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ABSTRACT
Motivation: Gene identification and gene discovery
in new genomic sequences is one of the most timely
computational questions addressed by bioinformatics
scientists. This computational research has resulted in
several systems that have been used successfully in many
whole-genome analysis projects. As the number of such
systems grows the need for a rigorous way to combine the
predictions becomes more essential.
Results: In this paper we provide a Bayesian network
framework for combining gene predictions from multiple
systems. The framework allows us to treat the problem
as combining the advice of multiple experts. Previous
work in the area used relatively simple ideas such as
majority voting. We introduce, for the first time, the use
of hidden input/output Markov models for combining gene
predictions. We apply the framework to the analysis of the
Adh region in Drosophila that has been carefully studied
in the context of gene finding and used as a basis for
the GASP competition. The main challenge in combination
of gene prediction programs is the fact that the systems
are relying on similar features such as cod on usage and
as a result the predictions are often correlated. We show
that our approach is promising to improve the prediction
accuracy and provides a systematic and flexible framework
for incorporating multiple sources of evidence into gene
prediction systems.
Availability: Software can be made available on request
from the authors.
Contact: vladimir@bu.edu

1 INTRODUCTION

Biology and biotechnology are undergoing a technolog-
ical revolution which is transforming research into an
information-rich enterprise. Novel technologies such as
high-throughput DNA sequencing and DNA microarrays

∗Part of this research was presented at Computational Genomics 2000, Bal-
timore, MD, November 2000. Portions of this research were conducted
at Compaq Computer Corporation, Cambridge Research Laboratory, Cam-
bridge, MA.

are generating unprecedented amounts of data. A typical
bacterial genome sequence is comprised of several million
bases of DNA and contains several thousand genes. Many
microbial genomes have been sequenced by the major
genome centers, and the total number of such ‘small’
genomes is expected to reach 100 shortly. Substantial
progress is being made on sequencing the genomes of
higher organisms as well. The genomes of eukaryotes are
typically much larger; e.g. the human genome is approxi-
mately 3 billion bases long and it contains approximately
30 000 putative genes identified thus far.

Gene identification and gene discovery in newly se-
quenced genomic sequences is one of the most timely
computational questions addressed by bioinformatics
scientists. This research resulted in several successful
systems that have been successfully deployed in several
highly visible genome analysis projects. Popular gene
finding systems include Glimmer, Genmark, Genscan,
Genie, Genewise, and Grail (Burge and Karlin, 1997;
Salzberg et al., 1998a; Xu et al., 1996; Kulp et al.,
1996; Borodovsky and Mcininch, 1993). The annotations
produced by gene finding systems have been made
available to the public. Such projects include the genomes
of over thirty microbial organisms, as well as Malaria,
Drosophila, Caenorhabditis elegans, mouse, Human
chromosome 22 and others. For instance, Glimmer
(Salzberg et al., 1998a) has been widely used in the
analysis of many microbial genomes and has reported
over 98% accuracy in prediction accuracy (e.g. Fraser et
al., 1997). Genie (Kulp et al., 1996) has been deployed
in the analysis of the Drosophila genome and Genscan
(Burge and Karlin, 1997) was used for analysis of human
chromosome 22.

In addition to these central projects, a large number of
proprietary genome analysis projects using gene-finding
systems are in progress at the major bioinformatics centers
in drug companies, bioinformatics companies, and other
industrial organizations. As a result, a large number of
research projects are underway with the goal of improving
the performance of such systems, primarily targeting
improvements in accuracy of reported genes.
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In fact, one of the current controversies involves produc-
ing an accurate estimate on the number of genes in the hu-
man genome. The current number of genes actually found
by the gene finding programs are substantially lower than
previous estimates.

1.1 Gene identification
As mentioned in the introduction computational gene
identification is one of the main successes of bioinformat-
ics research. Early gene identification efforts have started
almost 20 years ago (Nakata et al., 1985) and produced
a number of reasonably effective systems. For a more
detailed description and further references the reader
is referred to Burge and Karlin (1997); Salzberg et al.
(1998a,b).

On a very high level, genes in human DNA and many
other organisms have a relatively regular structure. All
eukaryotic genes, including human genes, are thought
to share a similar layout. This layout adheres to the
following ‘grammar’: start codon, exon, (intron–exon)n ,
stop codon. The start codon is a specific 3-base sequence
(e.g. ATG) which signals the beginning of the gene.
Exons are regions in a split-gene sequence that are
expressed in either the final protein product or the RNA
product. Introns are spacer segments of DNA whose
function is not clearly understood. And finally stop
codons (e.g. TAA) which signal the end of the gene.
The notation (intron–exon)n simply means that there are
n alternating intron–exon segments. At the intron–exon
boundaries we find splice junctions (or acceptor/donor
sites) that aid the process of RNA-splicing. The main
problem facing automated methods for gene discovery is
the fact that our current understanding of the genomic
transcription process is not sufficient to produce a perfect
predictive model of gene recognition in whole genomes.
For instance, the ‘signals’ for start coding (e.g. ATG)
and end coding (e.g. TAA) are relatively short DNA
sequences that appear very frequently in both coding and
non-coding DNA. Similarly, the regions where splicing
occurs (splice sites) have relatively weak consensus (based
on current data), and most consensus bases automated
detection methods for splice detection have relatively high
False Positive (FP) rates (see Mount et al., 1995; Burge,
1998; Cai et al., 2000).

Computational gene prediction methods typically rely
on dynamic programming formalisms that integrate a
variety of probabilistic evidence such as coding potential
of exons, splice site detection, duration modeling for
introns, branch points and others (Burge and Karlin,
1997).

2 SYSTEM
An implementation of the Bayesian framework for com-
bining gene predictions is written in C and MATLAB

(Mathworks Inc.). The code runs on any platform that
supports MATLAB and has an ANSI C compiler.

3 METHODS
3.1 Combination of experts
The proliferation of gene prediction systems, especially
systems that focus on exon prediction raises the question
whether a careful combination of the predictions made
by these systems would produce a significantly improved
gene detection system. We propose a systematic way
to build such a system based on the framework for
combination of experts.

Combination of experts has drawn significant interest in
the machine learning community. Theory and practice of
combining experts have been extensively studied in the
literature (Wolpert, 1992; Jordan and Jacobs, 1994; Zhang
et al., 1992; Heath et al., 1993). These methods are often
referred to as ensemble methods, committee methods or
mixture of experts. The main goal of these techniques is
to reduce the variance and/or the bias of the individual
predictors. The choice of a particular way of combining
expert predictions depends on the properties of individual
experts and the demands posed by the problem at hand.
In the problem of gene annotation we expect an expert
combination system to have the following two properties:

(1) capture correlation between predictions of individ-
ual experts;

(2) model sequential dependencies between combined
predictions in a nucleotide sequence.

Most techniques for combination of gene predictions
proposed in the past have been rather simple or have
relied on ad-hoc combinations of experts using essentially
logical rules. For example, Murakami and Takagi (1998)
proposed a system for gene recognition which combines
several gene-finding programs. They implemented AND
and OR combination, HIGHEST-method (best individual
expert), RULE-method (decisions using sets of expert
rules), and an ad-hoc BOUNDARY-method. The best
of these methods achieved an improvement in general
accuracy of 3–5% over the individual gene finders. Similar
expert combination scheme based on majority voting was
recently used at The Institute for Genomic Research
(TIGR) and reported in the 12th International Genome
Sequencing Conference, September 2000. However, it
only achieved moderate improvements in prediction.

We are interested in a system for combination of
individual experts which is learned from data. Such
a system should exploit learned dependencies between
experts and form a prediction maximally consistent with
known gene data. Statistically, predictions of the system
will then have the potential to carry over to genes
undiscovered by any of the individual experts.
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Fig. 1. SNB.

An attractive way of combining experts which exploits
their joint statistical behavior and can thus satisfy require-
ments of our task is based on Bayesian networks. We next
propose a Bayesian network framework for the task of
combining different gene prediction systems.

3.2 Bayesian networks
Bayesian networks are probabilistic models that graphi-
cally encode probabilistic dependencies between random
variables (Pearl, 1998; Salzberg et al., 1998b). The
graphical structure of the model imposes qualitative de-
pendence constraints. An example of a Bayesian network
is shown in Figure 1. For example, a directed arc between
variables Y and E1 denotes conditional dependency
of E1 on Y , as determined by the direction of the arc.
In addition to this graphical representation, Bayesian
networks include a quantitative measure of dependencies.
For each variable and its parents this measure is defined
using a conditional probability function or a table. In the
example of Figure 1, one of such measures is the prob-
ability Pr(E1|Y ). Together, the graphical structure and
the conditional probability functions/tables completely
specify a Bayesian network probabilistic model. This
model, in turn, specifies a particular factorization of the
joint probability distribution function over the variables in
the network. Hence, Figure 1 defines Pr(Y, E1, E2, E3) to
be

Pr(Y, E1, E2, E3) = Pr(E1|Y ) Pr(E2|Y ) Pr(E3|Y ) Pr(Y ).

Bayesian network probabilistic models provide flexible
and powerful framework for statistical inference as well
as learning of model parameters from data. The goal of
inference is to find a distribution of a random variable in
the network conditioned on evidence (values of other vari-
ables in the network), e.g. Pr(Y |E1, E2, E3) Bayes nets
encompass efficient inference algorithms, such as Jensen’s
junction tree (Jensen, 1995) or Pearl’s message passing
(Pearl, 1998). Inside a learning loop, such algorithms can
be used to efficiently estimate optimal values of model’s
parameters from data (cf. Jordan, 1998), such as the ta-
ble Pr(E1|Y ) in the previous example. Furthermore, tech-
niques exist that can optimally determine the topology of

a Bayesian network together with its parameters directly
from data.

As probabilistic models, Bayesian networks provide
a convenient framework for combination of experts.
Weights and influences of individual experts can be
optimally learned from data rather than being ad-hoc or
user-specified. We next propose a number of Bayesian
network architectures of increasing complexity for the
problem of combined gene prediction.

4 ALGORITHM
4.1 Notation
We denote the decisions given by an individual expert i , at
base t in the sequence, by Et

i . Et
i can take on values from

some finite set of decisions provided by the expert. For in-
stance, Et

i ∈ {startcodon, stopcodon, exon, non-exon}.
Combined prediction is denoted by Y t . Again,
Y t ∈ {startcodon, stopcodon, exon, non-exon}. A
probability distribution function associated with Et

i , for
instance, is denoted by Pr(Ek

i ). Absence of the base
index t in any of the variables, such as Ei , indicates that
there is no sequential dependency in the model involving
that variable. Parameters of Bayesian network models
(probability tables) are denoted by capital letters, e.g.
A1(i, j) = Pr(Y t = i |Et

1 = j). Estimates of parameters
are obtained using empirical frequencies of data, C . In
this case, C(Et

1 = i, Y t = j) = 1 if Et
1 = i and Y t = j ,

otherwise it is zero.

4.2 Static naive Bayes
The simplest Bayesian network that one can use for
combining of multiple gene predictors is a naive Bayesian
classifier. An example of a naive Bayes gene prediction
combiner is shown in Figure 1. In this figure, three
gene predictors are represented as nodes (E1, E2, E3)
and the combined prediction is denoted by Y . In other
words, the nodes in the figure are random variables and
the edges describe dependencies. The network models
joint probability distribution on the experts and the ‘true
prediction’ as:

Pr(Y, E1, E2, E3) = Pr(E1|Y ) Pr(E2|Y ) Pr(E3|Y ) Pr(Y ).

Parameters of the network are Ak(i, j) = Pr(Ek =
i |Y = j), k = 1, . . . , 3 and B(i) = Pr(Y = i), and can be
estimated in a number of ways. A common way is to select
the parameters such that they maximize the likelihood of
data on a training set. In that case, optimal parameters
estimates are proportional to frequencies of events in the
set. For instance,

A1(i, j) ∼
∑

t

C(Et
1 = i, Y t = j).
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Fig. 2. SFB.

Additional regularization constraints (priors) can also be
imposed. They appear as additive constants in the count
statistics C .

It is now easy to show that the predictions of individual
experts (E1, E2, E3) an optimal combined prediction is
found using a simple Bayesian inference,

arg max
y

Pr(y|E1, E2, E3)

= arg max
y

A1(E1, y)A2(E2, y)A3(E3, y)B(y).

Naive Bayes modeling scheme assumes independence
of individual experts, given a known combined prediction.
In the context of genome annotation, this would imply
that the annotation of the experts is independent given the
true annotation. Although a successful technique in a wide
range of machine learning task, naive Bayes combiner
loses its charm as it neither models the correlation
of individual experts nor the dependence between the
adjacent nucleotides in the sequence.

4.3 Static full Bayes
Correlation between individual experts can be easily
modeled using a full Bayes model. This is shown in
Figure 2.

Distribution defined by the network is Pr(Y |E1, E2, E3)

Pr(E1) Pr(E2) Pr(E3). Parameters of the complete net-
work are A(i, j, k, l) = Pr(E1 = i, E2 = j, E3 = k, Y =
l), Bk(i) = Pr(Ek = i), k = 1, 2, 3. Using maximum
likelihood estimation without priors, one gets

A(i, j, k, l) ∼
∑

t

C(Et
1 = i, Et

2 = j, Et
3 = k, Y t = l).

Values of the other parameters can be estimated in a
similar manner.

Given this model, the optimal combined prediction of
predictions from the individual experts (E1, E2, E3) is
now

arg max
y

Pr(y|E1, E2, E3) = arg max
y

A(E1, E2, E3, y).

Rather than a product of probabilities associated with
individual experts, as is the case in the naive Bayes

t-1
Y

t
Y

E1
t-1

E
t-1

E3
t-1

E1
t E2

t
E3

t
E

t+1
E2 E3

t+1
2 1

t+1

t+1
Y

Fig. 3. OHMM.

combiner, the full Bayes associates one probability with
each combination of those experts.

It can be easily shown that the performance of the
full Bayes model is at least as good as that of the best
individual expert. Furthermore, the often used AND, OR
and majority models are special cases of the full Bayes
combiner. Nevertheless, this model still assumes that the
annotation of a particular nucleotide is independent of the
annotation of any other nucleotide in the sequence.

4.4 Output hidden Markov model
Hidden Markov Models (HMMs) are a special case of
Bayesian network architectures that have gained wide
popularity in analysis of sequences, including genome an-
notation. HMMs model probabilistic dependence between
adjacent samples in a sequence. In fact, the most popular
HMM architectures used in many gene finding systems
such as Genscan and protein family modeling system such
as PFAM is the Output Hidden Markov Model (OHMM).
That is, the observed evidence (e.g. DNA sequence in
a typical gene finding system) is assumed to be emitted
in the hidden states as output. The output generated
in a particular state of the HMM only depends on the
state. The OHMM architecture can also be deployed for
combination of individual gene predictors, as shown in
Figure 3.

HMM model probabilistic dependence between the
samples at adjacent positions, t and t − 1. Namely,
the OHMM proposed here is a sequential extension of
the Static Naive Bayes (SNB) model of Section 4.2.
The hidden variables in the OHMM network we use
correspond to the true predictions (e.g. exon, intron), and
the evidence nodes corresponds to the different prediction
by the experts. The OHMM assumes that the predictions
generated in position t are independent given the ‘true
prediction’ and that the ‘true’ prediction in position t
only depends on the ‘true prediction’ in position t − 1.
Parameters of the prediction HMM are A(i, j) = Pr(Y t =
i |Y t−1 = j), Bk(i, j) = Pr(Et

k = i |Y t = j) and
D(i) = Pr(Y 1 = i). These parameters can be estimated
using one iteration of the Baum–Welch algorithm.

Optimal gene prediction using this model and given
predictions of individual experts can be easily obtained
using classic inference/Viterbi decoding in HMMs, (cf.
Rabiner and Juang, 1993).
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Fig. 4. IHMM.

4.5 Input hidden Markov model
The OHMM-inspired architecture in Section 4.4 addresses
the problem of sequential correlation of experts, however
it does not model the correlation of individual experts at
the same position in a sequence (much like the SNB).
We propose a modified network shown in Figure 4
as the Bayesian network that combines the predictions
of individual experts without assuming independence.
This Input Hidden Markov Model (IHMM) captures
the dependencies between individual experts as well as
the dependencies between adjacent true predictions. In
particular, the ‘true prediction’ variable in position t
depends on all the expert-predictions in this position as
well as the ‘true prediction’ in position t − 1.

The IHMM defines the following distribution on the
sequence of expert and final predictions:

Pr(E1
1, E1

2, E1
3, Y 1, . . . , E1

T , E1
T , E1

T , Y T )

= Pr(Y 1|E1
1, E1

2, E1
3) Pr(E1

1) Pr(E1
2) Pr(E1

3)

T∏

t=2

Pr(Y t |Et
1, Et

2, Et
3, Y t−1) Pr(Et

1) Pr(Et
2) Pr(Et

3).

This distribution is parameterized using a set of parame-
ters, A(i, j, k, l, m) = Pr(Y t = i |Et

1 = j, Et
2 = k, Et

3 =
l, Y t−1 = m), A1(i, j, k, l) = Pr(Y t = i |Et

1 = j, Et
2 =

k, Et
3 = l), and Bk(i) = Pr(Et

k = i), k = 1, 2, 3. Much
like everywhere else in this method, the parameters can be
easily estimated using the count statistics, with or without
priors.

Probabilistic analysis for optimal prediction in the
IHMM is different from an ordinary HMM and the
OHMM of the previous section. Nevertheless, the infer-
ence can be accomplished using a standard Bayes net
probability propagation technique adapted to IHMMs.
Applying a forward probability propagation to the model
yields

Pr(Y t |E1
1, E1

2, E1
3, . . . , ET

1 , ET
2 , ET

3 )

=
t∏

k=2

A(:, Eτ
1 , Eτ

2 , Eτ
3 , :)A0(:, E1

1, E1
2, E1

3),

where A(:, Eτ
1 , Eτ

2 , Eτ
3 , :) denotes the two-dimensional

table (matrix) obtained from A by evaluating it at
Eτ

1 , Eτ
2 , Eτ

3 , and products are taken in the matrix domain.

Combination
Gene Expert

Frame
Consistency

Filtering

Fig. 5. Frame consistent expert combination. Frame consistency is
imposed by filtering the soft decisions of exon predictor with a
frame consistent statistical filter.

Optimal decision in the IHMM case is

arg max
Yt

Pr(Yt |E1
1, E1

2, E1
3, . . . , ET

1 , ET
2 , ET

3 ).

This is, in some sense, equivalent to forward–backward
inference in OHMMs. Alternative decision can be ob-
tained using a winner-takes-all inference over the whole
sequence. In this case the decision rule is

arg max
Y1,...,YT

Pr(Y1, . . . , YT |E1
1, E1

2, E1
3, . . . , ET

1 , ET
2 , ET

3 ).

The solution can be found using dynamic programming,
in a fashion analogous to Viterbi inference in OHMMs.

Learning of IHMMs is often not feasible in domains
with large state spaces and sparse data points. However,
the choice of the state space (as described in the section
to follow) and abundance of data in genomic sequences
make these models appealing in this domain.

4.6 Frame consistency filtering and gene
prediction

Exon prediction results obtained using one of the proposed
combination techniques (static, IHMM, OHMM) do not
guarantee frame consistency of predicted ‘genes’. We
impose frame consistency in a post-processing stage using
a frame consistency filter, as shown in Figure 5. A
portion of this filter is depicted in Figure 6. The role
of the filter is to select the most likely frame consistent
solution proposed by the chosen combiner across the
whole sequence. Combined experts, as described in the
previous few sections, propose different local decisions at
each base in the sequence. The frame consistency filters
strings together the most plausible explanations across the
whole sequence, based on the combined expert decisions,
that also satisfies the frame consistency constraint.

For that to happen the combiner such as an IHMM needs
to output soft decisions, Pr(Y t |experts): each possible out-
come (exon, intron, start codon, stop codon, or intergenic
region) at every base in the sequence is assigned a prob-
ability score (see Figure 6b). The filter selects the most
likely path through the trellis of probability scores such
that the path is also frame consistent. This is depicted in
the portion of the trellis shown in Figure 6c.

Frame consistency filter can be easily implemented
using dynamic programming. For example, the total cost
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Fig. 6. Frame consistency filter. (a) The state transition diagram of
the consistency filter. ‘e’ denotes the ‘true’ exon prediction, while
‘i’ denotes the true intron prediction per each base in the sequence.
(b) Each filtered symbol has a score associated with it, Pr (symbol–
experts), as determined by the combination of experts. (c) Portion
of the trellis of filtered symbols together with their expert-predicted
scores and transitions imposed by the state transition diagram.

of predicting e1 state at position t + 1 in the sequence,
J (et+1

1 ), can be computed recursively as

J (et+1
1 ) = − log(Pr(et+1

1 |experts))

+ min
k∈{startt

,et
1,i

t
1...}

[− log(Pr(et+1
1 |kt )) + J (kt )],

where Pr(et+1
1 |experts) is given by the combined expert

prediction model and Pr(et+1
1 |kt ) is determined by the

state transition diagram. Most likely frame consistent
solutions can be traced back from the lowest cost terminal
decision.

Equivalently, the filter can be seen as a HMM whose
state transition diagram is shown in Figure 6 and whose
emission probabilities are determined by the gene expert
combiner score, Pr(Y t |experts). Parameters in the state
transition diagram can all be estimated using, for instance,
maximum likelihood estimation on already sequenced
genes.

5 RESULTS
An annotated Drosophila sequence was used to conduct
the experiments and to obtain the measure of the systems
performance. The data is a 2.9 Mb long sequence of
nucleotides. We used the same set of experts as the one
presented in GASP (Reese et al., 2000a). Our goal was
to annotate the sequence into exon (coding region) and

intron (non-coding region) using a combination of GASP
experts.

For that purpose, we assumed that each individual
experts provides the following binary decision. An expert
produces a single labeling for every nucleotide in a
sequence: E if the nucleotide is a part of an exon and
I if it belongs to an intron. Using the notation of our
models, Ei ∈ {E, I } for an expert i . Similarly, a combined
decision Y is either E or I . Parameters of each of the four
combination-of-expert Bayesian network models were
learned using a standard maximum likelihood estimation
in the BN framework. All prediction results were then
obtained using a 5-fold cross-validation.

To compare the performance of the combined system
with that of individual GASP experts we used the follow-
ing performance measures:

5.0.1 Sensitivity and specificity. The results are pre-
sented at both the base level and the exon level. Sensitivity
and specificity are the two measures that are used at the
base level. These are defined as

Sn = TP

TP + FN
Sp = TP

TP + FP

where Sn is the sensitivity and Sp is the specificity.
TP, FP, FN refers to True Positive, False Positive and
False Negative respectively. TP refers to those nucleotides
that were correctly labeled as exons. FP refers to nu-
cleotides that were labeled as exons even though they
were actually part of introns. Finally FN are nucleotides
that were labeled as introns while the actual annotation
claimed them to be a part of exons.

5.0.2 Overpredicted and missed exons. Two more
measures of error were used only at the exon level:
overpredicted exons and missed exons. Figure 7 provides
some insight into the performance measures at the exon
level. An exon is said to be exactly predicted only if both
its ending and beginning points coincides with that of
a true exon. An exon is said to be missed if there is no
overlap with any of the predicted exons. ME gives the
percentage of missed exons whereas WE gives the per-
centage of wrongly or overpredicted exons. To compute
these two numbers, we look for any overlap between a
true and a predicted exon.

For our experiments we used ‘Fgenes CGG1’ (Salamov
and Solovyev, 2000), ‘Genie EST’ (Reese et al., 2000b)
and ‘HMM Gene’ (Krogh, 2000). The performance results
for these along with that of ‘Genie’ (Reese et al., 2000b)
are presented in Tables 1 and 2. Base level results are
presented in Table 1. Table 2 gives the performance of the
experts at the exon level. We also present an entry in the
table (WE + ME) which provides a measure of the overall
performance of the experts at the exon level.
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Fig. 7. Exon level performance measure.

Table 1. Base level performance of some experts

Fgenes CGG1 Genie Genie EST HMM gene

Sn 0.89 0.96 0.97 0.97
Sp 0.77 0.92 0.91 0.91

Tables 3 and 4 show results for the mixture of experts
framework. We show results for the SNB classifier, Static
Full Bayes (SFB), OHMM and IHMM. We also provide
results for frame consistent versions of these classifiers,
indicated by an ‘f’ in front of the classifier’s name. Finally,
we list benchmark performance measures for standard
AND and OR experts. Other than being two of the simplest
combination techniques the AND and OR combiners also
provide sensitivity and specificity bounds. The Specificity
for the AND case is 94% and this is the bound on what can
be achieved using a (static) mixture of experts framework.
Similarly the sensitivity of the OR sequence (98%) bounds
the achievable sensitivity.

The base level results indicate that an improvement in
prediction can be obtained using the mixture of experts
framework. However, a look at exon level performance
in Table 4 reveals a substantially more significant im-
provement. Among the unfiltered classifiers, we see
that IHMM performs significantly better than any of
the individual experts or any other expert combination
technique. The overall performance (ME + WE) shows
an improvement of 10% over the best individual expert.
However, we observe that the sensitivity and specificity of
the IHMM are worse than that of the individual experts.
This is because the IHMM, in general, forward-shifts the
predicted exon regions. The problem could be alleviated
by introducing additional exon boundary detectors (e.g.
{exon–start, exon–stop}) to the framework.

SNBs and SFBs performed very well, significantly
better than any individual expert, both in exon (Sn = 94%,
Sn = 84%, MS + WE = 17%) and in base-level measures
(Sn = 97%, Sp = 93%). This reflects both models’ ability
to capture proper joint decisions inferred from individual
expert predictions. Performance of SNB and SFB was
comparable, pointing to weak dependence of individual
expert decisions.

Table 2. Exon level performance of some experts

Fgenes CGG1 Genie Genie EST HMM gene

Sn 0.65 0.70 0.77 0.68
Sp 0.49 0.57 0.55 0.53
ME 10.5 8.1 4.8 4.8
WE 31.6 17.4 20.1 20.2
ME + WE 42.1 25.5 24.9 25.0

Frame-consistent combined predictions are also signifi-
cantly better than predictions of individual experts. They
are, on the other hand, only slightly worse than those of
unfiltered combiners. (e.g. ME + WE = 19.17% versus
18.02% in the SFB case, with comparable sensitivities
and specificities). Degraded performance can be expected
because the filtered models impose more stringent con-
straints on predictions and some of the performance
measures (e.g. ME + WE) are not sensitive to frame
inconsistency. Nevertheless, this is a price worth paying
for having full-gene predictions rather than potentially
frame-inconsistent predicted exons.

In all of the above cases, probabilistic decisions in-
ferred by the combination of experts framework always
outperformed deterministic rules. AND and OR rules
define, respectively, specificity and sensitivity bounds
of combined expert performance. Probabilistic learned
decisions, on the other hand, attempt to simultaneously
approach both bounds. This study considered only the
simplest of deterministic rules (AND and OR). While
more complex rules may indeed perform better, they
may be tedious to design. In our framework, probabilistic
decisions are learned from data and their performance
is only constrained by the structure of the combination
model (which can, in principle, also be learned.)

Overall, experiments suggest that fSFB and fSNB
significantly improve over the best single expert while
producing frame-consistent decisions. In particular, fSFB
produces 20% ME + WE error and maintains very high
exon level sensitivity and specificity, Sn = 90% and
Sp = 83%. Similar results are obtained using fSNB. SNB
slightly outperforms fSFB, at the cost of allowing frame-
inconsistent predictions. IHMM and fIHMM, on the other
hand suffer from low specificity and sensitivity that can
be contributed to the forward-shifting property of these
models.

6 DISCUSSION
In this paper we proposed a systematic framework for
learning to combine gene prediction systems. The main
advantage of our approach is its ability to model the
statistical dependencies of the experts. We recently heard
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Table 3. Base level performance of mixture of experts framework

OR AND SNB SFB OHMM IHMM fSNB fSFB fIHMM

Sn 0.98 0.83 0.97 0.97 0.98 0.97 0.97 0.94 0.89
Sp 0.75 0.96 0.93 0.93 0.75 0.84 0.93 0.93 0.91

Table 4. Exon level performance of mixture of experts framework

OR AND SNB SFB OHMM IHMM fSNB fSFB fIHMM

Sn 94.90 70.71 94.40 93.35 95.17 33.33 94.27 90.26 11.67
Sp 50.13 89.49 83.66 83.16 50.86 67.38 79.16 83.15 19.75
ME 4.00 22.55 4.46 5.21 4.01 7.88 4.46 7.12 15.16
WE 39.83 6.97 12.85 12.82 39.65 7.03 16.10 12.05 9.68
ME + WE 43.84 29.52 17.31 18.02 43.66 14.92 20.56 19.17 24.84

that a combiner approach was used with moderate success
for gene prediction at TIGR for plant genomes. This
result was reported in the 12th International Genome
Sequencing Conference, September 2000. The approach
there relied on a majority voting algorithm.

We described the application of a family of combiners
of increasing statistical complexity starting from a sim-
ple naive Bayes to IHMMs. Our preliminary results sug-
gest that the probabilistic network appears promising for
exon prediction, producing a reasonable exon-level im-
provement in prediction accuracy.

We proposed a system for combining predictions of in-
dividual experts in a frame-consistent manner. The sys-
tem relies on the stochastic frame consistency filter, im-
plemented as a Bayesian network, in the post-combination
stage. As such, the system enables the use of expert com-
biners for general gene prediction. Our experiments sug-
gest that the system significantly improves over the best
single expert while producing a frame-consistent decision.

We also observe that the approach we described is
in principle applicable to other predictive tasks such as
promoter or transcription elements recognition.
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