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Abstract. Hopfield neural networks (HNN) are a class of densely connected single
layer nonlinear networks of perceptrons. The network’s energy function is defined
through a learning procedure so that its minima coincide with states from a prede-
fined set. However, because of the network’s nonlinearity a number of undesirable
local energy minima emerge from the learning procedure. This has shown to signifi-
cantly effect the network’s performance. In this work we present a stochastic process
enhanced bipolar HNN. Presence of the stochastic process in the network enables us
to describe its evolution using the Markov chains theory. When faced with a fixed
network topology, the desired final distribution of states can be reached by mod-
ulating the network’s stochastic process. Guided by the desired final distribution,
we propose a generalL2 norm error density function optimization criterion for en-
hancement of the Hopfield neural network performance. This criterion can also be
viewed in terms ofstability intervalsassociated with the desired and non-desired sta-
ble states of the network. Because of the complexity of the general criterion we relax
the optimization to the set of non-desired states. We further formulate a stochas-
tic process design based on the stability intervals, which satisfies the optimization
criterion and results in enhanced performance of the network. Our experimental
simulations confirm the predicted improvement in performance.

INTRODUCTION

Neual networks are a class of non-linear function approximators whose origins date back
to work by McCulloch and Pitt [11], Hebb [3], and Rosenblatt [12, 13]. Hopfield defined
a single-layer network consisting of interconnected individual perceptrons and modified
perceptrons (with sigmoidal nonlinearities) [4, 5, 6]. The basis for network operation as
a content addressable memoryis the Hebbian learning algorithm. The idea is to choose
network connections in a way that the energy function associated with the network is
minimized for a set of desired network states. Unfortunately, because of its nonlinear
character, the network has also exhibited non-desirable, local minima. This has shown
to affect the network performance, both in its capacity and its ability to address its con-
tent [1, 2, 9, 16]. Several approaches based onsimulated annealingand other techniques
have been proposed that deal with the problem of local minima [7, 8, 10, 15, 17]. In
these approaches, an inherent assumption of the final network state (Gibbs) distribution
is presumed. The motivation for these assumptions is that the Gibbs distribution provides



a mechanism for the characterization of the global minima. In many applications, such
as neural networks, however, the desired final network state distribution corresponds to
particular local minima, and not necessarily to the global minima. The use of Gibbs dis-
tribution is thus undesirable in many applications. A modification of this approach can
nonetheless be used to enhance the performance of neural networks.

In his work on the network robustness Schonfeld observed an interesting phenomenon [14].
By applying stochastic perturbation on network thresholds, performance of bipolar Hop-
field network was improved. In the present work we extend the study of the effects of
stochastic noise on bipolar HNN. Presence of a stochastic process enables us to describe
the evolution of the network by using the Markov chains theory. Distribution of the final
system states depends on the chain topology, which in turn depends on network topol-
ogy and the distribution of noise. Given the desired final distribution, it is necessary to
determine either the network topology or the noise distribution, or both, so that modified
network achieves this final distribution. If the network topology is fixed, the desired final
distribution can be achieved by an appropriate stochastic process design.

In this work we introduce a way to stochastically enhance performance of the bipo-
lar Hopfield neural networks (HNNs). We propose aweighted least-square error density
functionoptimization criterion for enhancement of the Hopfield neural network perfor-
mance. The criterion can be related tostability intervalsassociated with the desired and
non-desired stable states of the network, given a fixed network topology. Given the stabil-
ity intervals, we suggest a noise process design which will result in a quasi-optimal HNN
based on the minimization of undesirable state final probabilities.

The paper is organized as follows: In Section 2 we define a general stochastic Hopfield
neural network, introduce the notion of state transition intervals and its relation to the
Markov chain associated with the network. We propose a general optimizationweighted
least-square error density functioncriterion. In Section 3 we relate the bipolar HNN’s
state stability to the transition intervals and the network’s Markov chain. A criterion that
relaxes some constraints of the general optimization criterion is then proposed. Finally,
we suggest a way to satisfy this criterion through an appropriate design of the underlying
network stochastic process. The approach is verified through a set of experiments detailed
in Section 4. This is followed by concluding remarks in Section 5.

STOCHASTIC HOPFIELD NEURAL NETWORKS

Stochastic Hopfield Neural Network(SHNN) as considered in this work is a generaliza-
tion of the original Hopfield model [4, 5]. It is assumed that the network is a discrete-time,
discrete-valued system.

Let x(k) denote a state vector at time k of some system. Let� be an elementwise
non-decreasing operator such that� : R ! C(R); whereC(R) is a finite subset ofR.
Let u(k) 2 RN be a random vector, each component of which has a probability distri-
bution function (pdf)pUi

(ui; k). LetC be a matrix of connection weightscij such that
C = [cij ]N�N = [c1c2 � � � cN ]

0. The Stochastic Synchronous Hopfield Neural Network
(SHNN)Hs model is given by

Hs(�;C; pUi
) : x(k+1) = �(C � x(k) + u(k)) ; k 2 Z+: (1)

The set of all possible network states is then denoted byS = C(R)N : The network is
said to be stochastic because of the existence of random vectoru(k), thethreshold vector.
The network is also synchronous, which refers to the case where every state of the system



is updated at the same time. It is also possible to define a similar model where at any one
time instance only one set of states can be updated.

Threshold vectoru(k) acts as an input to the system. Control over this vector enables
one to (possibly) control the network. Given two consecutive state-vectors of our gen-
eral SHNN, a set of all threshold vectors that will force the system to make the desired
transition is called thetransition set.

T (x(k) ! x(k+1)) = fu : x(k+1) = �(C � x(k) + u)g: (2)

Stable stateof the network corresponds to the fixed point of the mapping defined by
the networkxs = �(C � xs + �); for some deterministic threshold� 2 RN . Clearly,
the stable states of the network are determined by the network matrixC and the network
operator�. A SHNN can have numerous stable states. All the stable states form the
stable setof the network, denoted bySs. In general, it is extremely difficult to determine
the stable state set associated with a given network.

It is easy to show that the statexs in SHNNHs is stable iff

0 2 T (xs ! xs): (3)

Alternatively, we say that the statexc in SHNNHs is conditionallystable iff

9u 2 R : u � 1 2 T (xc ! xc): (4)

The termconditionalis used here to emphasize a possibility of such state being forced to
be stable by applying a constant external input (threshold).

Distribution of network states

The evolution ofHs can be described using a first-order Markov model defined over the
space of permissible state ofHs. From 2 it follows that the state transition probability
matrix of this Markov chain now becomes

pij(k) = Prfu(k) 2 T (Xi ! Xj)g: (5)

This model represents an inhomogeneous Markov chain. A homogeneous chain arises
whenpij(k) = pij ;8k. This case can be readily achieved when dealing with azero-
threshold SHNN (ZSHNN), a network withu(k) = 0; w:p:1: The following theorem is
related to the class of ZSHNN.

LetHs be a zero-threshold Synchronous Hopfield Neural Network (ZSHNN), and let
Ss be its stable state set given asSs = fX1;X2; :::;XKg:
Theorem 1 Each stable states of a ZSHNN forms a single class of essential indices of
the Markov chain associated with ZSHNN. Unstable states of ZSHNN correspond to the
chain’s inessential indices. Limiting state distribution vector of a ZSHNN exists and has
the form

p(1) =

�
p(1)
s

0

�
; (6)

wherep(1)
s

is a non-zero limiting state distribution vector corresponding to the stable
states ofS.



Proof: The proof follows readily from the definition of essential and inessential states of
a Markov chain. Following that, it is also known that the limiting distribution of essential
(stable) states exists and is non-zero. Similarly, the limiting distribution vector of the
unstable (inessential) states is zero. 2 The above results establish a relation
between the stable state set and the convergent states. They also classify all stable states
as essential and all other states as inessential. The importance of this result will become
more clear as we develop the notion of network optimization.

“Bad” and “Good” States

The stable state set is determined by the choice of the network matrix, if the network
network function is fixed. Given a set of desired stable statesSt = fX1;X2; :::;XMg; a
procedure of finding the connection weights matrixC such thatX 2 St ) X 2 Ss is
called thelearning procedure.

It is well known that all the learning procedures associated with HNN exhibit one
property: designed stable states form, in the best case, a subset of the network’s stable
state set. It is also known that as the number of desired, “to-be-stable” states increases,
learning algorithms approach saturation [1, 2, 4, 5, 6, 9]. We consider only those cases
where the learning algorithm saturation point is not reached. Such SHNN is then said
to beproper. In this case all the desired stable states are said to be“good” and all the
undesired ones are said to be“bad” . We will use this notion in defining the optimality
criterion for the network.

Optimal Network

Because of the existence of so called “bad” (stable) states, and the fact that the network
converges to one of the states from the stable state set (“good” or “bad”), it is obvious that
the network is not performing its task flawlessly. Starting at some initial state, a ZSHNN
will sometimes converge to an undesired “bad” state. However, it is possible to control
the network by applying some external input (threshold). If the input is designed such
that the limiting distribution of the “bad” states becomes zero, then the “bad” states can
be altogether avoided.

In general we say that a SHNNH�
s(�;C; p

�
U ) is weighted (W) least-square error

density function ( WLSED(W) ) optimal iff

p�U = arg min
pU2P

�
~p(1)0W~p(1)

�
; (7)

where

~p(1) =

�
p
(1)
t;d

0

�
� p(1); (8)

p(1) is the limiting state distribution ofHs(�;C; pU ), andW is aK � K matrix of
weights. More importantly, to only focus on the “bad” states we can use

W =W0 = diag(0; :::; 0M ; 1M+1; 1M+2; :::): (9)

It is important to notice that final distribution of the “good” states is not addressed in
WLSED(W0) case, as opposed to the general WLSED(W) case.

Design of a network that satisfies this criterion is not trivial. Nontheless, it is easy to
see that a proper SHNN can be made WLSED(W0) optimal if pdfp�U is chosen such that



the states of the “bad”-state set are made inessential, and all the other states belong to their
ZSHNN classes of states. These conditions might seem to be fairly obvious, however, it
is actually very difficult to satisfy them because of the cardinality of the sets involved,
especially the inessential state set. To deal with this problem more efficiently, we will
restrict our discussion to a subclass of SHNN, known asbipolar HNNs.

BIPOLAR STOCHASTIC HOPFIELD NEURAL NETWORKS

Bipolar Hopfield neural networks along with binary Hopfield neural networks are two of
the most widely used models of a single-layer neural network. Binary network model
appeared in the original Rosenblatt and Hopfield papers [4, 5, 13, 12]. The model can be
viewed as a special case of SHNN where� assumes the form of the binary hard threshold
function and thresholduk is deterministic. Bipolar Hopfield neural network is a modifi-
cation of the original binary network with� being the bipolar threshold function:

�(�) = h(�) =
�

1 ; � > 0;
�1 ; � < 0:

: (10)

Here� is a scalar version of the elementwise operator� andh is the bipolar hard limiter1.
W.L.O.G., we can also assume that all the vectors in the state space of this network belong
to the N-dimensional bipolar vector spaceS � f�1; 1gN : Sinceh is a subset of�, all the
assertions from the previous section also hold for the bipolar SHNN.

The original bipolar HNN was considered in its asynchronous version. However, we
will constrain our discussion to the synchronous case. The latter is easily described by
using matrix notation in accordance with the theoretical developments of the previous
section.

Within the scope of BSHNN several results can be related to the transition sets2 The
most important one provides us with an alternative definition of the transition sets:

Proposition 1 Elementu belongs to the transition setT (x(k) ! x(k+1)) of bipolar
SHNN iff

diag(xk+1
1 ; xk+1

2 ; :::; xk+1
N ) � u > �diag(xk1 ; xk2 ; :::; xkN ) �Cx(k): (11)

It is interesting to know if and when an intersection of the transition set with the main
diagonal of the space of threshold vectors occurs. The main diagonal simply corresponds
to a subset of threshold vectors with all identical components. The following theorem
defines those conditions:

Let

I+ = fu : u = �c0ix(k) ; x(k+1)
i > 0g; and (12)

I� = fu : u = �c0jx(k) ; x(k+1)
j < 0g (13)

be two sets associated with the consecutive statesx(k) andx(k+1) in bipolar SHNNHs,
and let

imin = sup I+; and (14)

imax = inf I�: (15)

1Case ofh(0) is left undefined here. However, it is assumed that in the case ofc
i
0
x
(k)+u

(k)
i

= 0 we have

x
(k+1)
i

= x
(k)
i

.
2We have to provide most of those results without the acompanying proofs, for the sake of bravity.



Theorem 2
u � 1 2 T (x(k) ! x(k+1)) (16)

iff
imin < u < imax: (17)

It is now also easy to prove the following two corollaries that establish conditions for
(conditional) stability.

Corollary 1 Statexc in bipolar SHNNHs is conditionally stable iff there exists interval
(imin; imax) associated withxc such that

imin = sup fu : u = �c0ixc ; xc;i > 0g (18)

imax = inf fu : u = �c0jxc ; xc;j < 0g: (19)

Interval(imin; imax) is called the conditional stability interval associated withxc.

Corollary 2 Statexs in bipolar SHNNHs is stable iff it is conditionally stable and

0 2 (imin; imax): (20)

The conditional stability interval associated with stable statexs is called the stability
interval associated withxs.

Corollary 2 gives us a very simple way of determining stability and robustness of
certain states. The wider the interval, the more robust the state. Notion of robustness will
become particularly interesting when dealing with network optimization.

Optimal Network

Because all the properties of a general SHNN also hold for BSHNN, the optimization
procedure remains defined the same way as it is in the case of SHNN.

Proposition 2 LetHs be the proper bipolar zero-threshold SHNN, with the “good”-state
setSt of M elements. LetHq

s be a bipolar SHNN, such that the threshold vector is the
random variable

u(k) = u1 : u � pU (u
(k)): (21)

The networkHq
s is WLSED(W0) optimal ifpU (u) is such that

Prfu 2 (imin; imax)g = 1 ; X 2 St (22)

Prfu 2 (imin; imax)g = 0 ; X 2 Sb (23)

Prfu(k) 2 T (X ! X)g = 0 ; otherwise: (24)

Proposition 2 relates robustness of the “good” and “bad” stable states to a possibility of
forcing the “bad” states to become inessential, while keeping the “good” ones essential.
However, satisfying all three conditions at the same time is not a trivial task. This is
particularly true for the third condition which guarantees instability of the originally non-
stable states.

We now suggest a heuristic approach that could lead to WLSED(W0) optimal net-
work.



Heuristic 1 LetpU (u) be such that

Prfu 2 (imin; imax)g = 1 ; X 2 St (25)

Prfu 2 (imin; imax)g < 1 ; X 2 Sb: (26)

Then, the network is quasi-WLSED(W0) optimal.

Condition in Equation 25 is the same as the condition in Equation 22. Equation 26, how-
ever, poses a weaker condition onpU (u) than the one in Equation 23 resulting in possibly
non-inessential “bad” states. Finally, what distinguishes Heuristic 1 from Proposition 2 is
the non-existence of the condition given by Equation 24. This actually means that there
is no guarantee that some originally non-stable states would not become essential. A
possibility, thus, exists for some conditionally stable states to become stable. Still, ex-
perimental results show that in large majority of cases the first two conditions tend to be
sufficient.

As an example of a pdf that satisfies the conditions of Heuristic 1 we suggest a uni-
formly distributed stochastic process, given as follows

Example 1 LetpU (u) be such thatu � U(0; �=p3);wheremaxX2Sbfjiminj; jimaxjg �
� andminX2Stfjiminj; jimaxjg � �:

From the fact thatu has a uniform distribution, with pdf equal to zero foru > ��, and
Corollary 2, it follows that the conditions for Heuristic 1 hold. Therefore, the network is
quasi-WLSED(W0) optimal. 2

EXPERIMENTS

A Hebbian Binary Synchronous Hopfield Neural Network was designed to perform bipo-
lar image classification under the following setup: Network dimension is chosen to be
N = 64; network is designed to classifyM = 4 desired images, depicted in Figure 1(a);
Initial states are obtained from the desired images by reversing the state of individual el-
ements with probabilitypinit = 35%. A set of 200 different initial states was generated;
Pdf associated with thresholds is chosen to be zero-mean uniform with variance in the
range determined by the stability intervals of stable states (see Example 1); Number of
network iterations is set to 40.
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Figure 1: “Good” (a) and “bad” (b) stable states.

Two different error measures were used for the evaluation of the performance of the
HBSHNN: (1) “Exact” error measure. This measure requires exact matching of the final



state with the exampler used to obtain the initial state of the network. (2) “Bad-Good”
error measure. According to this measure, an error occurs whenever the final state of the
network differs from one of the four images. If the final state is equal toanyof the desired
four images, the network is said to be successful in classifying the initial state.

First, a zero-threshold HBSHNN was subjected to 200 initial states. The network
converged in at most 4 iterations. A setSs of stable states of the network was obtained.
Based on the set of four images,St, and the set of stable states, a set of “bad” states was
determined. Images corresponding to the set of “bad” states are depicted in Figure 1(b).
For each of the stable states, a corresponding stability interval was calculated. Results are
presented in Table 1.

Table 1: Stable states and corresponding stability intervals (images are listed in the left column).
Image Interval Image Interval Image Interval Image Interval Image Interval

Exm. 1 (-30,38) 1 (-10,14) 5 (-10,10) 9 (-14,14) 13 (-14,6)
Exm. 2 (-38,38) 2 (-14,14) 6 (-30,38) 10 (-30,30) 14 (-38,38)
Exm. 3 (-38,38) 3 (-6,6) 7 (-10,10) 11 (-14,14) 15 (-6,6)
Exm. 4 (-34,34) 4 (-10,10) 8 (-14,14) 12 (-10,10) 16 (-14,14)

Next, a stochastic version of the original network was applied to the same initial state
set. Variance of the pdf was changed in steps of one in zero to 30 range. For each variance
the network performed a fixed number of iterations. Results of classification based on the
two different error measures proposed are shown in Figures 2(a) and 2(b). In addition, the
relative frequencies of occurrence of images are shown in Figure 3.
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Figure 2: Classification error for the “Bad-Good” (a) and “Exact” (b) error measures.
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Figure 3: Relative frequencies of occurrence for “Good” states. Solid, dotted, dash-dotted, and
dashed lines correspond to images ’2’,’4’, ’6’, and ’7’ respectively.



In the case of “Bad-Good” error measure, a drastic improvement in performance oc-
curred for noise levels between 14 and 25 (see Figure 2(a)). The lower bound corresponds
to the highest stability interval limit of the states in the “bad” state set. However, we
should note that this does not include reverse images of the original images. The upper
bound is slightly lower than the lowest limit of states in the exampler set. This was ex-
pected, following the analysis of quasi-optimal BSHNN. With noise levels between 14
and 25, all “bad” states were forced to become inessential, except for the reverse images.
All the original images and their reverse images remained essential. The “exact” error
measure shows an improvement in a narrower interval starting at about 10 and ending at
18 (see Figure 2(b).) This can be explained by the fact that the quasi-optimization proce-
dure does not have full control over the final distribution. As the noise level increases over
18, it is clear from Figure 3 that some of the desired images become dominant. However,
the overall convergence to the elements of exampler set still shows good results. Simu-
lations also showed that for the chosen range of noise variance, the number of iterations
was sufficiently high to guarantee convergence of the associated Markov chain. The same
set of simulations was conducted with 60 network iterations, and only an insignificant
decrease in recognition error was noticed for higher noise variances.

CONCLUSION

Hopfield neural networks (HNN) are a class of densely connected single layer nonlinear
networks of perceptrons often representing a basis for content addressable memory sys-
tems. The basic principle behind HNN lies in defining the energy function associated
with the network that has its minima over some predefined set of states. Unfortunately,
because of its nonlinearity, a number of undesirable local minima also occur. This has
shown to adversely affect the network’s performance [1, 2, 9, 16].

In this work we studied the effects of stochastic noise on the performance of bipolar
HNN. Presence of a stochastic process enables us to describe the evolution of the network
using the theory of Markov chains. Distribution of the final network states depends on
the Markov chain topology, which is in turn determined by the topology of the network
and the underlying stochastic process. If the network topology is fixed, the desired final
distribution can be reached by modulating the network’s stochastic process. Guided by
the desired final distribution we propose a generalL2 normweighted least-square error
density functionoptimization criterion for the enhancement of Hopfield neural network
performance. The criterion can also be viewed in terms ofstability intervalsassociated
with the desired and non-desired stable states of the network. Because of the complex-
ity of the general criterion we restrict the optimization to the set of non-desired states.
Given the stability intervals, we formulate a stochastic process design which satisfies
the restricted optimization criterion and results in enhanced performance of the network.
Conducted experimental simulations confirm the predicted improvement in performance.

Nevertheless, the general optimization procedure, as proposed in Section 2, still re-
mains an interesting open problem. Future work on the solution to this problem would
be of utmost importance, since it could enable realization of HNN with arbitrary final
state distribution. Extension of this approach to a class of superior neural networks (such
as multi-layer, back-propagation neural networks) is another important further endeavor.
Considering the growing successful applications of such neural networks, yet keeping
in mind that they exhibit the same problems addressed in this work, the need for op-
timization becomes increasingly attractive. Further abstraction of neural networks and
stochastic noise enhancement can lead to the enhancement of a class of nonlinear itera-



tive operators and systems in numerous applications such as nonlinear feedback control
and optimization algorithms.
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