance of gesture interpretation.

Once the model is decided upon, an analysis stage is
used to compute the model parameters from the image
features that are extracted from single or multiple video
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input streams. These parameters constitute some descrip-
tion of the hand pose or trajectory and depend on the
modeling approach used. Among the important problems
involved in the analysis are that of hand localization,
hand tracking, and selection of suitable image features.
We discuss these and other issues of gesture analysis in
Section 3.

The computation of model parameters is followed by
gesture recognition. Here, the parameters are classified and
interpreted in the light of the accepted model and perhaps
the rules imposed by some grammar. The grammar could
reflect not only the internal syntax of gestural commands
but also the possibility of interaction of gestures with other
communication modes like speech, gaze, or facial expres-
sions. Evaluation of a particular gesture recognition ap-
proach encompasses both accuracy, robustness, and speed,
as well as the variability in the number of different classes
of hand/Zarm movements it covers. We survey the various
gesture recognition approaches in Section 4.

A major motivation for the reported studies on gesture
recognition is the potential to use hand gestures in various
applications aiming at a natural interaction between the
human and various computer-controlled displays. Some of
these applications have been used as a basis for defining
gesture recognition, using a “purposive” formulation of the
underlying computer vision problem. In Section 5 we sur-
vey the reported as well as other potential applications of
visual interpretation of hand gestures.

Although the current progress in gesture recognition is
encouraging, further theoretical as well as computational
advances are needed before gestures can be widely used for
HCI. We discuss some of the directions of research for
gesture recognition, including its integration with other
natural modes of human-computer interaction in Section 6.
This is followed by concluding remarks in Section 7.

2 GESTURE MODELING

In order to systematically discuss the literature on gesture
interpretation, it is important to first consider what model
the authors have used for the hand gesture. In fact, the
scope of a gestural interface for HCI is directly related to
the proper modeling of hand gestures. How to model hand
gestures depends primarily on the intended application
within the HCI context. For a given application, a very
coarse and simple model may be sufficient. However, if the
purpose is a natural-like interaction, a model has to be es-
tablished that allows many if not all natural gestures to be
interpreted by the computer. The following discussion ad-
dresses the question of modeling of hand gestures for HCI.

2.1 Definition of Gestures

Outside the HCI framework, hand gestures cannot be easily
defined. The definitions, if they exist, are particularly re-
lated to the communicational aspect of the human hand
and body movements. Webster’s Dictionary, for example,
defines gestures as ”...the use of motions of the limbs or
body as a means of expression; a movement usually of the
body or limbs that expresses or emphasizes an idea, senti-
ment, or attitude.” Psychological and social studies tend to
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narrow this broad definition and relate it even more to
man’s expression and social interaction [48]. However, in
the domain of HCI the notion of gestures is somewhat dif-
ferent. In a computer controlled environment one wants to
use the human hand to perform tasks that mimic both the
natural use of the hand as a manipulator, and its use in
human-machine communication  (control of com-
puter/machine functions through gestures). Classical defi-
nitions of gestures, on the other hand, are rarely, if ever,
concerned with the former mentioned use of the human
hand (so called practical gestures [48]).

Gesturer Observer
Produces Perceives
hg vh
Gesture Hand/Arm Visual
(the mental > Imaaes
concept of ) Movement g
G H v

Fig. 2. Production and perception of gestures. Hand gestures originate
as a mental concept G, are expressed (Tjg) through arm and hand
motion H, and are perceived (T,;) as visual images V.

Hand gestures are a means of communication, similar to
spoken language. The production and perception of ges-
tures can thus be described using a model commonly found
in the field of spoken language recognition [85], [100]. An
interpretation of this model, applied to gestures, is depicted
in Fig. 2. According to the model, gestures originate as a
gesturer’s mental concept, possibly in conjunction with
speech. They are expressed through the motion of arms and
hands, the same way speech is produced by air stream
modulation through the human vocal tract. Also, observers
perceive gestures as streams of visual images which they
interpret using the knowledge they possess about those
gestures. The production and perception model of gestures
can also be summarized in the following form:

H=T,G @)
V=T,H 2
V = Ty(ThG) = TyeG 3

Transformations T can be viewed as different models: Ty is
a model of hand or arm motion given gesture G, T, is a
model of visual images given hand or arm motion H, and
T,y describes how visual images V are formed given some
gesture G. The models are parametric, with the parameters
belonging to their respective parameter spaces M, .. In light
of this notation, one can say that the aim of visual interpre-
tation of hand gestures is to infer gestures G from their vis-
ual images V using a suitable gesture model T,,, or

G=TyV “)

In the context of visual interpretation of gestures, it may then
be useful to consider the following definition of gestures:
A hand gesture is a stochastic process in the gesture model parameter
space My over a suitably defined time interval .
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Each realization of one gesture can then been seen as a tra-
jectory in the model parameter space. For example, in per-
forming a gesture the human hand’s position in 3D space
describes a trajectory in such space, Fig. 3. The stochastic
property in the definition of gestures affirms their natural
character: no two realizations of the same gesture will re-
sult in the same hand and arm motion or the same set of
visual images. The presence of the time interval I suggests
the gesture’s dynamic nature.

-2 -2

Fig. 3. Gesture as a stochastic process. Gestures can be viewed as
random trajectories in parameter spaces which describe hand or arm
spatial states. In this example, two different gestures are shown in a
three dimensional parameter space. One realization of Gesture 1 is a
trajectory in that space (solid line).

The gesture analysis and gesture recognition problems
can then be posed in terms of the parameters involved in
the above definition. For example, the problem of con-
structing the gestural model T over the parameter set My,
or the problem of defining the gesture interval I.

2.2 Gestural Taxonomy

Several alternative taxonomies have been suggested in the
literature that deal with psychological aspects of gestures.
Kendon [48] distinguishes “autonomous gestures” (that
occur independently of speech) from “gesticulation”
(gestures that occur in association with speech). McNeill
and Levy [65] recognize three groups of gestures: iconic
and metaphoric gestures, and “beats.” The taxonomy that
seems most appropriate within the context of HCI was re-
cently developed by Quek [71], [72]. A slightly modified
version of the taxonomy is given in Fig. 4.

All hand/arm movements are first classified into two
major classes:

e gestures and
* unintentional movements.

Hand/Arm Movements

Gestures Unintentional Movements

Manipulative Communicative

Acts Symbols
Mimetic Deictic Referential Modalizing

Fig. 4. A taxonomy of hand gestures for HCI. Meaningful gestures are
differentiated from unintentional movements. Gestures used for ma-
nipulation (examination) of objects are separated from the gestures
which possess inherent communicational character.

Unintentional movements are those hand/arm movements
that do not convey any meaningful information. Gestures
themselves can have two modalities:

e communicative and
¢ manipulative.

Manipulative gestures are the ones used to act on objects in
an environment (object movement, rotation, etc.) Commu-
nicative gestures, on the other hand, have an inherent
communicational purpose. In a natural environment they
are usually accompanied by speech. Communicative ges-
tures can be either acts or symbols. Symbols are those ges-
tures that have a linguistic role. They symbolize some refer-
ential action (for instance, circular motion of index finger
may be a referent for a wheel) or are used as modalizers,
often of speech (“Look at that wing!” and a modalizing
gesture specifying that the wing is vibrating, for example). In
HCI context these gesture are, so far, one of the most com-
monly used gestures since they can often be represented by
different static hand postures, as we will discuss further in
Section 5. Finally, acts are gestures that are directly related to
the interpretation of the movement itself. Such movements
are classified as either mimetic (which imitate some actions) or
deictic (pointing acts).

Taxonomy of gestures largely influences the way pa-
rameter space M and gesture interval T are determined. A
related issue is the classification of gestural dynamics,
which we consider next.

2.3 Temporal Modeling of Gestures

Since human gestures are a dynamic process, it is important
to consider the temporal characteristics of gestures. This may
help in the temporal segmentation of gestures from other
unintentional hand/arm movements. In terms of our general
definition of hand gestures, this is equivalent to determining
the gesture interval I. Surprisingly, psychological studies are
fairly consistent about the temporal nature of hand gestures.
Kendon [48] calls this interval a “gesture phrase.” It has been
established that three phases make a gesture:

e preparation,

* nucleus (peak or stroke [65]), and

* retraction.

The preparation phase consists of a preparatory movement
that sets the hand in motion from some resting position.
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The nucleus of a gesture has some “definite form and en-
hanced dynamic qualities” [48]. Finally, the hand either re-
turns to the resting position or repositions for the new ges-
ture phase. An exception to this rule is the so called “beats”
(gestures related to the rhythmic structure of the speech).

The above discussion can guide us in the process of
temporal discrimination of gestures. The three temporal
phases are distinguishable through the general hand/arm
motion: “Preparation” and “retraction” are characterized
by the rapid change in position of the hand, while the
“stroke,” in general, exhibits relatively slower hand motion.
However, as it will be seen in Section 4, the complexity of
gestural interpretation usually imposes more stringent con-
straints on the allowed temporal variability of hand ges-
tures. Hence, a work in vision-based gesture HCI some-
times reduces gestures to their static equivalents, ignoring
their dynamic nature.

2.4 Spatial Modeling of Gestures

Gestures are observed as hand and arm movements, actions
in 3D space. The description of gestures, hence, also in-
volves the characterization of their spatial properties. In a
HCI domain this characterization has so far been mainly
influenced by the kind of application for which the gestural
interface is intended. For example, some applications require
simple models (like static image templates of the human hand
in TV set control in [35]), while some others require more so-
phisticated ones (3D hand model used by [56], for instance).

If one considers the gesture production and perception
model suggested in Section 2.1, two possible approaches to
gesture modeling may become obvious. One approach may
be to try to infer gestures directly from the visual images
observed, as stated by (4). This approach has been often
used to model gestures, and is usually denoted as appear-
ance-based modeling. Another approach may result if the
intermediate tool for gesture production is considered: the
human hand and arm. In this case, a two step modeling
process may be followed:

H= Tv_hlv ®)
G=TygH (6)
In other words, one can first model the motion and posture

of the hand and arm H and then infer gestures G from the
motion and posture model parameters. A group of models
which follows this approach is known as 3D-model-based.

Fig. 5 shows the two major approaches used in the spa-
tial modeling of gestures. We examine the two approaches
more closely in the following subsections.

2.4.1 3D Hand/Arm Model
The 3D hand and arm models have often been a choice for
hand gesture modeling. They can be classified in two large
groups:

¢ volumetric models and

¢ skeletal models.

Volumetric models are meant to describe the 3D visual
appearance of the human hand and arms. They are com-
monly found in the field of computer animation [64], but
have recently also been used in computer vision applica-
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Spatial Gesture Model

3D Hand Model-Based Appearance-Based

/ '

Parameters: Parameters:
- joint angles - images
- palm position - image geometry parameters

- image motion parameters
- fingertip position & motion

Fig. 5. Spatial models of gestures. 3D hand model-based models of
gestures use articulated models of the human hand and arm to esti-
mate the hand and arm movement parameters. Such movements are
later recognized as gestures. Appearance-based models directly link
the appearance of the hand and arm movements in visual images to
specific gestures.

tions. In the field of computer vision volumetric models of
the human body are used for analysis-by-synthesis tracking
and recognition of the body’s posture [52], [105]. Briefly, the
idea behind the analysis-by-synthesis approach is to ana-
lyze the body’s posture by synthesizing the 3D model of the
human body in question and then varying its parameters
until the model and the real human body appear as the
same visual images. Most of the volumetric models used in
computer animation are complex 3D surfaces (NURBS or
nonuniform rational B-splines) which enclose the parts of
the human body they model [64]. Even though such models
have become quite realistic, they are too complex to be ren-
dered in real-time. A more appealing approach, suitable to
real-time computer vision, lies in the use of simple 3D geo-
metric structures to model the human body [68]. Structures
like generalized cylinders and super-quadrics which encom-
pass cylinders, spheres, ellipsoids and hyper-rectangles are
often used to approximate the shape of simple body parts,
like finger links, forearm, or upperarm [6], [20], [29], [31],
[37]. The parameters of such geometric structures are quite
simple. For example, a cylindrical model is completely de-
scribed with only three parameters: height, radius, and
color. The 3D models of more complex body parts, like
hands, arms, or legs, are then obtained by connecting to-
gether the models of the simpler parts [46]. In addition to
the parameters of the simple models, these structures con-
tain the information on connections between the basic
parts. The information may also include constraints which
describe the interaction between the basic parts in the
structure. There are two possible problems in using such
elaborate hand and arm models. First, the dimensionality of
the parameter space is high (more than 23 x 3 parameters
per hand). Second, and more importantly, obtaining the
parameters of those models via computer vision techniques
may prove to be quite complex.

Instead of dealing with all the parameters of a volumet-
ric hand and arm model, models with a reduced set of
equivalent joint angle parameters together with segment
lengths are often used. Such models are known as skeletal
models. Skeletal models are extensively studied in the hu-
man hand morphology and biomechanics [92], [95]. We
briefly describe the basic notions relevant to our discussion.
The human hand skeleton consists of 27 bones, divided in
three groups:
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(@) (b)

(d) (@)

Fig. 6. Hand models. Different hand models can be used to represent the same hand posture. (a) 3D Textured volumetric model. (b) 3D wireframe

volumetric model. (c) 3D skeletal model. (d) Binary silhouette. (e) Contour.

» carpals (wrist bones—eight),
» metacarpals (palm bones—five), and
» phalanges (finger bones—14).

The joints connecting the bones naturally exhibit different
degrees of freedom (DoF). Most of the joints connecting carpals
have very limited freedom of movement. The same holds for
the carpal-metacarpal joints (except for the TM, see Fig. 7).
Finger joints show the most flexibility: For instance, the MCP
and the TM joint have two DoFs (one for extension/flexion
and one for adduction/abduction), while the PIP and the DIP
joints have one DoF (extension/flexion). Equally important
to the notion of DoF is the notion of dependability between
the movements in neighboring joints. For instance, it is
natural to most people to bend (flex/extend) their fingers
such that both PIP and DIP joints flex/extend. Also, there is
only a certain range of angles that the hand joints can natu-
rally assume. Hence, two sets of constraints can be placed
on the joint angle movements: static (range) and dynamic
(dependencies). One set of such constraints was used by
Kuch [55] in his 26 DoF hand model:

Static Constraints

Fingers Thumb
0< 6cps < 90
-15 < Oycps < 15
Dynamic Constraints
Ohp = 3 O0p O = Bice
Oicp = %Q)F/’IP Oy = %QXIICP

X _ X _ 1%
QMCP - eTM - EQMCP

Bce X _ pX
90 (BMCP,converge GMCP,S)+

X
eMCP,s

where superscripts denote flexions/extensions (“y”) or ad-
duction/abduction (“x”) movements in local, joint centered
coordinate systems. In another example, Lee and Kunii [59],
[60] developed a 27 degree of freedom hand skeleton model
with an analogous set of constraints. Similar skeleton-based
models of equal or lesser complexity have been used by
other authors [4], [66], [76], [77], [97].

2.4.2 Appearance-Based Model

The second group of models is based on appearance of
hands/arms in the visual images. This means that the
model parameters are not directly derived from the 3D
spatial description of the hand. The gestures are modeled
by relating the appearance of any gesture to the appearance
of the set of predefined, template gestures.

A large variety of models belong to this group. Some are
based on deformable 2D templates of the human hands,
arms, or even body [18], [21], [45], [49], [58]. Deformable 2D
templates are the sets of points on the outline of an object,
used as interpolation nodes for the object outline approxi-
mation. The simplest interpolation function used is a
piecewise linear function. The templates consist of the aver-
age point sets, point variability parameters, and so-called
external deformations. Average point sets describe the
“average” shape within a certain group of shapes. Point
variability parameters describe the allowed shape defor-
mation (variation) within that same group of shapes. These
two types of parameters are usually denoted as internal.
For instance, the human hand in open position has one shape
on the average, and all other instances of any open posture of
the human hand can be formed by slightly varying the aver-
age shape. Internal parameters are obtained through principal
component analysis (PCA) of many of the training sets of data.
External parameters or deformations are meant to describe

Middle

Pinky
Distal phalanx

<3— Distal interphalangeal (DIP)
Middle phalanx

<} Proximal interphalangeal (Pl}
Proximal phalanx

<3— Metacapophalangeal (MCP)

Thumb

Distal phalanx
Interphalangeal (IP) -
Proximal phalanx
Metacapophalangeal (MCP)=
Metacarpal Metacarpal

Trapeziometacarpal (TM) il A

x
yiéz

Fig. 7. Skeleton-based model of the human hand. The human hand
skeleton consists of 27 bones. This model, on the other hand, ap-
proximates the anatomical structure using five serial link chains
with 19 links.
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the global motion of one deformable template. Rotations
and translations are used to describe such motion. Tem-
plate-based models are used mostly for hand-tracking pur-
poses [18], [49]. They can also be used for simple gesture
classification based on the multitude of classes of templates
[58]. Trajectories of external parameters of deformable tem-
plates have also been used for simple gesture recognition
[45]. Extensions of the 2D template approach to 3D deform-
able models have also been recently explored. For example,
3D point distribution model has been employed for gesture
tracking [42].

A different group of appearance-based models uses 2D
hand image sequences as gesture templates. Each gesture
from the set of allowed gestures is modeled by a sequence
of representative image n-tuples. Furthermore, each ele-
ment of the n-tuple corresponds to one view of the same
hand or arm. In the most common case, only one
(monoscopic) or two (stereoscopic) views are used. Pa-
rameters of such models can be either images themselves or
some features derived from the images. For instance, com-
plete image sequences of the human hands in motion can
be used as templates per se for various gestures [25], [26].
Images of fingers only can also be employed as templates
[22] in a finger tracking application. Another recently pur-
sued approach has been to model different gestural actions
by motion history images or MHIs [12]. MHIs are 2D images
formed by accumulating the motion of every single pixel in
the visual image over some temporal window. This way the
intensity of the pixel in the MHI relates to how much pro-
longed motion is observed at that pixel.

The majority of appearance-based models, however, use
parameters derived from images in the templates. We de-
note this class of parameters as hand image property parame-
ters. They include: contours and edges, image moments,
and image eigenvectors, to mention a few. Many of these
parameters are also used as features in the analysis of ges-
tures (see Section 3). Contours as a direct model parameter
are often used: simple edge-based contours [17], [81] or
“signatures” (contours in polar coordinates) [14] are some
possible examples. Contours can also be employed as the
basis for further eigenspace analysis [23], [67]. Other pa-
rameters that are sometimes used are image moments [80],
[86]. They are easily calculated from hand/arm silhouettes
or contours. Finally, many other parameters have been
used: Zernike moments [79] and orientation histograms
[34], for example.

Another group of models uses fingertip positions as pa-
rameters. This approach is based on the assumption that
the position of fingertips in the human hand, relative to the
palm, is almost always sufficient to differentiate a finite
number of different gestures. The assumption holds in 3D
space under several restrictions; some of them were noted
by Lee and Kunii [59], [60]: The palm must be assumed to
be rigid, and the fingers can only have a limited number of
DoFs. However, most of the models use only 2D locations
of fingertips and the palm [3], [28], [57]. Applications that
are concerned with deictic gestures usually use only a sin-
gle (index) fingertip and some other reference point on the
hand or body [36], [57], [73].
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3 GESTURE ANALYSIS

In the previous section, we discussed different approaches
for modeling gestures for HCI. In this section we consider
the analysis phase where the goal is to estimate the pa-
rameters of the gesture model using measurements from
the video images of a human operator engaged in HCI.
Two generally sequential tasks are involved in the analysis
(see Fig. 8). The first task involves “detecting” or extracting
relevant image features from the raw image or image se-
guence. The second task uses these image features for com-
puting the model parameters. We discuss the different ap-
proaches used in this analysis.

Model
Prediction

Analysis

Parameter '
Estimation

Feature
Detection

o>

Recognition

Visual
Images

Features Parameters

Gesture

Parameter
Prediction

Fig. 8. Analysis and recognition of gestures. In the analysis stage,
features F are extracted from visual images V. Model parameters p
are estimated and possibly predicted. Gestures G are recognized in
the recognition stage. Recognition may also influence the analysis
stage by predicting the gesture model at the next time instance.

3.1 Feature Detection

Feature detection stage is concerned with the detection of
features which are used for the estimation of parameters of
the chosen gestural model. In the detection process it is first
necessary to localize the gesturer. Once the gesturer is lo-
calized, the desired set of features can be detected.

3.1.1 Localization

Gesturer localization is a process in which the person who
is performing the gestures is extracted from the rest of the
visual image. Two types of cues are often used in the local-
ization process:

» color cues and
* motion cues.

Color cues are applicable because of the characteristic color
footprint of the human skin. The color footprint is usually
more distinctive and less sensitive to illumination changes
in the hue-saturation space than in the standard (camera
capture) RGB color space. Most of the color segmentation
techniques rely on histogram matching [4] or employ a
simple look-up table approach [51], [73] based on the
training data for the skin and possibly its surrounding ar-
eas. The major drawback of color-based localization tech-
niques is the variability of the skin color footprint in different
lighting conditions. This frequently results in undetected skin
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regions or falsely detected nonskin textures. The problem
can be somewhat alleviated by considering only the regions
of a certain size (scale filtering) or at certain spatial position
(positional filtering). Another common solution to the
problem is the use of restrictive backgrounds and clothing
(uniform black background and long dark sleeves, for ex-
ample.) Finally, many of the gesture recognition applica-
tions resort to the use of uniquely colored gloves or mark-
ers on hands/fingers [19], [28], [57], [60], [62]. The use of
background restriction or colored gloves makes it possible
to localize the hand efficiently and even in real-time, but im-
poses the obvious restriction on the user and the interface
setup. On the other hand, without these restrictions some of
the color-based localization techniques such as the ones that
use histogram matching are computationally intensive and
currently hard to implement in real-time.

Motion cue is also commonly applied for gesturer local-
ization and is used in conjunction with certain assumptions
about the gesturer. For example, in the HCI context, it is usu-
ally the case that only one person gestures at any given time.
Moreover, the gesturer is usually stationary with respect to
the (also stationary) background. Hence, the main compo-
nent of motion in the visual image is usually the motion of
the arm/hand of the gesturer and can thus be used to localize
her/him. This localization approach is used in [35], [72]. The
disadvantage of the motion cue approach is in its assump-
tions. While the assumptions hold over a wide spectrum of
cases, there are occasions when more than one gesturer is
active at a time (active role transition periods) or the back-
ground is not stationary.

To overcome the limitations of the individual cues for
localization, several approaches have been suggested. One
approach is the fusion of color, motion and other visual cues
[7] or the fusion of visual cues with nonvisual cues like
speech or gaze [83]. The potential advantage of the so-
called multimodal approach has not yet been fully exploited
for hand localization though it has been explored for face
localization in video [38]. We discuss the multimodal ap-
proach further in Section 6. Another way in which the lo-
calization problem can be substantially eased is by the use
of prediction techniques. These techniques provide estimates
of the future feature locations based on the model dynamics
and the previously known locations. We will discuss this
further in Section 3.2.

3.1.2 Features and Detection

Even though different gesture models are based on differ-
ent types of parameters, the image features employed to
compute those parameters are often very similar. For ex-
ample, some 3D hand/arm models and models that use
finger trajectories all require fingertips to be extracted first.
Color or gray scale images which encompass hands and
arms or gesturers themselves are often used as the features.
This choice of features is very common in the appearance-
based models of gestures where sequences of images are
used to form temporal templates of gestures [25]. The com-
putational burden of the detection of these features is rela-
tively low and is associated mostly with the gesturer local-
ization phase. Another approach to using whole images as
features is related to building of the so-called motion energy
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(history) images or MEI (MHI). MElIs are 2D images which
unify the motion information of a sequence of 2D images by
accumulating the motion of some characteristic image
points over the sequence [30]. One simple yet effective
choice of characteristic points is the whole image itself [12].
As discussed in Section 3.2, such features can represent a
valid choice for the recognition of communicative gestures.
However, their applicability to hand and arm tracking and
recognition of manipulative gestures seems to be limited.

Hand and arm silhouettes are among the simplest, yet
most frequently used features. Silhouettes are easily extracted
from local hand and arm images in the restrictive back-
ground setups. In the case of complex backgrounds, tech-
niques that employ color histogram analyses, as described in
the gesturer localization phase, can be used. Examples of the
use of silhouettes as features are found in both 3D hand
model-based analyses [56] as well as in the appearance-based
techniques (as in [54], [69]). Naturally, the use of such binary
features results in a loss of information which can effect the
performance especially for 3D hand posture estimators. For
example, in the 3D hand posture estimation problem of [56],
the binary silhouette prevents the accurate estimation of the
positions of some fingers.

Contours represent another group of commonly used
features. Several different edge detection schemes can be
used to produce contours. Some are extracted from simple
hand-arm silhouettes, and thus, are equivalent to them,
while the others come from color or gray-level images.
Contours are often employed in 3D model-based analyses.
In such cases, contours can be used to select finger and arm
link candidates through the clustering of the sets of parallel
edges [29], [31], or through image-contour-to-model-
contour matching [37], for example. In appearance-based
models, on the other hand, many different parameters can
be associated with contours: for instance “signatures”
(description in polar coordinates of the points on the con-
tour [14]) and “size functions” [96].

A frequently used feature in gesture analysis is the fin-
gertip. Fingertip locations can be used to obtain parameters
of both the 3D hand models and the 2D appearance-based
gestural models (see Section 3.2). However, the detection of
fingertip locations in either 3D or 2D space is not trivial. A
simple and effective solution to the fingertip detection
problem is to use marked gloves or color markers to desig-
nate the characteristic fingertips (see [19], [28], [57], [60],
[93], for instance). Extraction of fingertip location is then
fairly simplified and can be performed using color histo-
gram-based techniques. A different way to detect fingertips
is to use pattern matching techniques: templates can be im-
ages of fingertips [22] or fingers [77] or generic 3D cylindri-
cal models [27]. Such pattern matching techniques can be
enhanced by using additional image features, like contours
[76]. Some fingertip extraction algorithms are based on the
characteristic properties of fingertips in the image. For in-
stance, curvature of a fingertip outline follows a character-
istic pattern (low-high-low) which can be used for the fea-
ture detection [63], [97]. Other heuristics can be used as
well. For example, for deictic gestures it can be assumed
that the finger represents the foremost point of the hand [63],
[73]. Finally, many other indirect approaches in detection of
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fingertips have be employed in some instances, like image
analysis using specially tuned Gabor kernels [66]. The main
hindrance in the use of fingertips as features is their sus-
ceptibility to occlusions. Very often one or more fingers are
occluded by the palm from a given camera viewpoint and
direction. The most obvious solution to this occlusion
problem involves the use of multiple cameras [60], [76].
Other solutions are based on the estimation of the occluded
fingertip positions based on the knowledge of the 3D model
of the gesture in question [77]. More often, however, re-
strictions are placed on the user to posture her/his hand so
that the occlusions are minimized.

3.2 Parameter Estimation

Computation of the model parameters is the last stage of
the gesture analysis phase. In the gesture recognition sys-
tems, this is followed by the recognition stage, as shown in
Fig. 8. For hand or arm tracking systems, however, the pa-
rameter computation stage usually produces the final out-
put. The type of computation used depends on both the
model parameters and the features that were selected.

3.2.1 Estimation of 3D Model Parameters

As mentioned in Section 2.4.1, two sets of parameters are
used in 3D hand models—angular (joint angles) and lin-
ear (phalangae lengths and palm dimensions). The esti-
mation of these kinematic parameters from the detected
features is a complex and cumbersome task. The process
involves two steps:

« the initial parameter estimation and
e the parameter update as the hand gesture evolves in
time.

All of the 3D hand models employed so far assume that all
the linear parameters are known a priori. This assumption
reduces the problem of finding the hand joint angles to an
inverse kinematics problem. Given a 3D position of the end-
effectors and the base of a kinematic chain, the inverse
kinematic’s task is to find the joint angles between the links
in the chain. The 3D model of the hand can then be viewed
as a set of five serial kinematic chains (finger links) attached
to a common base (palm). The finger tips now play the role
of the end-effectors in the chains. Inverse kinematic prob-
lems are in general ill-posed, allow for multiple solutions,
and are computationally expensive. The use of constraints
on parameter values (see Section 2.4.1) somewhat alleviates
those problems. Nevertheless, alternative approaches to 3D
hand parameter estimation have been often sought. One
automated solution to the initial parameter estimation
problem was proposed by [59] through a two phase proce-
dure using the accumulated displacement torque approach.
The first phase involves the initial wrist positioning while
the second phase deals with palm/finger adjustment. The
procedure is applied recursively until the accumulated
torque excerpted on all links reaches a local minimum, con-
strained on a set of static and dynamic joint angle con-
straints. Even though this approach produces accurate pa-
rameter estimates, it is computationally very expensive and
thus not applicable to real-time problems. Some simpler
solutions involve a user interactive model parameter ini-
tialization [56]. Another approach is to use interpolation of
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the discretized forward kinematics mappings to approximate
the inverse kinematics [4]. Given a table of the discrete values
of the joint angles and the resulting fingertip positions it is
possible to estimate the values of the joint angles for a nontable
value of the fingertip position.

Once the hand model parameters are initially estimated,
the parameter estimates can be updated using some kind of
prediction/smoothing scheme. A commonly used scheme
is Kalman filtering and prediction. This scheme works under
the assumption of small motion displacements and a
known parameter update (motion) model. Such a model
can be derived from a known hand kinematics model, us-
ing the inverse Jacobian mapping from the space of meas-
urable linear displacements into the space of desired angu-
lar displacements. A variation of this approach was used by
[76] in a real-time 27 degree of freedom hand tracker. On
the other hand, when the dynamics are not explicitly avail-
able a simple scheme like the one reported in [56] may be
employed. In this scheme, a simple silhouette matching
between the 3D hand model and the real hand image was
used to obtain satisfactory parameter estimation and update.

It is necessary to stress three major drawbacks associ-
ated with the mentioned 3D hand model parameter esti-
mation approach. One has to do with the obvious compu-
tational complexity of any task involving the inverse kine-
matics. The other, potentially more serious problem, is due to
occlusions of the fingertips used as the model features. An
obvious, yet expensive, solution is to use multiple cameras.
Another possible solution was developed by [77], and in-
volves the use of finger links as features built upon a set of
rules designed to resolve the finger occlusions. The last
drawback stems from the employed assumption that the
linear dimensions of the hand are known, which is neces-
sary in the inverse kinematics problems. Thus, any change
in scale of the hand images always results in inaccurate
estimates of the hand joint angles. Finally, it should be
pointed out that the knowledge of the exact hand posture
parameters seem unnecessary for the recognition of com-
municative gestures [71] although the exact role of 3D hand
parameter in gesture recognition is not clear.

The motion of the arm and hand also plays a role in
gesture recognition although again the exact nature of this
role is controversial [71]. The estimates of such motion can
be made using either 3D space or 2D space. The 3D arm
parameters are similar to the ones used in the 3D hand
model description—joint angles and links. Hence, similar
techniques could be used for the 3D arm parameter estima-
tion. However, because of the simpler macro structure of
the arm (the arm can be viewed as a serial kinematic chain
with only three links) and fewer occlusions, it is possible to
use less complex approaches to the arm parameter estima-
tion. Most of the approaches match simplified geometrical
3D models of the arm (see Section 2.4.1) to the visual im-
ages of a real arm. The commonly used features are edges
and contours which are used to estimate the link axes. For
example, [29], [31] used sets of symmetry axes of line seg-
ments to estimate the axes of generalized cylinders which
modeled the arm links and the upper body. In another ex-
ample, [37] used chamfer matching to align the 3D tapered
super-quadrics model of the upper body to two camera
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visual images. In a slightly different approach [105] used
fusion of color “blob” features and contours to detect ele-
ments of the “blob” representation of the human body.

As is the case in the 3D hand model parameter estima-
tion, a good initialization of arm parameters is crucial for
many of these techniques to work. This is because these
techniques often rely on dynamic updates of the parame-
ters through a Kalman-based filtering/prediction scheme
rather than a global initial search. Also, the introduction of
constraints on the position and motion of the arm links, as
in [37], can greatly improve the estimation process.

3.2.1 Estimation of Appearance Parameters

Many different appearance-based models have been re-
ported. The estimation of the parameters of such models
usually coincides with the estimation of some compact de-
scription of the image or image sequence.

Appearance models based on the visual images per se
are often used to describe gestural actions. These models
are often known as the temporal models. Various different
parameters of such models are used. In the simplest case
the parameters can be selected as the sets of key visual
frames, as in [25]. Another possibility is to use the eigen-
decomposition representation of visual images in the se-
guence with respect to an average image [104]. A promising
direction has recently been explored: accumulation of spa-
tio/temporal information of a sequence of visual images into
a single 2D image, a so-called motion history image (MHI)
[12]. Such a 2D image can then be easily parameterized us-
ing one of 2D image description techniques, such as the geo-
metric moment description or eigendecomposition. A major
advantage of using these appearance models is the inherent
simplicity of their parameter computation. However, this
advantage may be outweighed by the loss of precise spatial
information which makes them especially less suited for ma-
nipulative gestures.

Deformable 2D template-based models are often em-
ployed as the spatial models of hand and arm contours or
even the whole human body [45]. They are usually speci-
fied through a pair of mean values of the template nodes m
and their covariances v [21], [49]. The parameter estimates
are obtained through principal component analysis (PCA) on
sets of training data. Different parameters are then used to
describe individual gestures. The variation of the node pa-
rameters allows for the same gesture to be recognized de-
spite the fact that it takes on slightly different appearance
when performed by different gesturers. An extension of
this approach to 3D deformable templates or point distribu-
tion models (PDM) was recently suggested in [42]. Associ-
ated with the deformable template model parameters are
also the so called external deformations or global motion
parameters (rotation and translation of the hand or body in
the workspace). The updates of the model parameters can
then be estimated in a framework similar to the one used
for rigid motion estimation. The main difference is that in
the case of deformable templates an additional displace-
ment due to the template variability dv also needs to be
estimated [42], [49]. While the parameter computation for
such deformable models is not extensive in the parameter
update phase, it can be overwhelming during the initializa-

tion. On the other hand, deformable models can provide
sufficient information for the recognition of both classes of
gestures: manipulative and communicative.

Finally, a wide class of appearance models uses silhou-
ettes or gray level images of the hands. In such cases, the
model parameters attempt to capture a description of the
shape of the hand while being relatively simple. A very
commonly employed technique is built upon the geometric
moment description of hand shapes [14], [69], [86]. Usually,
moments of up to the second order are used. Some other
techniques use Zernike moments [79] whose magnitudes
are invariant to rotation, thus allowing for rotation invari-
ant shape classification. Many other shape descriptors have
also been tested—orientation histograms [34], for example,
represent summary information of small patch orientations
over the whole image. This parameter tends to be invariant
under changes in the lighting conditions which often occur
during the hand motion. Even though the parameters of the
above mentioned models are easy to estimate, they are also
very sensitive to the presence of other, nonhand objects in
the same visual image. This means that tight “bounding
boxes” around the hand need to be known at all times during
the hand motion. This in turn implies either the use of good
motion prediction or restriction to the hand postures. Like
the other parameter estimation tasks, the reported estimation
of motion parameters are usually based on simple Newto-
nian dynamics models and Kalman-based predictors.

4 GESTURE RECOGNITION

Gesture recognition is the phase in which the data analyzed
from the visual images of gestures is recognized as a spe-
cific gesture. Analogously, using the notation we estab-
lished in Section 2, the trajectory in the model parameter
space (obtained in the analysis stage) is classified as a
member of some meaningful subset of that parameter
space. Two tasks are commonly associated with the recog-
nition process:

¢ Optimal partitioning of the parameter space and
« Implementation of the recognition procedure.

The task of optimal partitioning is usually addressed
through different learning-from-examples training proce-
dures. The key concern in the implementation of the recog-
nition procedure is computational efficiency. We discuss
each of the above issues in more detail.

The task of optimal partitioning of the model parameter
space is related to the choice of the gestural models and
their parameters, as mentioned in Section 2. However, most
of the gestural models are not implicitly designed with the
recognition process in mind. This is especially true for the
models of static gestures or hand postures. For example,
most of the static models are meant to accurately describe
the visual appearance of the gesturer’s hand as they appear
to a human observer. To perform recognition of those ges-
tures, some type of parameter clustering technique stem-
ming from vector quantization (VQ) is usually used. Briefly,
in vector quantization, an n-dimensional space is parti-
tioned into convex sets using n-dimensional hyperplanes,
based on training examples and some metric for determining
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the nearest neighbor. If the parameters of the model are
chosen especially to help with the recognition, as for exam-
ple in [23], [90], the separation of classes belonging to dif-
ferent gestures can be done easily. However, if the model
parameters are not chosen to properly describe the desired
classes, the separation of the classes, and thus, accurate rec-
ognition in that parameter space may not be possible. For
example, with contour descriptors, several hand postures
would be confused during classification and recognition.
Therefore, contours are often used for hand or arm tracking
rather than for the recognition of hand postures. Parame-
ters of other appearance-based static hand models often
suffer from the same problem. For example, it is known
that geometric moment parameters are not rotationally in-
variant. Thus, a small change in rotation of the same hand
posture can cause it to be classified as a different posture.
This problem can be somewhat alleviated if the chosen
training hand postures classes are either very distinct or
somehow normalized with respect to rotation. Another ap-
proach is to introduce different model parameters, such as
Zernike moments [79] or orientation histograms [34], which
posses 2D rotational invariance property. Some other mod-
els, based on eigenspace decompositions, are more dis-
criminant and hence produce higher recognition accuracies
under classical clustering techniques [103]. The problem of
accurate recognition of postures which use model parame-
ters that cluster in nonconvex sets can also be solved by
selecting nonlinear clustering schemes. Neural networks
are one such option, although their use for gesture recogni-
tion has not been fully explored [50]. Such nonlinear
schemes are often sensitive to training and may be compu-
tationally expensive. Further, there is an inherent limitation
in the discrimination capability by considering a 2D projec-
tion (or appearance) of a 3D hand when trying to capture a
wide class of natural gestures. On the other hand, the use of
3D hand and gesture models offers the possibility of im-
proving recognition, but because of the complexity of
model parameter computation they are not often used for
hand posture recognition.

Gestural actions, as opposed to static gestures, involve
both the temporal and the spatial context [16]. As in the
case of static posture recognition, the recognition of ges-
tural actions depends on the choice of gestural models.
Most of the gestural models, as seen in Section 2, produce
trajectories in the model’s parameter space. Since gestural
action possess temporal context, the main requirement for
any clustering technique used in their classification is that it
be time instance invariant and time scale invariant. For exam-
ple, a clapping gesture should be recognized as such
whether it is performed slowly or quickly, now, or in 10
minutes. Numerous signal recognition techniques deal with
such problems, the most prominent of these being automatic
speech recognition (ASR). Since both speech as well as ges-
tures are a means of natural human communication, an anal-
ogy is drawn between them and computational tools devel-
oped for ASR are frequently used in gesture recognition.

In speech recognition problems, a long standing task has
been to recognize spoken words independent of their dura-
tion and variation in pronunciation. A tool called the Hid-
den Markov Models or HMM [74] has shown tremendous
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success is such tasks. HMM is a doubly stochastic process, a
probabilistic network with hidden and observable states. The
hidden states “drive” the model dynamics—at each time
instance the model is in one of its hidden states. Transitions
between the hidden states are governed by probabilistic
rules. The observable states produce outcomes during hid-
den state transitions or while the model is in one of its hid-
den states. Such outcomes are measurable by an outside
observer. The outcomes are governed by a set of probabil-
istic rules. Thus, an HMM can be represented as a triplet
(A, b, m), where A is called the (hidden) state transition ma-
trix, b describes the probabilities of the observation states,
and ris the initial hidden state distribution. It is common to
assume that the hidden state space is discrete, and that the
observables are allowed to assume a continuum of values.
In such cases, b is usually represented as a mixture of Gaus-
sian (MOG) probability density functions. In automatic
speech recognition, one HMM is associated with each differ-
ent unit of speech (phoneme or sometimes word). Analo-
gously, in the recognition of gestural actions, one HMM can
be associated with each different gesture. In speech, the ob-
servables take on values of the linear prediction cepstrum
coefficients (LPC cepstrum). In gestures, the observable is a
vector of the spatial model parameters, like geometric mo-
ments [69], Zernike moments [79], or eigen image coefficients
[103]. The process of association of different HMMs with dif-
ferent gestures (speech) units is denoted as training. In this
process the parameters of the HMM (A, b, x) are modified so
that the chosen model “best” describes the spatio/temporal
dynamics of the desired gestural action. The training is usu-
ally achieved by optimizing the maximum likelihood measure
log(Pr(observation | model)) over a set of training examples
for the particular gesture associated with the model. Such
optimization involves the use of computationally expensive
expectation-maximization or EM procedures, like the Baum-
Welch algorithm [74]. However, any such training proce-
dure involves a step based on dynamic programming or DP
which in turn has a dynamic time warping or DTW property.
This means that the variability in duration of training sam-
ples is accounted for in the model. The same is true for the
recognition or model evaluation process. In that process, a
gesture trajectory is tested over the set of trained HMMs in
order to decide which one it belongs to. A probability of the
gesture being produced by each HMM is evaluated using
the Viterbi algorithm [74]. Obviously, the larger the number
of trained HMMs (gestures) is, the more computationally
demanding the recognition procedure. Problems like this
one have successfully been solved by imposing an external
set of rules or grammar which describes the language sen-
tence structure or how the trained units (gestures or spo-
ken) can be “connected” in time [69], [86]. Several problems
are related to the use of the HMM as a recognition tool. For
example, in its original formulation, an HMM is a first or-
der stochastic process. This implies that the (hidden) state
of the model at time instance i depends only on the state at
time i — 1. While this model may be sufficient for some
processes, it often results in lower recognition rates for the
processes which do not follow the first order Markov prop-
erty. As in speech, such problems can be somewhat re-
duced by extending the parameter vectors with the time
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derivatives of the original parameters [15]. It is also possible
to derive a higher order HMMs, however such models do
not share the computational efficiency of the first order
models [75]. Another possible drawback of classical HMMs
is the assumption that probability distribution functions or
pdfs of the observables can be modeled as mixtures of
Gaussians. The main reason for modeling the observables
as MOG:s is in training. In such cases, the HMM parameters
can be efficiently computed using the Baum-Welch algo-
rithm. Extensions in this direction have been achieved in
ASR by using neural networks to model the observation
pdfs [13]. Unfortunately, the training procedure in that case
is computationally overwhelming. Also, in the original
formulation a HMM is assumed to be stationary. This means
that the observation probabilities do not vary in time. Such
assumption may hold over short time intervals. However,
since a complete gestural action is often modeled as a single
HMM, the stationarity of observation pdfs may not hold
true in this case. Nonstationary HMMs have been formu-
lated for ASR [89], but have not yet been used for gesture
recognition. Finally, it is interesting to note that hidden
states of the HMM may possibly be viewed as the temporal
phases known from the psychological studies of gesture
(Section 2.3).

Another approach to recognition of gestural actions pro-
posed recently is based on temporal templates, so called motion
energy [30] or motion history images (MHIs) [12] (see Sec-
tion 3.2). Such motion templates accumulate the motion his-
tory of a sequence of visual images into a single 2D image.
Each MHI is parameterized by the length of the time history
window that was used for its computation. To achieve time
duration invariance, the templates are calculated for a set of
history windows of different durations, ranging between two
predefined values. The recognition is then simply achieved
using any of the 2D image clustering techniques, based on
the sets of trained templates. An advantage of a such tempo-
ral template approach is in its extreme computational sim-
plicity. However, the fact that the motion is accumulated
over the entire visual image can result in artifacts being intro-
duced by motions of unrelated objects or body parts present
in the images.

A successful recognition scheme should also consider
the time-space context of any specific gesture. This can be
established by introducing a grammatical element into rec-
ognition procedure. The grammar should reflect the lin-
guistic character of communicative gestures as well as spa-
tial character of manipulative gestures. In other words, only
certain subclasses of gestural actions with respect to the
current and previous states of the HCI environment are
(naturally) plausible. For example, if a user reaches
(performs a valid manipulative gesture) for the coffee cup
handle and the handle is not visible from the user’s point of
view, the HCI system should discard such a gesture. Still,
only a small number of the systems so far exploits this. The
grammars are simple and usually introduce artificial linguistic
structures: they build their own “languages” that have to be
learned by the user [36], [50], [73], [80].

The computational complexity of a recognition approach
is important in the context of HCI. The trade-offs involved
across various approaches is a classical one—model com-
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plexity, versus richness of the gesture classes, versus recog-
nition time. The more complex the model is, the wider class
of gestures to which it can be applied. The computational
complexity increases, and, hence, the recognition time.
Most of the 3D model-based gesture models are character-
ized by more than 10 parameters. Their parameter calcula-
tion (gesture analysis) requires computationally expensive
successive approximation procedures (the price of which is
somewhat lowered using prediction-type analysis). The
systems based on such models rarely show close to real-
time performance. For example, the time performance
ranges from 45 minutes per single frame in [59] (although it
does not use any prediction element) to 10 frames per sec-
ond in [76]. Yet potentially, the 3D models can be used to
capture the richest sets of hand gestures for HCI. The ap-
pearance-based models are usually restricted in their appli-
cability to a narrower subclass of HCI applications, en-
hancements of the computer mouse concept [22], [35], [36],
[50], [73], or hand posture classification [43], [63], [66], [67],
[81], [86]. On the other hand, because of the lower com-
plexity of the appearance-based models they are easier to
implement in real-time and more widely used.

5 APPLICATIONS AND SYSTEMS

Recent interest in gestural interface for HCI has been driven
by a vast number of potential applications (Fig. 9). Hand
gestures as a mode of HCI can simply enhance the interac-
tion in “classical” desktop computer applications by re-
placing the computer mouse or similar hand-held devices.
They can also replace joysticks and buttons in the control of
computerized machinery or be used to help the physically
impaired to communicate more easily with others. Never-
theless, the major impulse to the development of gestural
interfaces has come from the growth of applications situ-
ated in virtual environments (VEs) [2], [53].

Hand gestures in natural environments are used for both
manipulative actions and communication (see Section 2).
However, the communicative role of gestures is subtle,
since hand gestures tend to be a supportive element of
speech (with the exception of deictic gestures, which play a
major role in human communication). Manipulative aspect
of gestures also prevails in their current use for HCI. How-
ever, some applications have emerged recently which take
advantage of the communicative role of gestures. We pres-
ent a brief overview of several application driven systems
with interfaces based on hand gestures.

Most applications of hand gestures portray them as the
manipulators of virtual objects (VOs). This is depicted in
Fig. 9. VOs can be computer generated graphics, like simu-
lated 2D and 3D objects [14], [22], [44], [36] or windows
[50], [73], or abstractions of computer-controlled physical
objects, such as device control panels [4], [35], [36] or ro-
botic arms [18], [43], [47], [94]. To perform manipulations of
such objects through HCI a combination of coarse tracking
and communicative gestures is currently being used. For
example, to direct the computer to rotate an object a user of
such an interface may issue a two-step command: <select ob-
ject> <rotate object>. The first action uses coarse hand track-
ing to move a pointer in the VE to the vicinity of the object.
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Fig. 9. Applications of gestural interface for HCI. Unlike the gestures in a natural environment, both manipulative and communicative gestures in
HCI can be employed to direct manipulations of objects or to convey messages.

To rotate the object, the user rotates his/her hand back and
forth producing a metaphor for rotational manipulation [14].
One may then pose the question: “Why use the communi-
cative gestures for manipulative actions?” Communicative
gestures imply a finite (and usually small) vocabulary of
gestures that has to be learned, whereas the manipulative
ones are natural hand/arm movements. To answer this
question, one has to consider the complexity of analysis and
recognition of each type of gestural models (Section 3 and
Section 4). The 3D hand model-based gestural models are
well suited for modeling of both manipulative and com-
municative gestures, while the appearance-based models of
gestures are mostly applicable to the communicative ones.
However, the use of 3D hand model-based gesture models
are computationally more expensive than that of the ap-
pearance-based models (see Section4). Therefore, to
achieve a usable (real-time) performance one has to usually
resort to the less desirable appearance-based models of
gestures. Recently, however, with the increase in comput-
ing power, simplified hand/head blob models [6], [105]
have been considered for applications which use communi-
cative gesture recognition [10]. Such models are simple
enough to be analyzed in real-time and are used for recog-
nition of a small set of communicative gestures. For exam-
ple, [10] used such a model followed by a HMM classifier to
recognize eighteen T’ai Chi gestures. The system was in-
tended to provide a virtual environment for the relaxation
of cancer patients.

A brief summary of characteristics of some of the sys-
tems aimed at the application of hand gestures for HCI is
given in Table 1. It summarizes the basic modeling tech-
nique used for the gestures, the class of gesture commands
that are interpreted, and the reported performance in terms
of the speed of processing.

Not all of the applications of hand gestures for HCI are
meant to yield manipulative actions. Gestures for HCI can
also be used to convey messages for the purpose of their
analysis, storage or transmission. Video-teleconferencing
(VTC) and processing of American sign language (ASL) pro-
vide such opportunities. In VTC applications, reduction of
bandwidth is one of the major issues. A typical solution is to
use different coding techniques. One such technique is
model-based coding where image sequences are described by
the states (e.g., position, scale, and orientation) of all physical
objects in the scene (human participants in the case of VTC)
[1], [40]. Only the updates of descriptors are sent while at the

receiving end a computer generated model of physical ob-
jects is driven using the received data. Model-based coding
for VTC, therefore, requires that the human bodies be mod-
eled appropriately. Depending on the amount of detail de-
sired, this can be achieved by only coarse models of the up-
per body and limbs [20], or finely tuned models of human
faces or hands. Modeling of hand/arm gestures can then be
of substantial value for such applications.

Recognition of ASL is often considered as another appli-
cation that naturally employs human gestures as means of
communication. Such applications could play a vital role in
communication with people with a communication im-
pairment like deafness. A device which could automatically
translate ASL hand gestures into speech signals would un-
doubtedly have a positive impact on such individuals. How-
ever, the more practical reason for using the ASL as a test bed
for the present hand gesture recognition systems is its well-
defined structure compared to other natural gestures humans
use. This fact implies that the appearance-based modeling
techniques are particularly suited for such ASL interpreta-
tion, as was proven in several recent applications [86], [96].

There are numerous prospective applications of vision-
based hand gesture analysis. The applications mentioned so
far are only the first steps toward using hand gestures in
HCI. The need for further development is thus quite clear.
We discuss several important research issues that need to
be addressed toward incorporating natural hand gestures
into the HCI.

6 FUTURE DIRECTIONS

To fully exploit the potential of gestures in HCI environ-
ments, the class of recognizable gestures should be as broad
as possible. Ideally, any and every gesture performed by
the user should be unambiguously interpretable, thus al-
lowing for naturalness of the interface. However, the state of
the art in vision-based gesture recognition does not provide
a satisfactory solution for achieving this goal. Most of the
gesture-based HCI systems at the present time address a
very narrow group of applications: mostly symbolic com-
mands based on hand postures or 3D-mouse type of
pointing (see Section 5). The reason for this is the complex-
ity associated with the analysis (Section 3) and recognition
(Section 4) of gestures. Simple gesture models make it pos-
sible to build real-time gestural interfaces—for example,
pointing direction can be quickly found from the silhou-
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TABLE 1
SYSTEMS THAT EMPLOY HAND GESTURES FOR HCI
Application Gestural Modeling Technique Gestural Commands Complexity
(Speed)
CD Player Control Panel [4] Hand silhouette moments Tracking only 30 fps'
Staying Alive [10] 3D hand / head blob model [6] Tracking & HMM-based recognition real time
Virtual Squash [14] Hand silhouette moments & contour Tracking & three metaphors 10.6 fps
“signature”
FingerPaint [22] Fingertip template Tracking only na’
ALIVE [26] Template correlation Tracking combined with recognition real-time
of facial expressions
Computer Game Control [33] Image moments using dedicated Hand & body posture recognition real-time
hardware
TV Display Control [35] Template correlation Tracking only 5 fps
FingerPointer [36] Heuristic detection of pointing action Tracking and one metaphor com- real-time
bined with speech
Window Manager [50] Hand pose recognition using neural Tracking & four metaphors real-time
networks
GestureComputer [63] Image moments & fingertip position Tracking and six metaphors 10-25 fps
FingerMouse [73] Heuristic detection of pointing action Tracking only real-time
DigitEyes [76] 27 DoF 3D hand model Tracking only 10 fps
Robot manipulator guidance [18] active contour pointing real-time
ROBOGEST [43] Silhouette Zernike moments Six metaphors 1/2 fps
Automatic robot instruction Fingertip position in 2D Grasp tracking n.a.
Robot manipulator control [94] Fingertip positions in 3D Six metaphors real-time
Hand sign recognition [24] Most expressive featur cameres 40 signs n.a.
(MEF) of images
ASL recognition [86] Silhouette moments & grammar 40 words 5 fps

1. Frames per second.
2. Not available.

We choose speed as the measure of complexity of interpretation given the lack of any other accurate measure. Note, however, that different applications may be

implemented on different computer systems with different levels of optimization.

@

(b)

Fig. 10. Silhouettes and gray-scale images of two different hand postures. The silhouette in (a) can also be interpreted as the reflection about the
vertical axes of the silhouette in (b). Hence, the two silhouettes do not unambiguously define the hand posture.

ettes of the human hand in relatively nonrestrictive envi-
ronments ([36],[73]). However, as it can be seen from Fig. 10
to find the hand posture and thus distinguish between the
two gestures from the simple image appearance (silhou-
ettes) is sometimes quite difficult.

Real-time interaction based on 3D hand model-based
gesture analysis is yet to be demonstrated. The use of 3D
models are mostly confined to hand tracking and hand
posture analysis. Yet, the analysis of the parameters of the
3D hand model-based models can result in a wider class of
hand gestures that can be identified than the analysis
linked with the appearance-based models. This leads us to

the conclusion that, from the point of the naturalness of
HCI, the 3D hand model-based approaches offer more
promise than the appearance-based models. However, this
prospect is presently hindered by a lack of speed and the
restrictiveness of the background in the 3D hand model-
based approaches. The first problem is associated with the
complexity of the model and the feature extraction. Fin-
gertip positions seem to be a very useful feature (see Sec-
tion 3.1.2), yet sometimes difficult to extract. A possible
solution to this problem may employ the use of skin and
nail texture to distinguish the tips of the fingers. Addi-
tionally, the computational complexity of estimating the



PAVLOVIC ET AL.

model parameters (Section 3.2) can be reduced by choos-
ing an optimal number of parameters that satisfies a par-
ticular level of naturalness and employing parallelization
of the computations involved.

Several other aspects that pertain to the construction of a
natural HCI need to be adequately addressed in the future.
One of the aspects involves the two-handed gestures. Hu-
man gestures, especially communicative, naturally employ
actions of both hands. Yet, many of the vision-based ges-
ture systems focus their attention on single-hand gestures.
Until recently, the single-hand gesture approach has been
almost inevitable. First, many analysis techniques require
that the hands be extracted from global images. If the two-
handed gestures are allowed, several ambiguous situations
that do not occur in single-hand case may occur that have
to be dealt with (occlusion of hands, distinction between or
indexing of left/right hand). Second, the most versatile
gesture analysis techniques (namely, 3D model-based tech-
niques) currently exhibit one major drawback: speed. Some
3D model-based techniques which use coarse upper body
and arm models [6] have reached the near real-time speeds
and have been utilized for basic two-hand gesture analysis.
Appearance-based techniques can, in principle, handle two-
handed gestures. Nevertheless, their applicability has been
usually restricted to simple (symbolic) gestures that do not
require two hands. A more recent work on appearance-
based motion templates [12] has indirectly addressed the
issue of two-handed gestures. Another notable exception is
an early system developed by Krueger [54]. Thus, to ade-
quately address the issue of two-handed gestures in the
future, more effective analysis techniques should be con-
sidered. These techniques should not only rely on the im-
provements of the classical techniques used in single-
hand gestures, but also exploit the interdependence be-
tween the two hands performing a gesture since in many
case the two hands performing a single gesture assume
symmetrical postures.

An issue related to two-handed gestures is the one of
multiple gesturers. Successful interaction in HCI-based en-
vironments has to consider multiple users. For example, a
virtual modeling task can benefit enormously if several de-
signers simultaneously participate in the process. However,
the implementation of the multi-user interface has several
difficult issues to face, the foremost one being the analysis
of gestures. The analysis at the present assumes that there is
a well-defined workspace associated with the gesturer.
However, in the case of multiple users the intersection of
workspaces is a very probable event. The differentiation
between the users can then pose a serious problem. The use
of active computer vision [11], [82], [5], [8], in which the
cameras adaptively focus on some area of interest, may
offer a solution to this problem. Another approach would
be to optimize the parameters of the stationary camera(s)
for a given interface; related issues are studied under sensor
planning [39], [91].

Hand gestures are, like speech, body movement, and
gaze, a means of communication (see Section 2.1). Moreo-
ver, almost any natural communication among humans
concurrently involves several modes of communication
that accompany each other. For instance, the “come here”
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gesture is usually accompanied by the words “Come
here.” Another example is the sentence “Notice this con-
trol panel.” and a deictic gesture involving an index finger
pointing at the particular control panel and a gaze di-
rected at the panel. As seen from the above examples, the
communicative gestures can be used both to affirm and to
complement the meaning of a speech message. In fact, in
the literature that reports psychological studies of human
communication, the interaction between the speech and
gestures as well as the other means of communication is
often explored [48], [61], [87]. This leads to the conclusion
that any such multimodal interaction can also be rendered
useful for HCI (see Fig. 11 and [84]). The affirmative hand
gesture (speech) can be used to reduce the uncertainty in
speech (hand gesture) recognition and, thus, provide a
more robust interface. Gestures that complement speech,
on the other hand, carry a complete communicational
message only if they are interpreted together with speech
and, possibly, gaze. The use of such multimodal messages
can help reduce the complexity and increase the natural-
ness of the interface for HCI (see Fig. 12). For example,
instead of designing a complicated gestural command for
the object selection which may consist of a deictic gesture
followed by a symbolic gesture (to symbolize that the ob-
ject that was pointed at by the hand is supposed to be se-
lected) a simple concurrent deictic gesture and verbal
command “this” can be used [84]. The number of studies
that explore the use of multimodality in HCI has been
steadily increasing over the past couple of years [36], [83],
[98], [99], [102]. At the present time, the integration of
communication modes in such systems is performed after
the commands portions of different modes have been in-
dependently recognized. Although the interface structure
is simplified in this way, the information pertaining to the
interaction of the modes at lower levels is probably lost.
To utilize the multimodal interaction at all levels, new
approaches that fuse the multimodal input analysis as
well as recognition should be considered in the future.

Fig. 11. A possible situation where speech/gesture integration may be
particularly effective: A 3D visualization facility for structural biologist
where researchers could be examining and discussing the results of a
simulation.

Photograph courtesy of Rich Saal, lllinois State Journal-Register, Springfield, Ill.
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7 CONCLUSIONS

Human-computer interaction is still in its infancy. Visual
interpretation of hand gestures would allow the develop-
ment of potentially natural interfaces to computer con-
trolled environments. In response to this potential, the
number of different approaches to video-based hand ges-
ture recognition has grown tremendously in recent years.
Thus there is a growing need for systematization and
analysis of many aspects of gestural interaction. This paper
surveys the different approaches to modeling, analysis, and
recognition of hand gestures for visual interpretation. The
discussion recognizes two classes of models employed in
the visual interpretation of hand gestures. The first relies on
3D models of the human hand, while the second utilizes the
appearance of the human hand in the image. The 3D hand
models offer a rich description and discrimination capabil-
ity that would allow a wide class of gestures to be recog-
nized leading to natural HCI. However, the computation of
3D model parameters from visual images under real-time
constraints remains an elusive goal. Appearance-based
models are simpler to implement and use for real-time
gesture recognition, but suffer from inherent limitations
which could be a drawback for natural HCI.

Several simple HCI systems have been proposed that
demonstrate the potential of vision-based gestural inter-
faces. However, from a practical standpoint, the develop-
ment of such systems is in its infancy. Though most current
systems employ hand gestures for the manipulation of ob-
jects, the complexity of the interpretation of gestures dic-
tates the achievable solution. For example, the gestures
used to convey manipulative actions today are usually of
the communicative type. Further, hand gestures for HCI are
mostly restricted to single-handed and produced only by a
single user in the system. This consequently downgrades
the effectiveness of the interaction. We suggest several di-
rections of research for raising these limitations toward
gestural HCI. For example, integration of hand gestures
with speech, gaze and other naturally related modes of
communication in a multimodal interface. However, sub-
stantial research effort that connects advances in computer
vision with the basic study of human-computer interaction
will be needed in the future to develop an effective and
natural hand gesture interface.

ACKNOWLEDGMENTS

This work was supported in part by the U. S. Army Re-
search  Laboratory under Cooperative Agreement
No. DAALO01-96-2-0003 and in part by the National Science
Foundation Grant IRI-96-34618. The authors would like to
acknowledge Yusuf Azoz and Lalitha Devi for their help
with the references, and Karin Pavlovic for her help in re-
viewing the manuscript. They would also like to thank the
anonymous reviewers for their comments which greatly
helped in improving this survey.

REFERENCES

[1] J.F. Abramatic, P. Letellier, and M. Nadler, “A Narrow-Band
Video Communication System for the Transmission of Sign Lan-

[2]
31

(41
[5]
(6]

(71

(8]

[]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997

guage Over Ordinary Telephone Lines,” Image Sequences Process-
ing and Dynamic Scene Analysis, T.S. Huang, ed., pp. 314-336. Ber-
lin and Heidelberg: Springer-Verlag, 1983.

JA. Adam, “Virtual Reality,” IEEE Spectrum, vol. 30, no. 10,
pp. 22-29, 1993.

S. Ahmad and V. Tresp, “Classification With Missing and Uncer-
tain Inputs,” Proc. Int’l Conf. Neural Networks, vol. 3, pp. 1,949-
1,954, 1993.

S. Ahmad, “A Usable Real-Time 3D Hand Tracker,” IEEE Asilo-
mar Conf., 1994.

J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active Vision,”
Int’l J. Computer Vision, vol. 1, pp. 333-356, 1988.

A. Azarbayejani, C. Wren, and A. Pentland, “Real-Time 3D
Tracking of the Human Body,” Proc. IMAGE’COM 96, Bordeaux,
France, 1996.

Y. Azoz, L. Devi, and R. Sharma, “Vision-Based Human Arm
Tracking for Gesture Analysis Using Multimodal Constraint Fu-
sion,” Proc. 1997 Advanced Display Federated Laboratory Symp.,
Adelphi, Md., Jan. 1997.

R. Bajcsy, “Active Perception,” Proc. IEEE, vol. 78, pp. 996-1,005,
1988.

T. Baudel and M. Baudouin-Lafon, “Charade: Remote Control of
Objects Using Free-Hand Gestures,” Comm. ACM, vol. 36, no. 7,
pp. 28-35, 1993.

D.A. Becker and A. Pentland, “Using a Virtual Environment to
Teach Cancer Patients T’ai Chi, Relaxation, and Self-Imagery,”
Proc. Int’l Conf. Automatic Face and Gesture Recognition, Killington,
Vt., Oct. 1996.

A. Blake and A. Yuille, Active Vision. Cambridge, Mass.: MIT
Press, 1992.

AF. Bobick and J.W. Davis, “Real-Time Recognition of Activity
Using Temporal Templates,” Proc. Int’l Conf. Automatic Face and
Gesture Recognition, Killington, Vt., Oct. 1996.

H.A. Boulard and N. Morgan, Connectionnist Speech Recognition. A
Hybrid Approach. Norwell, Mass.: Kluwer Academic Publishers,
1994.

U. Brockl-Fox, “Real-Time 3D Interaction With Up to 16 Degrees
of Freedom From Monocular Image Flows,” Proc. Int’l Workshop
on Automatic Face and Gesture Recognition, Zurich, Switzerland,
pp. 172-178, June 1995.

L.W. Campbell, D.A. Becker, A. Azarbayejani, A.F. Bobick, and
A. Pentland, “Invariant Features for 3D Gesture Recognition,”
Proc. Int’l Conf. Automatic Face and Gesture Recognition, Killington,
Vt., pp. 157-162, Oct. 1996.

C. Cedras and M. Shah, “Motion-Based Recognition: A Survey,”
Image and Vision Computing, vol. 11, pp. 129-155, 1995.

K. Cho and S.M. Dunn, “Learning Shape Classes,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 16, pp. 882-888, Sept.
1994.

R. Cipolla and N.J. Hollinghurst, “Human-Robot Interface by
Pointing With Uncalibrated Stereo Vision,” Image and Vision Com-
puting, vol. 14, pp. 171-178, Mar. 1996.

R. Cipolla, Y. Okamoto, and Y. Kuno, “Robust Structure From
Motion Using Motion Parallax,” Proc. IEEE Int’'l Conf. Computer
Vision, pp. 374-382, 1993.

E. Clergue, M. Goldberg, N. Madrane, and B. Merialdo, “Auto-
matic Face and Gestural Recognition for Video Indexing,” Proc.
Int’l Workshop on Automatic Face and Gesture Recognition, Zurich,
Switzerland, pp. 110-115, June 1995.

T. F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, “Active
Shape Models—Their Training and Application,” Computer Vision
and Image Understanding, vol. 61, pp. 38-59, Jan. 1995.

J.L. Crowley, F. Berard, and J. Coutaz, “Finger Tacking As an
Input Device for Augmented Reality,” Proc. Int’l Workshop on
Automatic Face and Gesture Recognition, Zurich, Switzerland,
pp. 195-200, June 1995.

Y. Cui and J. Weng, “Learning-Based Hand Sign Recognition,”
Proc. Int’l Workshop on Automatic Face and Gesture Recognition, Zu-
rich, Switzerland, pp. 201-206, June 1995.

Y. Cui and J. J. Weng, “Hand Segmentation Using Learning-Based
Prediction and Verification for Hand Sign Recognition,” Proc. Int’l
Conf. Automatic Face and Gesture Recognition, Killington, Vt.,
pp. 88-93, Oct. 1996.



PAVLOVIC ET AL.

[25]

[26]

[27]

[28]

[29]

[30]

[311

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

T. Darrell, I. Essa, and A. Pentland, “Task-Specific Gesture Analy-
sis in Real-Time Using Interpolated Views,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 18, no. 12, pp. 1,236-1,242,
Dec. 1996.

T. Darrell and A.P. Pentland, “Attention-Driven Expression and
Gesture Analysis in an Interactive Environment,” Proc. Int’l Work-
shop on Automatic Face and Gesture Recognition, Zurich, Switzer-
land, pp. 135-140, June 1995.

J. Davis and M. Shah, “Determining 3D Hand Motion,” Proc. 28th
Asilomar Conf. Signals, Systems, and Computer, 1994.

J. Davis and M. Shah, “Recognizing Hand Gestures,” Proc. Euro-
pean Conf. Computer Vision, Stockholm, Sweden, pp. 331-340, 1994.
A. C. Downton and H. Drouet, “Image Analysis for Model-Based
Sign Language Coding,” Progress in Image Analysis and Process-
ing II: Proc. Sixth Int’l Conf. Image Analysis and Processing, pp. 637-
644, 1991.

I. Essa and S. Pentland, “Facial Expression Recognition Using a
Dynamic Model and Motion Energy,” Proc. IEEE Int’l Conf. Com-
puter Vision, 1995.

M. Etoh, A. Tomono, and F. Kishino, “Stereo-Based Description
by Generalized Cylinder Complexes From Occluding Contours,”
Systems and Computers in Japan, vol. 22, no. 12, pp. 79-89, 1991.

S.S. Fels and G.E. Hinton, “Glove-Talk: A Neural Network Inter-
face Between a Data-Glove and a Speech Synthesizer,” IEEE
Trans. Neural Networks, vol. 4, pp. 2-8, Jan. 1993.

W.T. Freeman, K. Tanaka, J. Ohta, and K. Kyuma, “Computer
Vision for Computer Games,” Proc. Int’l Conf. Automatic Face and
Gesture Recognition, Killington, Vt., pp. 100-105, Oct. 1996.

W.T. Freeman and M. Roth, “Orientation Histograms for Hand
Gesture Recognition,” Proc. Int’l Workshop on Automatic Face and
Gesture Recognition, Zurich, Switzerland, June 1995.

W.T. Freeman and C.D. Weissman, “Television Control by Hand
Gestures,” Proc. Int’l Workshop on Automatic Face and Gesture Rec-
ognition, Zurich, Switzerland, pp. 179-183, June 1995.

M. Fukumoto, Y. Suenaga, and K. Mase, “Finger-Pointer”: Point-
ing Interface by Image Processing,” Computers and Graphics,
vol. 18, no. 5, pp. 633-642, 1994.

D.M. Gavrila and L.S. Davis, “Towards 3D Model-Based Tracking
and Recognition of Human Movement: A Multi-View Approach,”
Proc. Int’l Workshop on Automatic Face and Gesture Recognition, Zu-
rich, Switzerland, pp. 272-277, June 1995.

H.P. Graf, E. Cosatto, D. Gibbon, M. Kocheisen, and E. Petajan,
“Multi-Modal System for Locating Heads and Faces,” Proc. Int’l
Conf. Automatic Face and Gesture Recognition, Killington, Vt.,
pp. 88-93, Oct. 1996.

G. D. Hager, Task Directed Sensor Fusion and Planning. Kluwer
Academic Publishers, 1990.

H. Harashima and F. Kishino, “Intelligent Image Coding and
Communications With Realistic Sensations—Recent Trends,”
IEICE Trans., vol. E 74, pp. 1,582-1,592, June 1991.

A.G. Hauptmann and P. McAvinney, “Gesture With Speech for
Graphics Manipulation,” Int’l J. Man-Machine Studies, vol. 38,
pp. 231-249, Feb. 1993.

T. Heap and D. Hogg, “Towards 3D Hand Tracking Using a De-
formable Model,” Proc. Int’l Conf. Automatic Face and Gesture Rec-
ognition, Killington, Vt., pp. 140-145, Oct. 1996.

E. Hunter, J. Schlenzig, and R. Jain, “Posture Estimation in Re-
duced-Model Gesture Input Systems,” Proc. Int’l Workshop on
Automatic Face and Gesture Recognition, June 1995.

K. Ishibuchi, H. Takemura, and F. Kishino, “Real Time Hand
Gesture Recognition Using 3D Prediction Model,” Proc. 1993 Int’l
Conf. Systems, Man, and Cybernetics, Le Touquet, France, pp. 324-
328, Oct. 17-20, 1993.

S.X. Ju, M.J. Black, and Y.Y. oob, “Cardboard People: A Parame-
terized Model of Articulated Image Motion,” Proc. Int’l Conf.
Automatic Face and Gesture Recognition, Killington, Vt., pp. 38-43,
Oct. 1996.

LLA. Kakadiaris, D. Metaxas, and R. Bajcsy, “Active Part-
Decomposition, Shape and Motion Estimation of Articulated Ob-
jects: A Physics-Based Approach,” Proc. IEEE C.S. Conf. Computer
Vision and Pattern Recognition, pp. 980-984, 1994.

: VISUAL INTERPRETATION OF HAND GESTURES FOR HUMAN-COMPUTER INTERACTION: A REVIEW

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

693

S.B. Kang and K. Ikeuchi, “Toward Automatic Robot Instruction
for Perception—Recognizing a Grasp From Observation,” IEEE
Trans. Robotics and Automation, vol. 9, pp. 432-443, Aug. 1993.

A. Kendon, “Current Issues in the Study of Gesture,” The Biologi-
cal Foundations of Gestures: Motor and Semiotic Aspects, J.-L.
Nespoulous, P. Peron, and A. R. Lecours, eds., pp. 23-47. Law-
rence Erlbaum Assoc., 1986.

C. Kervrann and F. Heitz, “Learning Structure and Deformation
Modes of Nonrigid Objects in Long Image Sequences,” Proc.
Int’l Workshop on Automatic Face and Gesture Recognition, June
1995.

R. Kjeldsen and J. Kender, “Visual Hand Gesture Recognition for
Window System Control,” Proc. Int’l Workshop on Automatic Face
and Gesture Recognition, Zurich, Switzerland, pp. 184-188, June
1995.

R. Kjeldsen and J. Kender, “Finding Skin in Color Images,” Proc.
Int’l Conf. Automatic Face and Gesture Recognition, Killington, Vt.,
pp. 312-317, Oct. 1996.

R. Koch, “Dynamic 3D Scene Analysis Through Synthetic Feed-
back Control,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 15, no. 6, pp. 556-568, 1993.

M.W. Krueger, Artificial Reality Il. Addison-Wesley, 1991.

M.W. Krueger, “Environmental Technology: Making the Real
World Virtual,” Comm. ACM, vol. 36, pp. 36-37, July 1993.

J.J. Kuch, “Vision-Based Hand Modeling and Gesture Recognition
for Human Computer Interaction,” master’s thesis, Univ. of Illi-
nois at Urbana-Champaign, 1994.

JJ. Kuch and T.S. Huang, “Vision-Based Hand Modeling and
Tracking,” Proc. IEEE Int'l Conf. Computer Vision, Cambridge,
Mass., June 1995.

Y. Kuno, M. Sakamoto, K. Sakata, and Y. Shirai, “Vision-Based
Human Computer Interface With User Centered Frame,” Proc.
IROS’94, 1994.

A. Lanitis, CJ. Taylor, T.F. Cootes, and T. Ahmed, “Automatic
Interpretation of Human Faces and Hand Gestures Using Flexible
Models,” Proc. Int’l Workshop on Automatic Face and Gesture Recog-
nition, Zurich, Switzerland, pp. 98-103, June 1995.

J. Lee and T.L. Kunii, “Constraint-Based Hand Animation,” Mod-
els and Techniques in Computer Animation, pp.110-127. Tokyo:
Springer-Verlag, 1993.

J. Lee and T.L. Kunii, “Model-Based Analysis of Hand Posture,”
IEEE Computer Graphics and Applications, pp. 77-86, Sept. 1995.

E.T. Levy and D. McNeill, “Speech, Gesture, and Discourse,”
Discourse Processes, no. 15, pp. 277-301, 1992.

C. Maggioni, “A Novel Gestural Input Device for Virtual Reality,”
1993 IEEE Annual Virtual Reality Int’l Symp., pp. 118-124, |IEEE,
1993.

C. Maggioni, “GestureComputer—New Ways of Operating a
Computer,” Proc. Int’l Workshop on Automatic Face and Gesture Rec-
ognition, Zurich, Switzerland, pp. 166-171, June 1995.

N. Magnenat-Thalmann and D. Thalman, Computer Animation:
Theory and Practice. New York: Springer-Verlag, 2nd rev. ed., 1990.
D. McNeill and E. Levy, “Conceptual Representations in Lan-
guage Activity and Gesture,” Speech, Place and Action: Studies in
Deixis and Related Topics, J. Jarvella and W. Klein, eds. Wiley, 1982.
A. Meyering and H. Ritter, “Learning to Recognize 3D-Hand
Postures From Perspective Pixel Images,” Artificial Neural Net-
works 2, I. Alexander and J. Taylor, eds. North-Holland: Elsevier
Science Publishers B.V., 1992.

B. Moghaddam and A. Pentland, “Maximum Likelihood Detec-
tion of Faces and Hands,” Proc. Int’l Workshop on Automatic Face
and Gesture Recognition, Zurich, Switzerland, pp. 122-128, June
1995.

O’Rourke and N.L. Badler, “Model-Based Image Analysis of Hu-
man Motion Using Constraint Propagation,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 2, pp. 522-536, 1980.

V.I. Pavlovic, R. Sharma, and T.S. Huang, “Gestural Interface to a
Visual Computing Environment for Molecular Biologists,” Proc.
Int’l Conf. Automatic Face and Gesture Recognition, Killington, Vt.,
pp. 30-35, Oct. 1996.

D.L. Quam, “Gesture Recognition With a DataGlove,” Proc. 1990
IEEE National Aerospace and Electronics Conf., vol. 2, 1990.



694

[71]

[72]

[73]

[74]

[75]

[76]

(77

[78]
[79]

(80]

[81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997

F.K.H. Quek, “Toward a Vision-Based Hand Gesture Interface,”
Virtual Reality Software and Technology Conf., pp. 17-31, Aug. 1994.

F.K.H. Quek, “Eyes in the Interface,” Image and Vision Computing,
vol. 13, Aug. 1995.

F.K.H. Quek, T. Mysliwiec, and M. Zhao, “Finger Mouse: A Free-
hand Pointing Interface,” Proc. Int’l Workshop on Automatic Face
and Gesture Recognition, Zurich, Switzerland, pp.372-377, June
1995.

L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. IEEE, vol. 77, pp. 257-
286, Feb. 1989.

L.R. Rabiner and B. Juang, Fundamentals of Speech Recognition.
Englewood Cliffs, N.J.: Prentice Hall, 1993.

J.M. Rehg and T. Kanade, “DigitEyes: Vision-Based Human Hand
Tracking,” Technical Report CMU-CS-93-220, School of Computer
Science, Carnegie Mellon Univ., 1993.

JM. Rehg and T. Kanade, “Model-Based Tracking of Self-
Occluding Articulated Objects,” Proc. IEEE Int’l Conf. Computer
Vision, Cambridge, Mass., pp. 612-617, June 20-23 1995.

H. Rheingold, Virtual Reality. Summit Books, 1991.

J. Schlenzig, E. Hunter, and R. Jain, “Vision-Based Hand Gesture
Interpretation Using Recursive Estimation,” Proc. 28th Asilomar
Conf. Signals, Systems, and Computer, 1994.

J. Schlenzig, E. Hunter, and R. Jain, “Recursive ldentification of
Gesture Inputs Using Hidden Markov Models,” Proc. Second IEEE
Workshop on Applications of Computer Vision, Sarasota, Fla., pp. 187-
194, Dec. 5-7, 1994.

J. Segen, “Controlling Computers With Gloveless Gestures,” Proc.
Virtual Reality Systems, Apr. 1993.

R. Sharma, “Active Vision for Visual Servoing: A Review,” |IEEE
Workshop on Visual Servoing: Achievements, Applications and Open
Problems, May 1994.

R. Sharma, T.S. Huang, and V.l. Pavlovic, “A Multimodal
Framework for Interacting With Virtual Environments,” Human
Interaction With Complex Systems, C.A. Ntuen and E.H. Park, eds.,
pp. 53-71. Kluwer Academic Publishers, 1996.

R. Sharma, T.S. Huang, V.l. Pavlovic, Y. Zhao, Z. Lo, S. Chu,
K. Schulten, A. Dalke, J. Phillips, M. Zeller, and W. Humphrey,
“Speech/Gesture Interface to a Visual Computing Environment
for Molecular Biologists,” Proc. Int’l Conf. Pattern Recognition,
1996.

K. Shirai and S. Furui, “Special Issue on Spoken Dialogue,” Speech
Communication, vol. 15, pp. 3-4, 1994.

T.E. Starner and A. Pentland, “Visual Recognition of American
Sign Language Using Hidden Markov Models,” Proc. Int’l Work-
shop on Automatic Face and Gesture Recognition, Zurich, Switzer-
land, pp. 189-194, June 1995.

J. Streeck, “Gesture as Communication I: Its Coordination With
Gaze and Speech,” Communication Monographs, vol. 60, pp. 275-
299, Dec. 1993.

DJ. Sturman and D. Zeltzer, “A Survey of Glove-Based Input,”
IEEE Computer Graphics and Applications, vol. 14, pp. 30-39, Jan. 1994.
D.X. Sun and L. Deng, “Nonstationary Hidden Markov Models
for Speech Recognition,” Image Models (and Their Speech Model
Cousins), S.E. Levinson and L. Shepp, eds., pp.161-182. New
York: Springer-Verlag, 1996.

D.L. Swets and J. Weng, “Using Discriminant Eigenfeatures for
Image Retrieval,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 18, no. 8, pp. 831-836, 1996.

K.A. Tarabanis, P.K. Allen, and R.Y. Tsai, “A Survey of Sensor
Planning in Computer Vision,” IEEE Trans. Robotics and Automa-
tion, vol. 11, pp. 86-104, 1995.

D. Thompson, “Biomechanics of the Hand,” Perspectives in Com-
puting, vol. 1, pp. 12-19, Oct. 1981.

Y.A. Tijerino, K. Mochizuki, and F. Kishino, “Interactive 3D
Computer Graphics Driven Through Verbal Instructions: Previ-
ous and Current Activities at ATR,” Computers and Graphics,
vol. 18, no. 5, pp. 621-631, 1994.

A. Torige and T. Kono, “Human-Interface by Recognition of Hu-
man Gestures With Image Processing. Recognition of Gesture to
Specify Moving Directions,” IEEE Int’l Workshop on Robot and Hu-
man Communication, pp. 105-110, 1992.

[95] R. Tubiana, ed., The Hand, vol. 1. Philadelphia, Penn.: Sanders,

1981.

C. Uras and A. Verri, “Hand Gesture Recognition From Edge

Maps,” Proc. Int’l Workshop on Automatic Face and Gesture Recogni-

tion, Zurich, Switzerland, pp. 116-121, June 1995.

R. Vaillant and D. Darmon, “Vision-Based Hand Pose Estima-

tion,” Proc. Int’l Workshop on Automatic Face and Gesture Recogni-

tion, Zurich, Switzerland, pp. 356-361, June 1995.

M.T. Vo, R. Houghton, J. Yang, U. Bub, U. Meier, A. Waibel, and

P. Duchnowski, “Multimodal Learning Interfaces,” ARPA Spoken

Language Technology Workshop 1995, Jan. 1995.

M.T. Vo and A. Waibel, “A Multi-Modal Human-Computer Inter-

face: Combination of Gesture and Speech Recognition,” Adjunct

Proc. InterCHI’93, Apr. 26-29 1993.

[100] A. Waibel and K.F. Lee, Readings in Speech Recognition. Morgan
Kaufmann, 1990.

[101]C. Wang and D.J. Cannon, “A Virtual End-Effector Pointing Sys-
tem in Point-and-Direct Robotics for Inspection of Surface Flaws
Using a Neural Network-Based Skeleton Transform,” Proc. IEEE
Int’l Conf. Robotics and Automation, vol. 3, pp. 784-789, May 1993.

[102]K. Watanuki, K. Sakamoto, and F. Togawa, “Multimodal Interac-
tion in Human Communication,” IEICE Trans. Information and Sys-
tems, vol. E78-D, pp. 609-614, June 1995.

[103]A.D. Wilson and A.F. Bobick, “Configuration States for the Rep-
resentation and Recognition of Gesture,” Proc. Int’l Workshop on
Automatic Face and Gesture Recognition, Zurich, Switzerland,
pp. 129-134, June 1995.

[104]A.D. Wilson and A.F. Bobick, “Recovering the Temporal Structure
of Natural Gestures,” Proc. Int’l Conf. Automatic Face and Gesture
Recognition, Killington, Vt., pp. 66-71, Oct. 1996.

[105]C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder:
Real-Time Tracking of the Human Body,” Proc. Int’l Conf. Auto-
matic Face and Gesture Recognition, Killington, Vt., pp. 51-56, Oct.
1996.

[96]

[97]

[98]

[99]

Vladimir I. Pavlovic received the Dipl Eng de-
gree in electrical engineering from the University
of Novi Sad, Yugoslavia, in 1991. In 1993, he
received the MS degree in electrical engineering
and computer science from the University of
lllinois at Chicago. He is currently a doctoral
student in electrical engineering at the Beckman
Institute and the Department of Electrical and
Computer Engineering, University of lllinois at
Urbana-Champaign. His research interests include vision-based com-
puter interaction, multimodal signal fusion, and image coding.

Rajeev Sharma is an assistant professor in the
Department of Computer Science and Engi-
neering at the Pennsylvania State University,
University Park. After receiving a PhD in com-
puter science from the University of Maryland,
College Park, in 1993, he spent three years at
the University of lllinois, Urbana-Champaign as
a Beckman Fellow and adjunct assistant profes-
sor in the Department of Electrical and Com-
puter Engineering.

He is a recipient of the Association of Com-
puting Machinery Samuel Alexander Doctoral Dissertation Award and
the IBM pre-doctoral fellowship.

His research interests lie in studying the role of computer vision in
robotics and advanced human-computer interfaces.




PAVLOVIC ET AL. : VISUAL INTERPRETATION OF HAND GESTURES FOR HUMAN-COMPUTER INTERACTION: A REVIEW 695

T.S. Huang received his B.S. Degree in electri-
. cal engineering from National Taiwan University,
| Taipei, Taiwan, China;, and his MS and ScD
degrees in Electrical Engineering from the Mas-
sachusetts Institute of Technology, Cambridge,
Massachusetts. He was on the faculty of the
Department of Electrical Engineering at MIT from
1963 to 1973; and on the faculty of the School of
Electrical Engineering and director of its Labo-
/@@= ratory for Information and Signal Processing at
Purdue University from 1973 to 1980. In 1980, he joined the University
of lllinois at Urbana-Champaign, where he is now Wiliam L. Everitt
Distinguished Professor of Electrical and Computer Engineering, Re-
search Professor at the Coordinated Science Laboratory, and head of the
Image Formation and Processing Group at the Beckman Institute for
Advanced Science and Technology.

During his sabbatical leaves Dr. Huang has worked at the MIT Lin-
coln Laboratory, the IBM Thomas J. Watson Research Center, and the
Rheinishes Landes Museum in Bonn, West Germany, and held visiting
professor positions at the Swiss Institutes of Technology in Zurich and
Lausanne, University of Hannover in West Germany, INRS-Telecom-
munications of the University of Quebec in Montreal, Canada, and
University of Tokyo, Japan. He has served as a consultant to numer-
ous industrial firms and government agencies both in the US and
abroad.

Dr. Huang's professional interests lie in the broad area of informa-
tion technology, especially the transmission and processing of multidi-
mensional signals. He has published 11 books, and over 300 papers in
network theory, digital filtering, image processing, and computer vision.
He is a Fellow of the International Association of Pattern Recognition,
IEEE and the Optical Society of America and has received a Guggen-
heim Fellowship, an A.V. Humboldt Foundation Senior U.S. Scientist
Award, and a Fellowship from the Japan Association for the Promotion
of Science. He received the IEEE Acoustics, Speech, and Signal Proc-
essing Society's Technical Achievement Award in 1987 and the Soci-
ety Award in 1991. He is a Founding Editor of the International Journal
Computer Vision, Graphics, and Image Processing; and Editor of the
Springer Series in Information Sciences, published by Springer Verlag.




