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Abstract

Model-based clustering of motion trajectories can be posed
as the problem of learning an underlying mixture density func-
tion whose components correspond to motion classes with differ-
ent statistical properties. We propose a general framework for
boosted modeling of mixtures of parametric densities. A density
is represented as a parametric mixture of kernels where mixture
components are now being added recursively, one at a time, until
a best fit to data occurs and an optimal number of mixture compo-
nents is selected. Optimal ML and MAP solutions to this problem
are found using the functional gradient techniques. Unlike tradi-
tional mixture modeling techniques, the new method does not rely
on random parameter initialization and exhaustive exploration of
varying model orders (such as the number of mixture components.)
The method justifies parameter estimation of new mixture compo-
nents independently of that of the rest of the mixture, thus allow-
ing tractable use of complex kernels such as HMMs or switching
linear dynamic models. The relationship to traditional parametric
EM-based mixture modeling algorithms is established. We demon-
strate the utility of the new algorithm on the problem of discover-
ing motion sequence clusters. Our generative modeling frame-
work has an important advantage over nonparametric approaches
in that it can be used for classification as well as synthesis of the
learned motion categories.

1. Introduction

Recent years have witnessed a tremendous growth in
the amount of gathered and stored motion data. In paral-
lel with the successes in basic object tracking and analysis
techniques, a need has arisen for automatic grouping and
organization of this data. Identification of important mo-
tion patterns and their modeling have become crucial for
the analysis of this wealth of data in areas such as visual
surveillance and monitoring. At the same time, the ability
to obtain complex generative models of human or animal
motion has opened new doors for the models’ use in motion
synthesis and computer animation.

In this paper, we focus on the problem of automatically
finding clusters of similar object motions within a database

of motion sequences as well as leering generative models
of these clusters. Previous approaches to motion cluster-
ing have often relied on nonparametric clustering meth-
ods, e.g, []. Model-based approaches usually employed
HMMs in k-means [16, 21, 28] or EM-based mixture learn-
ing frameworks [2]. However, the model-based methods
often suffer from several problems. The EM learning with
many complex kernels such as HMMSs may be prohibitively
expensive if it attempts to simultaneously optimize all clus-
ter models. Moreover, it is often very sensitive to the initial
choice of model parameters that may lead to poor cluster-
ing and cluster models. Finally, the approaches face a com-
plex task of estimating the number of motion clusters. So-
lutions to this problem traditionally hinge on independent
learning and exhaustive evaluation of models of different
orders (c.f., [24]) or hierarchical pruning techniques. How-
ever, computational complexity again comes into play.

To address these problems, we propose a model-based
clustering approach using a mixture modeling framework.
We derive a recursive mixture estimation algorithm that
uses the estimates of the simpler mixture models to infer or
boost the ones of higher complexity. Parameters of the new
component can be estimated independently of the parame-
ters of the simpler models. Furthermore, the components
are added until an optimal model order is reached.

2. Recursive maximum likelihood estimation
algorithm for mixtures of densities

In this section we present a new recursive mixture mod-
eling algorithm. The algorithm resembles the well-known
boosting algorithms for classification of [26, 9]. We ex-
tend a similar formalism to the problem of recursive mixture
density estimation.

Let X be the space of data generated by some unknown
distribution D, and let {z1,x2,...,2)} be a set of sam-
ples from D. Furthermore, let f € F be a kernel function
on X, and F be a mixture density represented as a convex
combination of f:

K K
F(z) =Y wife(x), Y wp=1, wg >0.
k=1 k=1
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Our goal is to find the density F' that minimizes the cost
functional M
J(F) =" —a;log F(xs),
i=1
where a; is a set of fixed weights. Without loss of generality
we present the rest of this analysis with uniform weights
= 1/M. Assume F' (of a certain order K) is known.
We now want to find a new f such that when added to F,
it decreases the cost J but keeps the new mixture in the
convex subspace for some small € > 0. In other words,

J(1—e)F +ef) < J(F), (1)

Such an f then needs to be in a direction in the functional
space that most decreases J. Hence, f has to be a direction
of negative functional gradient of J, f = =NV pJ(F) = +.
However, to guarantee that the new F’ still belongs to the
space of convex combinations of kernels, it has to be con-
strained to the largest projection of V.J(F') onto that space,

which is equivalent to
fi = arg max < ~VrJ(F),f—F>

1
= <—=,f—-F>
argmﬁx i f

1 - fli) = F(z;
- argm?xmg (x;(mz)(x)

= argmaxi f(@i) 2)
4 F(zs)

In the first order approximation, to decrease .J, we
choose f* that maximizes (2). As long as (f — F, +) > 0
the cost J will decrease with the addition of f*. Once the
optimal component f* has been selected, the optimal com-
bination coefficient can be determined as
w* :argmU%nJ((l—w)F-l-wf*) 3)
The general Algorithm 1 summarizes the above steps.

Equation 2 is a general form of a weighted maxi-
mum likelihood estimation and the resulting f* is also
known as a (weighted) M-estimator [12] for the sample set
{x1,...,zap}. Hence, it is important to note that f does not
have to belong to a traditional family of distributions (such
as Gaussian or gamma) but can be a more general robust
function kernel [12].

More importantly, recursive Equation 2 reveals an intu-
itive and appealing way the “simpler” distribution F}_1 in-
fluences the estimation of the “new” kernel fi. Samples
with low probability F},_ are given higher weights than the
highly likely samples (according to current model Fj,_1).
Hence, the new kernel focuses on those samples that have
been poorly explained by the simpler distribution Fj_4! II-
lustrative examples of this property will be shown in Sec-
tion 5. We also note that similar property is exhibited by
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input : Asetofsamples X = {x1,22,...,20}.
output : A mixture model F' = Ele wy, fi-
begin

k=1

Pick initial fj

W = 1

Fi = [

Jr = —log(F)

fork=2,3,...do
M i
fk = argm&Xf D1 ka(f(; )

| break

Fk 1(I )
end

wy, = argmin,, —log ((1

—w)Fe_1 +wfi)

Fro=(1—-w)Fr_1 +wfr
Optional: Refine all previously estimated
Wi, fk

end

end

Algorithm 1: Recursive mixture modeling algorithm.

other additive models. For instance, boosted classifiers fo-
cus on samples that have been incorrectly classified by sim-
pler models [26].

The algorithm can also determine an optimal number of
mixture components through its stopping criterion deter-
mined by the condition

Zf

When such condition occurs, the new component f* will
not, in the first order approximation, be able to further de-
crease the cost functional .J and the recursion should termi-
nate.

Finally, the general Algorithm 1 allows for an optional
joint reestimation of mixture weights and kernels w, f, after
the initial selection of w*, f*. The reason for the reestima-
tion lies in the first order approximation used for selection
of f* which may not lead to the truly optimal f. In practice
this adjustment can be implemented through a number of
runs of the EM algorithm whose initial conditions are now
determined by Fj,_1,w™ and f*.

- F_ 1(351)
Fk 1 xz)

<0. “)

2.1. Example: recursive estimation of Gaussian

mixtures

To illustrate the general recursive algorithm we consider
its particular form for Gaussian mixture models. In a Gaus-
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sian mixture, the kernel function is a Gaussian distribution
f(x) = N(z,n, ¥) parameterized by the mean y and vari-
ance X.

Estimation of new Gaussian components takes on a par-
ticularly simple form. By letting ag; = % Eq. 2 be-
comes

M
(pk, X)) = arg max Yo 1 iN (@i mE) ()
’ i=1

The solution to this optimization problem can be found in
many ways, but one iterative solution is particularly appeal-
ing

Brij—1 = g1 N(wipg 1,5k, j—1)
M
p > izt TiBhiji—1
k,j M
! Y izt Bryii—1
M
. i (@i — i ) (@i — g ) Brini
Xk i (6)
Ei:l ﬂk,i,jfl

Initial estimates 1}, , and X}, ; can be obtained, for example,
by substituting 519,1",71 = 01;71,2'-

Equations 6 are very similar to the M-estimate update
equations for Gaussian kernels (see, for instance, [12] and
also resemble the Gaussian mixture EM equations (c.f.,
[19]). The main difference is the presence of the weight
factors a that stem from the previous simpler mixture Fy,_ .

3. Regularized recursive mixture algorithm

Maximum likelihood estimation of mixture models has
one significant disadvantage: a theoretically optimal num-
ber of mixture components is equal to the number of data
samples M. This overfitting property is a general charac-
teristic of the MLE. To circumvent the problem, regularized
or integral likelihood estimates are sought instead [24]. In
this section we will extend the recursive MLE mixture al-
gorithm to handle a specific regularization case.

One possible approach to regularized estimation is
to consider Laplace approximation of the integral den-
sity Fi(z) = [F(z|0)p(f)dd. The Laplace ap-
proximation is given as F'(z) & Fi,...(2) =
F(x|0p1)p(0arr)(2m)H H(Orr1)|" /%, where H denotes
the Hessian of — log F'(z|f) — logp(f) evaluated at 0,/7,.
We will use the compact notation for this approximation,
Fi(z) ~ F(z|0)G(6). Here 0 is a shorthand for all model
parameters, f and w inclusive. Hence, Equations 7 and 8
hold and the first order functional approximation is for a
class of J such that J(zy) = J(z)J(y). The selection of
[, w} that minimize J(F};) is, in general, difficult be-
cause G-functionals depend on both of those parameters.

To proceed we instead consider a specific but very com-
mon approximation know as the Bayesian Information Cri-
terion or BIC [27]. There, G(K) = M??, where d denotes
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the total number of parameters of the K-component mix-
ture. In this case G does not depend on the actual values of
mixture parameters but only on their total number. Hence,
the selection condition for the new component becomes

. 1
fe = argmﬁx<m,f—g(k—l)Fk_1 >
M
_ f(@i)
= arg m?x; 7Fk—1(35i) 9)

which is the same form as that of the MLE recursive al-
gorithm in Equation 2. However, the stopping criterion
changes to

1 Gk)+G(k-1)
<m,f —g(k— 1)Fk1> > T wx
(10)
Note that in the BIC case the determination of the candidate
optimal component f is still independent of w—however,
the stopping criterion depends on both f and w. Otherwise,
the two algorithms are identical.

3.1. Example: mixture of Gaussian hidden Markov
models

Explosive growth in the number systems that gather and
store data about the motion of objects, machines, vehicles,
humans, animals, etc. has raised the need for general-
purpose tools for grouping and organizing the motion pat-
terns. For instance, methods for discovering clusters of sim-
ilar motion sequences in these data sets would enable pat-
tern discovery, anomaly detection, modeling, summariza-
tion, etc. Furthermore, knowledge of clusters could be ex-
ploited in data reduction, as well as in efficient methods for
sequence indexing and retrieval.

One approach to modeling motion uses a mixture density
model where each component represents a different motion
type, modeled itself as a hidden Markov model [2]. Using
our notation each kernel f;, now becomes a density modeled
by an HMM:

fe(@) =" Pr(solk)Pr(zo|so, k)

T—1
[T Prisilse—1, k) Pr(als:, k), (11)

t=1

where x now denotes a sequence of T' motion measurements
x = {xg,...,xp_1} and s is the sequence of correspond-
ing hidden states, s = {sqg,...,s7-1}, 8+ € {1,...,S}.
In this example we consider Gaussian HMM kernels:
Pr(zelse =i, k) N (@45 ik, Zik)
Pr(s; =ilsi—; = j, k) Ik (4, 5)
Pr(so =ilk) = m(9),

nn

COMPUTER
SOCIETY



K
FIl((‘r) - lzwkfk G(w17"'7wK7f17"'7fK)
k=1
= [Q—wg)Fi_y(2)G(wr,...,wg 1, f1,-.., fx1)"" +wk fx]
xG(wl, e ,wK,fl, .. .,fK)
= [l ~wr)Fg_1(2)GK = )™ + wk fx] G(K) (7
J(F) = J(GEK)+J((1-wk)Fi GK —1)"" + wk fx)

X

J(GE) + J(GE = 1)7Y) + I (Fie_y)

~wi (~VJ(F ,GK = 1)7"), fx = Fig ,G(K = 1)7"),

where (u;, ;) are the mean and the variance of z; in state
1 of the HMM, II is the state transition conditional prob-
ability table (cpt) and 7 is the initial state distribution.
Hence, each kernel is parameterized by the parameter set
Or = (mk, i, ok, Dok -+ -y US—1,k> BS—1,k)-

Recursive estimation of the mixture HMM follows the
same steps outlined in Algorithm 1. Kernel & is recursively
estimated from density of £ — 1 components as

M
o), = arg I%%Xn; 7Fk_1(a:(m)) )

where we used (™) to denote the m — th sequence from
the set of M sequences. Alternatively, one may esti-
mate parameters of a Gaussian HMM on a set of nonuni-
formly weighted M data points with weights ay,, =
1/Fj—1(z(™). Hence, it can be shown that 8} can be ob-
tained from slightly modified traditional EM (Baum-Welch)
HMM parameter estimates (c.f., [23]). For instance, esti-
mates of the mean in the ¢ — th state are obtained using
a modified M-step in equation (12). Note that the mod-
ified M-step differs from the traditional HMM M-step in
the factor o, the weight introduced by the k£ — 1 mixture
model. It is also important to stress that the estimation of
the £ — th HMM kernel is itself recursive because it in-
volves a modified EM-based HMM parameter estimation—
e.g., Pr(sgm) = i|2("™),07) depends on the previous esti-
mate ,ui’k.

Finally, a BIC-regularized recursive HMM mixture
model can be obtained by adding a regularization term
G(k). For instance, a full covariance, unrestricted transi-
tion HMM, the regularization term is

2logG(k) = (S —1)log M+

(S —1)Slog((T — 1)M) + (S + SD + SD?) log(T M),

where T is the average length of M sequences and D is the
dimension of 4, e.g., z; € RP.
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4. Prior work

Methods for clustering time-series data have been pro-
posed recently, particularly, in the statistics and data mining
communities. For example, the Fourier transform has been
applied in clustering certain types of time-series data [1],
splines have been used to cluster functional data [13], and
mixtures of regression models have been used to fit trajec-
tories generated by multiple processes [8]. In the computer
vision community clustering of motion data has been used
for classification and prediction of pedestrian trajectories
[14, 30], for detection of human actions in clutter [5], and
for event-based analysis of long video sequences [30, 34].

Specific methods for clustering sequences using AR
or hidden Markov models have been proposed in speech
recognition [15], computational biology [6], and machine
learning [28, 21, 16]. In computer vision, hidden Markov
models have been successfully used in the supervised learn-
ing and recognition of specific actions [33], activities [4],
interactions [3], gaits [10], and gestures [29]. In [2] the
authors proposed a method for HMM-based motion cluster-
ing using a mixture-of-HMMs framework and the EM al-
gorithm. While successful, the method relies on an explicit
specification of the model order.

Our recursive algorithm for mixture estimation relies on
functional gradient optimization of a general class of con-
vex additive models and was first introduced in a simpler
form in [22]. Similar approaches have been proposed in the
past in [18, 7], albeit for the two different tasks of addi-
tive classification and regression modeling. An algorithm
similar in some aspects to our own was proposed recently
by [32]. There, the authors try to solve the same prob-
lem of recursive addition of mixture components. However,
they were not able to directly solve the optimization prob-
lem stated in Equation 1 and resorted instead to a heuristic
search. Other approaches to the general problem of mod-
eling mixtures of Bayesian network models have been also
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M Pr(z™|67)

Trm—1
0

t=

CU,Em) Pr(sgm) = i|z(™, 67)

* —
Hix =

EMfl

m—o QmPTr

proposed by [31, 20, 11, 25].
4.1. Comparison with EM-Based mixture modeling

Our recursive algorithm can also be explained as a spe-
cial case of the general EM algorithm for mixture mod-
els [19]. Consider, for instance, the expectation step for
the component f of a mixture model (1 — &)F + ef:

ef(z)
—e)F(z) +ef(x)’

Pr(componentf|z,e, f, F) =

(1

(z(m)|67) ;I’:mofl Pr(sgm) = iz(m), 0

ke, 12)

k

)

and the mixture order. Recursive clustering using mixtures
of HMMs is appealing because it avoids the initialization
issue and alleviates the need for concurrent kernel estima-
tion.

We used an example of a mixture of three cyclic HMMs
of different order to demonstrate the properties of the recur-
sive mixture density estimation algorithm when applied to
complex mixture kernels. A synthetic set of 200 sequences
of varying length (2-4 times the average HMM cycle) was
generated using the following three kernels:

(13) 95 0 .01
where F', f, and ¢ are the estimates from a previous iter- II; = l .05 99 0 ] m = [ -5 0 5 ]
ation of the EM algorithm. By letting ¢ — 0 the compo- 0 .01 .99
nent probability behaves as f(z)/F(z), which is exactly Si=[1 1 1] m=[10 0]
the form used in the mixture estimation algorithm. Assum-
ing an uninformative initial f ~ 1, the M step maximization M, — 95 .01 } s = [ _10 0 ]
of f would then attempt to optimize | 05 .99 ,
o= 1 1 = . .01
$5 g/ () " Bl m=leoo]
= Flw) 9 .01
o _ =1 o5 .09 } ws=[0 10]
which is a bound on the log of the cost of Equation 2. Sy = l 11 ] — [ 99 01 ]/

S. Experiments

We demonstrate the properties and usability of the re-
cursive density modeling algorithm on the problem of clus-
tering of motion sequences. We first demonstrate the algo-
rithm on synthetic dataset and then show its application on
real-world data.

We compare the results of our recursive algorithm with
that of the standard EM-based exhaustive mixture modeling
with a BIC prior [24].

5.1. Recursive modeling of hidden Markov model
mixtures

To study the benefits of the recursive mixture modeling
approach, we next consider a problem of modeling mix-
tures of dynamic stochastic models. In particular, we fo-
cus our attention on mixtures of hidden Markov models
(HMMs) [23] because HMMs represent a general class of
dynamic models often used in motion modeling.

Constructing mixtures of HMMs can be seen as “soft”
parametric clustering of time-series data. Methods for clus-
tering sequences or temporal data using hidden Markov
models have been proposed in, for instance, speech recog-
nition [15], machine learning [28, 16], and computer vi-
sion [2]. The problem is challenging because, in general, it
involves concurrent estimation of complex kernels (HMMs)

The data in the synthetic set consisted of equal proportions
(1/3) of each of the three types. Examples of sequences
generated from the three kernels are shown in Figure 1.

Figure 1. Examples of sequences generated by the three
HMM kernels described in the text.

We were interested in two aspects of the recursive al-
gorithm: 1) whether it can recover the generative model’s
structure (individual kernel model orders and the mixture
order) and 2) how it performs compared to traditional mix-
ture modeling methods. The first task required that the ker-
nel estimation algorithm be modified to include a combina-
torial search over the kernel HMM order (number of hidden
states) as a part of optimization in Equation 2. We achieved
this by exhaustively searching over kernel HMM orders 1
through N, with N = 6 in this example. Note that this
search is in addition to the EM-based kernel parameter esti-
mation described in Section 3.1.
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To complete the second goal we used an exhaustive
search over different mixture orders (one through eight).
For each mixture order we randomly seeded initial sequence
assignments to mixture clusters and then reestimated the
mixture HMM using an extension of the EM algorithm, as
described in [2].

Figure 2(a) shows the BIC-regularized model cost of
mixture models of orders one through eight obtained using
the recursive algorithm. It is clear from the above exam-
ple that the algorithm recovers the correct number of mix-
ture components (3) as that with the lowest regularized cost.
Upon closer examination, it can be seen that the three ker-
nel HMM models estimated in the optimal mixture closely
resemble the original generative kernels, i.e., two of them
have two and one kernel has three hidden states.

Results of comparison of the recursive algorithm with
the traditional exhaustive search reveal that, on average, the
recursive algorithm does not result in models with the lower
total cost. This is shown in Figure 2(b). The lower cost sig-
nifies better fit of the model to the true underlying distribu-
tion. However, the recursive algorithm was able to recover
the true mixture order. Moreover, such fit was achieved at a
fraction of the computational cost of the exhaustive search,
partially due to the lack of random initialization.

In the recursive algorithm, the estimation of a new HMM
kernel k (from mixture of order k — 1) required at most two
iterations. The few iterations are due to a highly peaked
weight distribution ay, = 7—( oy that usually assigns
non-zero weight to only one or two sequences in the set, as
shown in Figure 2(c). This is not surprising given the high
dimensionality (hence, sparseness) of the sequence space.
Estimation of the k£ — th kernel contribution, wy,, required
at most seven iterations. The joint refinement step was not
necessary as it often diluted the initial kernels. It also led
to a very computationally efficient solution. On the other
hand, in the case of an exhaustive search from 5 random
initial assignments, each joint EM reestimation of the mix-
ture parameters took from 12 up to 35 (maximum allowed
by our implementation) iterations.

5.2. Clustering of human motion data

We conducted experiments with gait data that
was collected for the Human ID project at the
computational perception lab at Georgia Tech (
http://www.cc.gatech.edu/cpl/projects/hid). The database
consists of video sequences (and accompanying data files)
of twenty walking human subjects taken under various
viewing conditions (namely, different combinations of in-
door/outdoor footage, side/angle view, and far/near view.)
We used a subset of this database for our experiment: a total
of 45 sequences of 15 subjects (3 sequences per subject),
for which binary masks, extracted using a background
subtraction algorithm, was available.

All sequences were taken under the same viewing con-
ditions: indoor footage, and far side view. Fig. 3 shows
example frames of the sequence pertaining to subject 3.
Binary masks are shown below their corresponding frames.

Frame 30 Frame 20 Frame 10
- v, - -, - g
. % Ny p

| i

Figure 3. Example frames and corresponding silhouettes
extracted from image sequences pertaining to subject 3.

For each binary mask we computed the aspect ratio of its
bounding box. The resulting aspect ratio sequences for the
15 subjects are depicted in Figure 4(a).

Similar to the other tasks, the goal here was to learn the
number of different motion styles corresponding to the 15
subjects in the set as well as parametric models of those
styles. We modeled each mixture component as a Gaussian-
observation HMM, analogous to the example in Section 3.1.
Observation space was considered to be the space of aspect
ratios and their temporal rates of change (velocities). As
in Section 3.1 the selection of the best kernel k included a
search over different kernel HMM orders, ranging from 1 to
8.

Figure 4(b) shows the optimal learned segmentation of
the original motion set into motion styles. It is easy to see
that the recursive algorithm does not recover the individual
motion styles of the 15 subjects. Rather, the motion data is
classified into one of four categories. Each category corre-
sponds to similar motion patterns exhibited by several sub-
jects. For instance, subjects 7, 9, 10, and 12 all have similar
motion patterns that are all assigned to class 1. On the other
hand, 11 and 14 belong together to class 4. Class 2 covers
the largest number of subjects and seems to correspond to
an average motion in the group. Addition of new motion
classes, beyond 4, is prevented by the BIC regularization
cost. Indeed, it can be seen that the additional mixture com-
ponents do not correspond to obviously new motion classes,
not already covered by the first four components.

6. Conclusions

In this paper we have presented a novel algorithm for
recursive parametric estimation of mixture densities, ap-
plied to the problem of model-based clustering of motion
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Figure 2. (a) BIC-regularized model cost for the synthetic data set. Note that the least cost corresponds to the mixture order (3) of
the generating model. (b) Comparison of the model costs obtained using the recursive algorithm (solid line) and an exhaustive search
from ten random initial assignments. Shown are also the one standard deviation intervals for the exhaustive search. (c) Illustration of
the data selection process by the recursive algorithm. Shown are estimates of mixture models, log F} (z) for five different recursion
steps (models of order 1 through 5) and the entire training set of 200 sequences. Sequence 1-60, 61-140, and 141-200 belong to the
three models, respectively. Also shown (vertical dashed bars) are sequences on which the current mixture component focuses on,
based on weights a,,,. Note how the models successively cover different motion groups, represented through high values of F.

sequences. The algorithm is based on a general functional
derivative optimization of a class of convex additive models.
Unlike the traditional EM-based algorithms, the recursive
method estimates one mixture kernel at the time by focus-
ing on the samples poorly modeled by previous mixtures.
We present both the unregularized likelihood and the regu-
larized BIC versions of the algorithm. A relationship to the
EM is discussed. We illustrate the algorithm’s promising
performance on problems of clustering of synthetic as well
as real-world motion sequence datasets.

We plan to further evaluate the algorithm on additional
real-world motion datasets, as well as demonstrate the ap-
plicability of the obtained cluster models for motion synthe-
sis. In particular, we will consider more complex clusters

comprised of switching linear dynamic models whose util-
ity for motion analysis and synthesis has been demonstrated
in the past [17].
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