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Stochastic Noise Process Enhancement of Hopfield
Neural Networks
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Abstract—Hopfield neural networks (HNN) are a class of densely
connected single-layer nonlinear networks of perceptrons. The net-
work’s energy function is defined through a learning procedure so
that its minima coincide with states from a predefined set. How-
ever, because of the network’s nonlinearity, a number of undesir-
able local energy minima emerge from the learning procedure. This
has shown to significantly effect the network’s performance. In this
brief, we present a stochastic process-enhanced binary HNN. Given
a fixed network topology, the desired final distribution of states can
be reached by modulating the network’s stochastic process. We
design this process, in a computationally efficient manner, by as-
sociating it with stability intervals of the nondesired stable states of
the network. Our experimental simulations confirm the predicted
improvement in performance.

Index Terms—Hopfield neural networks (HNNs), stochastic
HNNs (SHNNs).

1. INTRODUCTION

OPFIELD neural networks (HNNs) are a class of non-
linear function approximators represented by a single-
layer network consisting of interconnected individual percep-
trons and modified perceptrons (with sigmoidal nonlinearities)
[1]. The basis for its operation is the Hebbian learning algorithm
which selects network weights to minimize the network energy
function for a set of desired states. Unfortunately, because of
its nonlinear character, the network also exhibits nondesirable,
local minima. This has shown to affect the network perfor-
mance, both in its capacity and its ability to address its content
[2]. Several approaches based on stochastic modifications of
the network [3], [4] have been proposed that deal with the
problem of local minima. Alternatively, the stochastic HNNs
can be viewed as a Boltzmann machine [5] and Gibbs distri-
bution of the final network states in global minima. Network
learning and convergence can then be studied in probabilistic
terms. In many applications, however, the desired final net-
work state distribution corresponds to particular local minima,
and not necessarily to the global minima. The use of Gibbs
distribution is thus undesirable in many applications.
In his work on the network robustness, Schonfeld [6] observed
a phenomenon where a stochastic perturbation on network
thresholds improved performance of a binary HNN. In this brief,
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we introduce a new way to stochastically enhance performance
of binary HNNs, first reported in [7] and [8]. Presence of
a stochastic process allows us to describe the evolution of
the network as a Markov chain. We propose an optimization
criterion for enhancement of the HNN performance based on a
desired limiting distribution of the Markov chain. The criterion
can be related to stability intervals associated with the desired
and nondesired stable states of the network, given a fixed
network topology. Given the stability intervals, we suggest
a noise process design which will result in a suboptimal
HNN based on the minimization of undesirable state final
probabilities.

Our approach is related to the notion of stability and per-
formance in Hopfield networks, which have been studied in
literature [9]-[12]. Aiyer et al. have studied the dynamics of
Hopfield networks in terms of the eigenvalues of the connec-
tion matrix. Discussion of stability of feasible solutions was
presented in [10] as a function of network’s energy function
and, hence, connection coefficients. In a seminal study [11]
of stability of feasible and infeasible solutions of combinato-
rial optimization problems represented as Hopfield networks
Matsuda proposed general conditions on network coefficients
for altering stability of desired feasible solutions. He also pro-
posed similar criteria for hysteresis Hopfield networks [12] by
adding hysteresis size as a variable. Unlike these approaches,
our method assumes fixed connection weights determined by
some other method and concentrates of the design of the input
noise process. By considering stochastic inputs we hope to
circumvent a potentially complex simultaneous optimization
of all network parameters.

II. STOCHASTIC HNN

Stochastic HNN (SHNN) is a generalization of the original
Hopfield model [1]. The network is defined as

Hy(T,C,pp,) : x*HD =1 (c x® i u““))

where x(*) € RY is its state at time k& and Y a monotonically
nondecreasing operator'. u'*) € R is the random threshold
vector with pdf pr;(u®)) and C is a fixed matrix of connection
weights ¢;;, C = [¢;jlnxn = [c; €5 -+ cy]'. The set of all
possible network states is denoted by S.

Control over the threshold vector enables one to (possibly)
control the network. Given two consecutive state vectors of our

"'While we assume synchronous update of the network state, our analysis also
holds for the asynchronous update model.
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general SHNN, a set of all threshold vectors that will force the
system to make the desired transition is called the transition set

T (gk) = z(k“)) - {H cx*H) = 1 (C x® E)} ,

Stable state of the network corresponds to the fixed point of
the mapping defined by the network 0 € 7 (x, — x,). Con-
versely, self-transition sets of nonstable states do not contain 0.
Stable states of SHNN are determined by the network matrix C,
for fixed Y, and form the stable set of the network, S,. Given a
set of the desired or “good” stable states, a learning procedure
can be used to select an optimal value of C. However, in the
best case, a learning procedure yields a subset of the network’s
stable state set, S; C S,2 and a set of undesired, “bad” stable
states Sp.

A. Distribution of Network States and Optimal Network

Dynamics of state transitions in Hs; can be described
as a Markov chain with the state mixing matrix P(k) =
[pi.i(K), pij(k) = Pr{u® € T(X; — X;)}. The limiting
distribution of all network states can now be related to the
structure of the state transition probability matrix [p;;(k)].
Namely, p;; = 1 for all stable states ¢ in a deterministic HNN.

If pir(u®) is designed such that the limiting distribution of
the “bad” states becomes zero, then the “bad” states can be alto-
gether avoided. We call such a network optimal. The optimality
may be achieved if.

Proposition 1: The optimality of a SHNN is imposed by
Pr{g(k) eT(x—x)} > O,Pr{g(k) eT(x, > %)} =1
forallx € X — S, and x, € ;.

While the conditions seem simple, enforcing them by opti-
mizing the noise process py () is not trivial because of the com-
plex dependence of [p; j] on py. However, in a BSHNN, we can
consider an alternative approach outlined below.

III. BINARY SHNN

Binary SHNN, with T a binary threshold function and x €
{—1,+1}¥, allows a simpler definition of the transition sets:

Proposition 2: Element u belongs to the transition set
T (x*) — x(*+1) of a BSHNN iff for each i

k+1

gty > —gh . [Cgk)} = gkt elx®

K2
where [x]; denotes the i-th element of vector x.

This proposition formulates a simple condition which we now
use to define the notion of stability intervals for each state. No-
tions similar to stability intervals such as domains or basins of
convergence have been introduced in literature [9]-[12]. Our
notion of stability intervals provide an alternative, simple mea-
sure of a state’s robustness that involves only one dimensional
concepts.

Let

T+ (§<k>7§<k+1>) — {u cu = —clx® gD 5 0} 1)

7" (g““).,x(’““)) - {u pu = —c/x®) gD < 0} @)

J

2When the network is not saturated. Furthermore, it is extremely difficult to
determine the stable state set for a given network (cf., [9], [11], [12].)

be two sets associated with the consecutive states g(k) and
x*+1) in binary SHNN H,, and let

imin (z("'),z("’“)) =supZ+ (z(’“),z(’““)) 3)
max (x("'),x("'“)) =infZ~ (z("’)?z(k“))- )

Then, the condition for the threshold u being in the transition
set is simply

rmin (z(k)-/z(k“)) < U < iax (ﬁ“;ﬁ“”) .0

The proof can be found in [7]. Consequently, Pry(u
T(x® — x*H)) = Pry(imn(x®, x"D) <
imax(g(k) ) E(kJrl)))

The following two corollaries establish stability conditions
for a BSHNN.

Corollary 1: State x.. in binary SHNN H; is conditionally
stable iff there exists interval (4min, imax) associated with x,

such that

.le
u <

imin(X.) = sup {u: v = —¢ix., X, ; > 0} (©6)
imax(g(-) - 1nf {U, U= _29§c7§(’,j < 0} (7)

Interval (%min, imax)ip = (Imin(X.), Imax(X.)) is called the
conditional stability interval associated with x...
Corollary 2: State x, in binary SHNN H is stable iff it is
conditionally stable and 0 € (imin, imax)x,
Corollary 2 gives us a very simple way to assert stability and
robustness of certain states. The wider the interval, the more ro-
bust the state. The notion of robustness will become particularly

interesting when dealing with network optimization.

A. Optimal Binary Stochastic HNN

Because all the properties of a general SHNN also hold for
binary stochastic network, the optimization procedure remains
defined the same way as it is in the case of SHNN. Alternatively,
we now relate the stability intervals to HNN’s optimality in the
following proposition.

Proposition 3: Let H; be the proper BSHNN, with the
“good”-state set Sy and the “bad” state set S, and the threshold
vector distributed according to the distribution pg;. The network
is optimal if pyy(u) is such that

Pr|ue m (imina Zmax)z =1 (8)
XEeS;
Prlue U (imina Zmax)z =0 (9)
XESy
Priue [J TEX-X)|=0 @10

XeX—-8;—-8

Proposition 3 follows from Proposition 1, and is one way to
satisfy some of its conditions. However, concurrently satisfying
all three conditions is not trivial. This is particularly true for
the third condition which guarantees instability of the originally
nonstable states. We now suggest a heuristic approach that could
lead to the optimal network.
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Fig. 1. Classification error for the “Bad-Good” (a) and “Exact” (b) error measures as a function of the range of support, [— R, ], of the uniform noise
for R = 0,1,...,50. Results shown are for four different noise levels (p;,,it = {20%,25%,30%,35%}) used to create initial states. Also shown are
one-standard-deviation bounds.

Heuristic 1: Let py(u) be such that where 0 < p. < 1is an arbitrary parameter. Then, the network
is quasi-optimal.
Condition (12) poses a weaker condition on py (u) than the

Pr{ue ﬂ (tmin; imax)x | =1, XesS (D opein (9) resulting in possibly stable “bad” states with some
XES, probability p.. Finally, what distinguishes Heuristic 1 from
Proposition 3 is the nonexistence of the condition given by (10).

Priuce U (imin7inlax)§ = De, X €S,. (12) Hence, there is no guarantee that some originally nonstable

XeS, states would not become stable. Still, experimental results show



216 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 52, NO. 4, APRIL 2005

that in large majority of cases the first two conditions tend to
be sufficient.

B. Optimality and Hebbian Learning

One of the most widely applied learning procedures related to
HNN is due to Hebb [13]. The strength of network connections
is determined based on correlation of desired states. For the set
S, of M desired stable states C = 3 X, X — MT where I
is an identity matrix.

Itis easy to show that such choice of the connection matrix re-
sults in network convergence for any initial state. Unfortunately,
one is not in principle guaranteed that the network is proper nor
whether it has converged to undesired, “bad” states. In order to
eliminate such states using the optimization procedure from the
previous section, we need to estimate the “bad” states from the
known set of the “good” ones. We now propose two tests that
address these issues.

The capacity of Hopfield networks with Hebbian learning has
been studied extensively. It was shown that the capacity of such
networks is O(N log N) [14]. We provide an alternative, more
specific test, for an easy-to-compute upperbound on the number
of desired states that can be learned using the Hebbian procedure
as follows.

Proposition 4: A binary Hebbian SHNN is proper if M <
N —max {38, XX}, X, X € S,.

The proof oqf#]this proposition can be found in [7]. While
the bound appears to be conservative, O(IN) vs. O(N log N),
it nevertheless is useful for an initial estimate of proper
functioning.

The second test attempts to infer the elements of the “bad”
stable set, Sp, from the “good” states in S;.

Proposition 5: Given a proper Hebbian binary SHNN, where
X;Xj > 0,VX,;,X; € S; the elements of the stable set S
satisfy

X, € Ss = X, = median {Si}, S, C S..

This test is heuristic. However, the procedure itself can be used
as a part of quasi-optimization suggests in Proposition 3, which
requires the knowledge of “bad” states. We successfully used
this procedure in our experimental studies.

IV. EXPERIMENTS

A Hebbian binary synchronous HNN was designed to per-
form an image classification task: noisy versions of numbers
4,5, 6, and 7 were to be classified into one of the four classes.
The noisy images were obtained from the four desired images
by reversing the state of individual elements with probabilities
Pinit = {20%,25%, 30%, 35%}. Ten sets of 1000 different im-
ages were generated in this manner. Two different error mea-
sures were used for the evaluation of the performance of the
this network: (1) “Exact” error measure. This measure requires
exact matching of the final state with the instance used to obtain
the initial state of the network. (2) “Bad-Good” error measure.
According to this measure, an error occurs whenever the final
state of the network differs from any one of the four images.

To determine the set “bad” states we subjected a
zero-threshold binary network to 200 random initial states
and recorded nondesired stable network states. For all stable
states we computed the corresponding stability intervals (see
[7] for details). Using the conditions of the Heuristic 1 this
resulted in the intersection of the “good” stability intervals

ﬂzegt (imim imax)é = (—30, 30) (13)
Similarly, for “bad” states we have
UKGSb (Z'miny Z'max)é = (—14, 14) (14)

Next, a stochastic version of the original network was ap-
plied to the ten sets of initial states. Range of support of a uni-
form pdf noise process [-R, R] was R = 0,1, ..., 50. For each
range the network performed a fixed number (40) of iterations,
without any annealing on the noise process. Results of classifi-
cation based on the two different error measures proposed are
shown in Fig. 1(a) and (b).

In the case of “Bad-Good” error measure, a drastic improve-
ment in performance occurred for noise levels between 14 and
25. The lower bound corresponds to the highest stability interval
limit of the states in the “bad” state set in (14). The upperbound
is slightly lower than the lowest limit of states in the training
set, as shown in (13). This was expected, following the analysis
of the quasi-optimal network. The “exact” error measure shows
an improvement in a narrower interval starting at about 10 and
ending at 18. This can be explained by the fact that the quasi-op-
timization procedure does not have full control over the final
distribution (see additional results in [8]). However, the overall
convergence to the elements of training set still shows good re-
sults. Additional experiments described in [7], [8] also confirm
the importance of condition (12) from our heuristic.

V. CONCLUSION

In this brief, we studied the effects of stochastic noise on
the performance of binary HNN. We propose an optimization
criterion for the enhancement of HNN performance based on
stability intervals associated with the desired and nondesired
stable states of the network. Because of the complexity of
the general criterion we restrict the optimization to the set of
nondesired states. Given the stability intervals, we formulate
a stochastic process design which satisfies the restricted op-
timization criterion and results in enhanced performance of
the network. Conducted experimental simulations confirm the
predicted improvement in performance despite simplification
of the final criterion.

Nevertheless, the general optimization procedure, as pro-
posed in Section II, still remains an interesting open problem.
Solution to this problem could enable realization of HNNs with
arbitrary final state distribution. Extension of this approach to
multi-layer networks can lead to the enhancement of a class
of nonlinear iterative operators and systems in numerous ap-
plications such as nonlinear feedback control and optimization
algorithms.
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