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Abstract

We propose a generative statistical approach to human
motion modeling and tracking that utilizes probabilistic la-
tent semantic (PLSA) models to describe the mapping of im-
age features to 3D human pose estimates. PLSA has been
successfully used to model the co-occurrence of dyadic data
on problems such as image annotation where image fea-
tures are mapped to word categories via latent variable
semantics. We apply the PLSA approach to motion track-
ing by extending it to a sequential setting where the la-
tent variables describe intrinsic motion semantics linking
human figure appearance to 3D pose estimates. This dy-
namic PLSA (DPLSA) approach is in contrast to many cur-
rent methods that directly learn the often high-dimensional
image-to-pose mappings and utilize subspace projections as
a constraint on the pose space alone. As a consequence,
such mappings may often exhibit increased computational
complexity and insufficient generalization performance. We
demonstrate the utility of the proposed model on the syn-
thetic dataset and the task of 3D human motion tracking in
monocular image sequences with arbitrary camera views.
Our experiments show that the proposed approach can pro-
duce accurate pose estimates at a fraction of the computa-
tional cost of alternative subspace tracking methods.

1. Introduction

Estimating 3D body pose from 2D monocular image is
a fundamental problem for many applications ranging from
surveillance to advanced human-machine interfaces. How-
ever, the shape variation of 2D images caused by changes
in pose, camera setting, and view points makes this esti-
mation a challenging problem. Computational approaches
to pose estimation in these settings are often characterized
by complex algorithms and a tradeoff between the estima-
tion accuracy and computational efficiency. In this paper

we propose the low-dimensional embedding method for 3D
pose estimation that exhibits both high accuracy, tractable
estimation, and invariance to viewing direction.

3D human pose estimation from monocular 2D images
can be formulated as the task of matching an image of the
tracked subject to the most likely 3D pose. To learn such
a mapping one needs to deal with a dyadic set of high di-
mensional objects—the poses, y and the image features, z.
Because of the high dimensionality of the two spaces learn-
ing a direct mapping z → y often results in complex models
with poor generalization properties. One way to solve this
problem is to map the two high dimensional vectors to a
lower dimensional subspace x: x → z and x → y [3, 10].
However, in these approaches, the correlation between the
pose and the image feature is weakened by learning the two
mappings independently and the temporal relationship is ig-
nored during the embedding procedure.

Our approach to pose estimation is inspired by proba-
bilistic latent semantic analysis (PLSA) that is often used
in domains such as the computational language modeling
to correlate complex processes. In this paper we extended
PLSA to account for the dynamic nature of sequential data.
We choose the Gaussian Process Latent Variable model
(GPLVM) to form a pair of mapping functions between the
latent variable and the two objects. A GPLVM framework
is particularly suited for this model because the dynamic
nature of sequence can be directly integrated into the em-
bedding procedure in a probabilistic manner [25, 12, 23].
The two generative nonlinear embedding models and the
marginal dynamics results in a new hybrid model called the
dynamic PLSA (DPLSA). DPLSA models the semantical
relationship between a sequence of 3D poses and a sequence
of image features via the shared latent dynamic space.

This paper is organized as follows. We first define the
DPLSA model that utilizes the marginal dynamic prior to
learn the latent space of sequential data. We then propose
the new framework for human motion modeling based on
the DPLSA model and suggest learning and inference meth-
ods in this specific modeling context. The framework can
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be directly extended for multiple view points by using the
mixture model in the space of the latent variables and the
image features. The utility of the the new framework is ex-
amined thorough a set of experiments of tracking 3D human
figure motion from synthetic and real image sequences.

2. Related Work

Dyadic data refers to a domain with two sets of objects in
which data is measured on pairs of units. One of the popular
approaches for learning from this kind of data is the latent
semantic analysis (LSA) that was devised for document in-
dexing. Deerwester et al. [2] considered the term-document
association data and used singular-value decomposition to
decompose document matrix into a set of orthogonal ma-
trices. LSA has been applied to a wide range of problems
such as information retrieval and natural language process-
ing [14, 1].

Probabilistic Latent Semantic Analysis (PLSA) [5] is a
generalization of LSA to probabilistic settings. The main
purpose of LSA and PLSA is to reveal semantical relations
between the data entities by mapping the high dimensional
data such text documents to a lower dimensional represen-
tation called latent semantic space. Some exemplary ap-
plication areas of PLSA in computer vision include image
annotation [11] and image category recognition [4, 18].

Latent space approach for high-dimensional data has
been applied to human motion tracking problems in the
past. Various dimensionality reduction techniques such
as Principal Components Analysis (PCA), isometric fea-
ture mapping (Isomap), Local linear (LLE) and spectral
embedding have been successfully used in human track-
ing [16, 3, 19].

Recently, the GPLVM that produces a continuous map-
ping between the latent space and the high dimensional data
in a probabilistic manner [8] was used for human motion
tracking. Tian et al. [22] use a GPLVM to estimate the
2D upper body pose from the 2D silhouette features. Ur-
tasun et al. [24] exploit the SGPLVM for 3D people track-
ing. Wang et al. [25] introduced Gaussian Process Dy-
namic Model (GPDM) that utilizes the dynamic priors for
embedding and the GPDM is effectively used for 3D hu-
man motion tracking [23]. In [12] marginal AR prior for
GPLVM embedding is proposed and utilized for 3D hu-
man pose estimation from the synthetic and real image se-
quences. Lawrence and Moore [9] propose the extension of
GPLVM using a hierarchical model in which the conditional
independency between human body parts is exploited with
low dimensional non-linear manifolds. However, these ap-
proaches utilize only the pose in latent space estimation and
as a consequence, the optimized latent space cannot guaran-
tee the proper dependency between the poses and the image
observations in regression setting.

Shon et al. [15] propose a shared latent structure model
that utilizes the latent space that links corresponding pairs
of observations from the multiple different spaces and ap-
ply it for image synthesis and robotic imitation of human
actions. Although their model also utilizes GPLVM as the
embedding model, their applications are limited to non-
sequential cases and the linkage between two observations
is explicit(e.g.image-image or pose-pose). The shared la-
tent structure model using GPLVM is utilized for pose es-
timation in [13]. This work focuses on the semi-supervised
regression learning and makes use of unlabeled data (only
pose or image) to regularize the regression model. In con-
trast, our work, using a statistical foundation of PLSA, fo-
cuses on the computational advantages of the shared latent
space. In addition, it explicitly considers the latent dynam-
ics and the multi-view setting ignored in [13].

3. Dynamic PLSA with GPLVM

The starting point of our framework design is the sym-
metric parameterization of Probabilistic Latent Semantic
Analysis [5]. In this setting the co-occurrence data y ∈ Y
and z ∈ Z are associated via an unobserved latent variable
x ∈ X:

P (y, z) =
∑

x∈X

P (x)P (y|x)P (z|x). (1)

With a conditional independence assumption, the joint
probability over data can be easily computed by marginal-
izing over the latent variable. We extend the idea to the case
in which the two sets of objects, Y and Z are sequences
and the latent variable xt is only associated with the dyadic
pair (yt, zt) at time t. And we solve the dual problem by
marginalizing the parameters in the conditional probability
models instead of marginalization of Z.

Consider the sequence of length T of M -dimensional
vectors, Y = [y1y2...yT ], where yt is a human pose
(e.g.joint angles) at time t. The corresponding sequence
Z = [z1z2...zT ] represent the sequence of N -dimensional
image features observed for the given poses. The key
idea of our Dynamic Probabilistic Latent Semantic Anal-
ysis (DPLSA) model is that the correlation between the
pose Y and the image feature Z can be modeled using a
latent-variable model where two mappings between the la-
tent variable X and Y and between X and Z are defined
using a Gaussian Process latent variable model of [8]. In
other words, X can be regarded as the intrinsic subspace
that Y and Z jointly share. The graphical representation of
DPLSA for human motion modeling is depicted in Fig. 1.

We assume that sequence X ∈ <D×T of length T is gen-
erated by possibly nonlinear dynamics modeled as a known
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Figure 1. Graphical model of DPLSA.

mapping φ parameterized by parameter γx [25, 23] such as

xt = A1φt−1(xt−1|γx,t−1)+A2φt−2(xt−2|γx,t−2)+. . .+wt.
(2)

Then the 1st order nonlinear dynamics is characterized by
the kernel matrix

Kxx = φ(X∆|γx)φ(X∆|γx)T + α−1I. (3)

The model can further be generalized to higher order dy-
namics.

The mapping from X to Y is a generative model defined
using a GPLVM [8]. We assume that the relationship be-
tween the latent variable and the pose is nonlinear with ad-
ditive noise, vt a zero-mean Gaussian noise with covariance
β−1

y I:
yt = Cf(xt|γy) + vt. (4)

C represents a linear mapping matrix and f(·) is a nonlinear
mapping function with a hyperparameter γy . By choosing
the simple prior of a unit covariance , zero mean Gaussian
distribution on the element cij in C and xt, marginalization
of C results in a mapping:

P (Y |X, βy) ∼ |Kyx|−M/2 exp
{
−1

2
tr{K−1

yx Y Y T }
}

(5)
where

Kyx(X, X) = f(X|γy)f(X|γy)T + β−1
y I. (6)

Similarly, the mapping from the latent variable X into
the image feature Z can be defined by

zt = Dg(xt|γz) + ut. (7)

The marginal distribution of this mapping becomes

P (Z|X,βz) ∼ |Kzx|−N/2 exp
{
−1

2
tr{K−1

zx ZZT }
}

(8)

where

Kzx(X, X) = g(X|γz)g(X|γz)T + β−1
z I. (9)

Notice that the kernel functions and parameters are differ-
ent in the two mappings from the common latent variable
sequence X to Y and to Z.

The joint distribution of all co-occurrence data and all
intrinsic sequence in a Y ×Z ×X space is finally modeled
as

P (X, Y, Z|θx, θy, θz) =
P (X|θx)P (Y |X, θy)P (Z|X, θz) (10)

where θy ≡ {βy, γy} and θz ≡ {βz, γz} represent the sets
of hyperparameters in the two mapping functions from X to
Y and from X to Z. θx represents a set of hyperparameters
in the dynamic model (e.g.α for a linear model and α, γx

for a nonlinear model).

3.1. Human Motion Modeling Using Dy-
namic PLSA

In human motion modeling, one’s goal is to recover two
important aspects of human motion from image feature: (1)
3D posture of the human figure in each image and (2) an
intrinsic representation of the motion. Given a sequence of
image features Z, the joint conditional model of the pose
sequence Y and the corresponding embedded sequence X
can be expressed as

P (X, Y |Z, θx, θy, θz) ∝
P (X|θx)P (Y |X, θy)P (Z|X, θz). (11)

Notice that the two mapping processes P (Y |X) and
P (Z|X) have different noise models which can account for
different factors (e.g.motion capture noise for the pose and
camera noise for the image) that influence one but not the
other process.

3.2. Learning

Human motion model is parameterized using a set of
hyperparameters θx, θy and θz , and the choice of kernel
functions, Kyx and Kzx. Given both the sequence of poses
and the corresponding image features, the learning task is
to infer the subspace sequence X in the marginal dynamics
space and the hyperparameters. Using the Bayes rule and
(11) the joint likelihood is in the form

P (X, Y, Z, θx, θy, θz) = P (X|θx)P (Y |X, θy)
P (Z|X, θz)P (θx)P (θy)P (θz). (12)

To mitigate the overfitting problem, we utilize priors over
the hyperparameters [25, 23, 15] such as P (θx) ∝ α−1 (or
α−1γ−1

x ), P (θy) ∝ β−1
y γ−1

y and P (θz) ∝ β−1
z γ−1

y .
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The task of estimating the mode X∗ and the hyperparam-
eters, {θ∗x, θ∗y, θ∗z} can then be formulated as the ML/MAP
estimation problem

{X∗, θ∗x, θ∗y, θ∗z} = arg max
X,θx,θy,θz

{log P (X|θx)

+ log P (Y |X, θy) + log P (Z|X, θz)} (13)

which can be achieved using generalized gradient optimiza-
tion such as CG, SCG or BFG. The task’s nonconvex objec-
tive can give rise to point-based estimates of the posterior
P (X|Y, Z) that can be obtained by starting the optimiza-
tion process from different initial points.

3.3. Inference and Tracking

Having learned the DPLSA on training data Y and Z,
the motion model can be used effectively in inference and
tracking. Because we have two conditionally independent
GPs, estimating current pose (distribution) yt and estimat-
ing current point xt in the embedded space can be decou-
pled. Given image features zt in frame t the optimal point
estimate x∗t is the result of the following nonlinear opti-
mization

x∗t = arg max
xt

P (xt|xt−1, θx)P (zt|xt, θz). (14)

Due to GP nature of dependencies, the second term assumes
conditional Gaussian form, however its dependency on xt is
nonlinear [8] even with linear motion models in x. As a re-
sult, the tracking posterior P (xt|zt, zt−1, . . .) may become
highly multimodal. We utilize a particle-based tracker for
our final pose estimation during tracking. However, because
the search space is the low dimensional embedding space,
only a small number of particles (< 20, empirical result) is
sufficient for tracking allowing us to effectively avoid the
computational problems associated with sampling in high
dimensional spaces.

A sketch of this procedure using particle filter based
on the sequential importance sampling algorithm with NP

particles and weights (w(i), i = 1, ..., NP ) is shown below.

Input : Image zt, Human motion model e.g.(10)
and prior point estimates
(w(i)

t−1, x
(i)
t−1, y

(i)
t−1)|Z0..t−1, i = 1, ..., NP .

Output: Current intrinsic state estimates
(w(i)

t , x
(i)
t )|Z0..t, i = 1, ..., NP

1) Draw the initial estimates x
(i)
t ∼ p(xt|x(i)

t−1, θx).
2) Find optimal estimates x

(i)
t using nonlinear

optimization in (14).
3) Find point weights
w

(i)
t ∼ P (x(i)

t |x(i)
t−1, θx)P (z(i)

t |x(i)
t , θz).

Algorithm 1: Particle filter in human motion tracking.

Finally, because the mapping from X to Y is a GP function,
we can easily compute the distribution of poses yt for each
particle x

(i)
t by using the well known result from GP

theory: P (yt|x(i)
t ) ∼ N (µ(i), σ(i)2I).

µ(i) = µY + Y T Kyx(X,X)−1Kyx(X,x
(i)
t ) (15)

σ(i)2 = Kyx(x(i)
t , x

(i)
t )

−Kyx(X, x
(i)
t )T Kyx(X, X)−1Kyx(X,x

(i)
t ) (16)

where µY is the mean of training set. The distribution of
poses at time t is thus approximated by a Gaussian mixture
model. The mode of this distribution can be selected as the
final pose estimate.

4. Mixture Models for Unknown View

The image feature for the specific pose can vary accord-
ing to a camera view point and orientation of the person
with respect to the imaging plane. In a dynamic PLSA
framework, the view point factor R can be easily combined
into the generative model P (Z|X) that represents the image
formation process.

P (X, Y, Z, R|θx) = P (X|θx)P (Y |X)P (Z|X,R)P (R).
(17)

While the continuous representation of R is possible, learn-
ing such a representation from a finite set of view samples
may be infeasible in practice. As an alternative, we use a
quantized set of view points and suggest a mixture model,

P (Z|X,βz, γr) =
S∑

r=1

P (Z|X,R = r, βr
z , γr

z )P (R = r)

(18)
where S denotes the number of views. Note that all the
kernel parameters (βr

z , γr
z) can be potentially different for

different r.

4.1. Learning

Collecting enough training data for a large set of view
points can be a tedious task. Instead, by using realistic syn-
thetic data generated by 3D rendering software which al-
lows us to simulate the realistic humanoid model and render
textured images from a desired point of view, one can build
a large training set for multi-view human motion model. In
this setting one can simultaneously use all views to jointly
estimate a complete set of DPLSA parameters as well as the
latent space X . Given the pairs of the pose and the corre-
sponding image feature with view point, learning the com-

4



plete mixture models reduces to joint optimization of

P (X, Y, Z1, Z2, ..., ZS , R1, ..., RS) = P (X)P (Y |X)
∏
s

P (Zs|X,Rs = s)P (Rs = s). (19)

where S is the number of quantized views. The optimiza-
tion of X and model parameters is a straightforward gener-
alization of the method described in Sec. 3.2.

4.2. Inference and Tracking

The presence of an unknown viewing direction during
tracking necessitates its estimation in addition to that of
the latent state xt. This joint estimation of xt and R can
be accomplished by directly extending the particle tracking
method of Sec. 3.3. This approach is reminiscent of [3]
in that it maintains the multiple view-based manifolds rep-
resenting the various mappings caused from different view
points.

5. Experiments

5.1. Synthetic Data

In our first experiment we demonstrate the advantage of
our DPLSA framework on the subspace selection problem.
We also compare the predictive ability of DPLSA when es-
timating the sequence Y from the observation Z.

We generate a set of synthetic sequences using the fol-
lowing model: intrinsic motion X is generated with 2 pe-
riodic functions in the <T×2 space. The sequences are
then mapped to a higher dimensional space of Y (in <T×7)
through a mapping which is a linear combination of non-
linear features x1

2, x1, x2, x2
2. Z (in <T×3) is finally gen-

erated by mapping Y into a non-linear lower observation
space in a similar manner. Examples of the three sequences
are depicted in Fig. 2. This model is reminiscent of the
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Figure 2. A example of synthetic sequences.
Left: X in the intrinsic subspace. Middle: Y
generated from X Right: Z generated from Y .
See text for detail.

generative process that may reasonably model the mapping
from intrinsic human motion to image appearance/features.

We apply three different motion modeling approaches to
model the relationship between the intrinsic motion X , the
3D ”pose” space Y and the ”image feature” space Z. The
first method (Model 1) is the manifold mapping of [3] which
learns the embedding space using LLE or Isomap based
on the observation Z and optimizes the mapping between
X and Y using Generalized RBF interpolation. The sec-
ond approach (Model 2) is the human motion modeling us-
ing Marginal Nonlinear Dynamic System (MNDS) [12], a
model that attempts to closely approximate the data genera-
tion process. Model 3 is our proposed DPLSA approach de-
scribed in Sec. 3.1. During the learning process, initial em-
bedding is estimated using probabilistic PCA. Initial kernel
hyperparameter values were typically set to 1, except for the
dynamic models were the variances were initially assigned
values of 0.01.

We evaluate predictive accuracy of models in inferring
Y from Z. We generate 25 sequences using the procedure
described above. We generate the testing Z by adding white
noise to the training sequence and infer Y from this Z. Ta-
ble 1 shows individual mean square error (MSE) rates of
predicting all 7 dimensions in Y . All values are normalized
with respect to the total variance in the true Y . The results
demonstrate that the DPLSA model outperforms both the
LLE-based model as well as the MNDS. We attribute the
somewhat surprising result when compared to Model 2 to
the sensitivity of this model to estimates of the initial pa-
rameters of Z → Y mapping. This problem can be miti-
gated by careful manual selection of the initial parameters,
a typically burdensome task. However, another crucial ad-
vantage of our DPLSA model over Model 2 is the compu-
tational cost in inferring Y . For instance, the mean number
of iterations of scaled CG optimization is 72.09 for Model
3 and 431.82 for Model 2. This advantage will be further
exemplified in the next set of experiment.

5.2. Synthetic Human Motion Data

5.2.1. Single view point. In a controlled study we con-
ducted experiments using a database of motion capture data
for a 59 d.o.f body model from the CMU Graphics Lab Mo-
tion Capture Database [6] and synthetic video sequences.
We used 5 walking sequences from 3 different subjects and
4 running sequences from 2 different subjects. The mod-
els were trained and tested on different subjects to empha-
size the robustness of the approach to changes in the mo-
tion style. Initial model values, prior to learning updates,
were set in the manner described in Sec. 5.1. We exclude 6
joint angles that exhibit very small variances but very noisy
(e.g.clavicle and finger). The human figure images are ren-
dered on Maya using the software generously provided by
the authors of [20, 21]. Following this, we extract the sil-
houette images to compute the 10-dimensional Alt moment
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Table 1. MSE rates of predicting Y from Z.
Model ēy1 ēy2 ēy3 ēy4 ēy5 ēy6 ēy7

∑
ēyi

LLE+GRBF 0.06 0.14 0.08 0.06 0.27 0.16 0.04 0.81
MNDS 0.02 0.06 0.06 0.06 0.13 0.10 0.04 0.47
DPLSA 0.03 0.06 0.03 0.03 0.10 0.08 0.02 0.34

image features as in [22]. Also 3D latent space is employed
for all motion tracking experiments. Fig. 3 depicts the log
precisions of P (Y |X) and P (Z|X) on the 2D projection
of latent space learned from 1 cycle of walking sequence.
Note that the precisions around the embedded X are dif-
ferent in the two spaces even though the X is commonly
shared by both GPLVM models. To evaluate our DPLSA
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Figure 3. Latent spaces with the grayscale
map of log precisions. Left: P (Y |X). Right:
P (Z|X).

model in human motion tracking, we again compare it to
the MNDS model in [12] that utilizes the direct mapping
between the poses and the image features. The models are
learned from one specific motion sequence and tested on
different sequences. Fig. 4 shows the mean error in the
3D joint position estimation and the number of iterations
in SCG per frame during the tracking. We use the error
metric similar to the one in [17]. The error between esti-
mated pose Ŷ and the ground truth pose Y from motion
capture is E(Y, Ŷ ) =

∑J
j=1 ‖ ŷj − yj ‖ /J where yj is the

3D location of specific joint and J is the number of joints
considered in the error matric. We choose 9 joints which
have a wide motion range (e.g.throx and right & left wrist,
humerus, femur and tibia). The height of human figure in
this virtual space is 28 and the error unit can be relatively
computed (e.g.when the height of man is 175cm, the error
unit is 175/28 ≈ 6.25cm). When the model was learned
from 1 walking sequence and tested on 4 other sequences,
the average error was 1.91 for MNDS tracking and 1.85
for DPLSA tracking. Results of full pose estimation for
one running sequence are depicted in Fig. 5. The models
achieve similarly a good accuracy in pose estimation. The
distinct difference between the two models, however, is ex-
hibited in the computational complexity of the learning and
inference stages as shown in Fig. 4. The DPLSA model, on

average, requires 1/5 of the iterations to achieve the same
level of accuracy as the competing model. This can be ex-
plained by the presence of complex direct interaction be-
tween high dimensional features and pose states in the com-
peting model. In DPLSA such interactions summarized via
the low dimensional subspace. As a result, DPLSA repre-
sentation can lead to potentially more suitable algorithm for
real-time tracking.
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Figure 4. Tracking performance comparison.
Left: pose estimation accuracy. Right: mean
number of iterations of SCG.

Figure 5. Input silhouettes and 3D reconstructions from a
known viewpoint of π

2
. First row: true poses. Second rows:

silhouette images. Third row: estimated poses.

5.2.2. Multiple view points. We used one person se-
quence to learn the mixture models of the 8 different views
(view angles = π

4 i, i = 1, 2, . . . , 8 in clockwise direction,
0 for frontal view) and human motion model. We made
testing sequences by picking different motion capture se-
quences and rendering the images from 8 view points. Fig. 6
shows the one example of 3D tracking results from 2 differ-
ent view points. In the experiment the view point of input
images are unknown and inferred frame by frame during
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tracking with pose estimation. Although the pose estima-
tion for some ambiguous silhouette is erroneous, our system
can track the pose until the end of sequence with the proper
view point estimation and 3D reconstructions are matched
well to the true poses. Notice that the last two rows depict
poses viewed from 3π/4, i.e.the subject walking in the di-
rection of the top left corner.

5.3. Real Video Sequence

We applied our method to tracking of real monocular im-
age sequences with fixed view point. We used the sideview
sequences from CMU Mobo database [7]. DPLSA model
was trained on walking sequences from the Mocap data and
tested on the motion sequences from the Mobo set. Fig. 7
shows two example sequences of our tracking result. The
lengths of the testing sequence are 300 and 340 frames. Al-
though the frame rates and the walking style are different
and there exists noise in the silhouette images, the recon-
structed pose sequence depicts a plausible walking motion
that agrees with the observed images.

6. Conclusions

We have reformulated the shared latent space approach
for learning models from sequential dyadic data. The re-
formulated generative statistical model is called the Dy-
namic Probabilistic Latent Semantic Analysis (DPLSA),
which extends the successful PLSA formalism to a contin-
uous state estimation problem of mapping sequences of hu-
man figure appearances in images to estimates of the 3D fig-
ure pose. Our preliminary results indicate that the DPLSA
formalism can result in highly accurate trackers that ex-
hibit fractional computational cost of the traditional sub-
space tracking methods. Moreover, the method is easily
amenable to extensions to unknown or multi-view camera
tracking tasks.

The proposed model has the potential to handle com-
plex classes of tracking problems, such as the challeng-
ing rapidly changing motions, when coupled with multiple
model frameworks such as the switching dynamic models.
Our future work will address these new directions as well
as focus on continuing extensive evaluation of DPLSA on
additional motion datasets.
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Figure 6. Input images with unknown view point and 3D reconstructions using DPLSA tracking. First row: true pose. Second
and third rows: π

4
view angle. Fourth and fifth rows: 3π

4
view angle.

Figure 7. First: Input real walking images of subject 22. Second row: Image silhouettes. Third row: Images of the reconstructed
3D poses. Fourth row: Input real walking images of subject 15. Fifth row: Images of the reconstructed 3D poses.
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