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ABSTRACT

In this paper we study the role of dynamics in dimensionalityreduction problems applied to se-
quences. We propose a new family ofmarginal auto-regressive(MAR) models that describe the
space of all stable auto-regressive sequences, regardlessof their specific dynamics. We apply the
MAR class of models as sequence priors in probabilistic sequence subspace embedding problems.
In particular, we consider a Gaussian process latent variable approach to dimensionality reduction
and show that the use of MAR priors may lead to better estimates of sequence subspaces than the
ones obtained by traditional non-sequential priors. We then propose a learning method for estimat-
ing nonlinear dynamic system (NDS) models that utilizes thenew MAR priors. The utility of the
proposed methods is demonstrated on several synthetic datasets as well as on the task of tracking
3D articulated figures in monocular image sequences.



1 Introduction

Dimensionality reduction / subspace embedding methods such as Principal Components Analysis
(PCA), Multidimensional Scaling (MDS), Gaussian Process Latent Variable Models (GPLVM) [9]
and others, play an important role in many data modeling tasks by selecting and inferring those
features that lead to an intrinsic representation of the data. As such, they have attracted significant
attention in computer vision where they have been used to represent intrinsic spaces of shape,
appearance, and motion. However, it is common that subspaceprojection methods applied in
different contexts do not leverage inherent properties of those contexts. For instance, subspace
projection methods used in human figure tracking [4, 12, 16, 17] often do not fully exploit the
dynamic nature of the data. As a result, the selected subspaces sometimes do not exhibit temporal
smoothness or periodic characteristics of the motion they model. Even if the dynamics are used,
the methods employed are sometimes not theoretically soundand are disjoint from the subspace
selection phase.

In this paper we present a new approach to subspace embeddingof sequential data that ex-
plicitly accounts for their dynamic nature. We first model the space of sequences using a novel
Marginal Auto-Regressive (MAR) formalism. A MAR model describes the space of sequences
generated from all possible AR models. In the limit case MAR describes allstableAR models. As
such, the MAR model is weakly-parametric and can be used as a prior for an arbitrary sequence,
without knowing the typical AR parameters such as the state transition matrix. The embedding
model is then defined using a probabilistic Gaussian ProcessLatent Variable (GPLVM) frame-
work [9] with MAR as its prior. A GPLVM framework is particularly well suited for this task
because of its probabilistic generative interpretation. The new hybrid GPLVM and MAR frame-
work results in a general model of the space of allnonlinear dynamic systems(NDS). Because of
this it has the potential to theoretically soundly model nonlinear embeddings of a large family of
sequences.

The paper is organized as follows. We first define the family ofMAR models and study some
properties of the space of sequences modeled by MAR. Next, weshow that MAR and GPLVM
result in a model of the space of all NDS sequences and discussits properties. The utility of
the new framework is examined through a set of experiments with synthetic and real data. In
particular, we apply the new framework to modeling and tracking of the 3D human figure motion
from a sequence of monocular images.

2 Marginal Auto-Regressive Model

2.1 Definition

Consider sequenceX of lengthT of N-dimensional real-valued vectorsxt = [xt,0xt,1...xt,N−1] ∈
ℜ1×N . Suppose sequenceX is generated by the 1st order AR modelAR(A):

xt = xt−1A + wt, t = 0, ..., T − 1, (1)
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whereA is a specificN × N state transition matrix andwt is a white iid Gaussian noise with unit
precision,wt ∼ N (0, I). Assume that, without loss of generality, the initial condition x−1 has
normal multivariate distribution with zero mean and unit precisionαi: x−1 ∼ N(0, α−1

i I).
We adopt a convenient representation of sequenceX as aT × N matrix X = [x′

0x
′

1...x
′

T−1]
′

whose rows are the vector samples from the sequence. Using this notation (1) can be written as

X = X∆A + W, (2)

whereW = [w′

0w
′

1...w
′

T−1]
′ andX∆ is a shifted/delayedversion ofX, X∆ = [x′

−1x
′

0...x
′

T−2]
′ .

Given the state transition matrixA and the initial condition, the AR sequence samples have the
joint density function

P (X|A, x−1) = (2π)NT/2

exp

{

−
1

2
tr {(X − X∆A)(X − X∆A)′}

}

. (3)

The density in (3) describes the distribution of samples in aT -long sequence for a particular
instance of the state transition matrixA. However, we are interested in the distribution of all
AR sequences, regardless of the value ofA. In other words, we are interested in the marginal
distribution of AR sequences, over all possible parametersA.

Assume that all elementsaij of A are iid Gaussian with zero mean and precisionα, aij ∼
N (0, α−1). Under this assumption, one can show that themarginaldistribution of the AR model
becomes

P (X|x−1, α) =

∫

A

P (X|A, x−1)P (A|α)dA =

(2π)NT/2|Kxx(X, X)|−1exp

{

1

2
tr{Kxx(X, X)−1XX ′}

}

(4)

where
Kxx(X, X) = X∆X ′

∆ + α−1I. (5)

We call this density theMarginal ARor MAR density. α is the hyperparameter of this class of
models,MAR(α). Intuitively, (4) favors those samples inX that do not change significantly from
t to t + 1 andt − 1.

MAR density models the distribution of all (AR) sequences oflengthT in the spaceX =
ℜT×N . Note that while the error process of an AR model has Gaussiandistribution, the MAR
density is not Gaussian. We illustrate this in Fig.1. The figure shows pdf values for four differ-
ent densities: MAR, periodic MAR (see Sec.2.2), AR(2),and a circular Gaussian, in the space
of length-2 scalar-valued sequences[x0x1]

′. In all four cases we assume zero-mean , unit preci-
sion Gaussian distribution of the initial condition. All models have the mode at(0, 0). However,
the variance of the AR model is elliptical, with axes determined by the state transition matrixA.
The MAR models define non-Gaussian distributions with no circular symmetry and with direc-
tional bias. This property of MAR densities is important when viewed in the context of sequence
subspace embeddings, which we discuss in Sec.3.
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Figure 1: Distribution of length-2 sequences of 1D samples under MAR, periodic MAR, AR, and
independent Gaussian models.

2.2 Higher-Order Dynamics

The above definition of MAR models can be easily extended to families of arbitraryD-th order AR
sequences. In that case the state matrixA is replaced by anND×N matrixA = [A′

1A
′

2...A
′

D]′ and
X∆ by [X∆X1∆...XD∆]. Hence, aMAR(α, D) model describes a general space of allD-th order
AR sequences. Using this formulation one can also model specific classes of dynamic models. For
instance, a class of all periodic models can be formed by setting A = [A′

1 − I]′, whereI is an
identity matrix.

2.3 Nonlinear Dynamics

In (1) and (4) we assumed linear families of dynamic systems. One can generalize this approach
to nonlinear dynamics of the formxt = g(xt−1|ζ)A, whereg(·|ζ) is a nonlinear mapping to an
L-dimensional subspace andA is aL × N linear mapping. In that caseKxx becomes a nonlinear
kernel using justification similar to e.g. [9]. While nonlinear kernels often have potential benefits,
such as robustness, they also preclude closed-form solutions of linear models. In our preliminary
experiment we have not observed significant differences between MAR and nonlinear MAR.

2.4 Justification of MAR Models

The choice of the prior distribution of AR model’s state transition matrix leads to the MAR density
in (4). One may wonder, however, if the choice of iidN (0, α−1) results in a physically meaningful
space of sequences. We suggest that, indeed, such choice maybe justified.

Namely, Girko’s circular law [5] states that if1
N

A is a randomN × N matrix withN (0, 1) iid
entries, then in the limit case of largeN (¿20) all real and complex eigenvalues ofA areuniformly
distributed on the unit disk. For smallN , the distribution shows a concentration along the real line.
Consequently, the resulting space of sequences described by the MAR model is that ofall stable
AR systems.
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3 Nonlinear Dynamic System Models

In this section we develop a Nonlinear Dynamic System view ofthe sequence subspace recon-
struction problem that relies on the MAR representation of the previous section. In particular, we
use the MAR model to describe the structure of the subspace ofsequences to which the extrinsic
representation will be mapped using a Gaussian Process latent variable model of [9].

3.1 Definition

Let Y be an extrinsic or measurement sequence of durationT of M-dimensional samples. Define
Y as theT × M matrix representation of this sequence, similar to the definition in Sec.2, Y =
[y′

0y
′

1...y
′

T−1]
′. We assume thatY is a result of the processX in a lower-dimensional MAR subspace

X , defined by a nonlinear generative or forward mapping

Y = f(X|θ)C + V. (6)

f(·) is a nonlinearℜM → ℜL mapping,C is a linearL × N mapping, andV is a zero-mean unit
variance Gaussian noise.

To recover the intrinsic sequenceX in the embedded space from sequenceY it is convenient
not to focus, at first, on the recovery of the specific mappingC. Hence, we consider the family of
mappings whereC is a stochastic matrix whose elements are iidcij ∼ N (0, β−1). Marginalizing
over all possible mappingsC yields a marginal Gaussian Process [19] mapping:

P (Y |X, β, θ) =

∫

C

P (Y |X, C, θ)P (C|β)dC

= (2π)NT/2|Kyx(X, X)|−1exp

{

1

2
tr{Kyx(X, X)−1Y Y ′}

}

(7)

where
Kyx(X, X) = f(X|θ)f(X|θ)′ + β−1I. (8)

Notice that in this formulation theX → Y mapping depends on the inner product〈f(X), f(X)〉.
The knowledge on the actual mappingf is not necessary; a mapping is uniquely defined by spec-
ifying a positive-definite kernelKyx(X, X|θ) with entriesKyx(i, j) = k(xi, xj) parameterized by
the hyperparameterθ. A variety of linear and non-linear kernels (RBF, square exponential, various
robust kernels) can be used asKyx. Hence, our likelihood model is a nonlinear Gaussian process
model,as suggested by [9].

In this manner we have constructed a marginal Nonlinear Linear Dynamic System (MNDS)
model that describes the joint distribution of all measurement and all intrinsic sequences in aY×X
space:

P (X, Y |α, β, θ) = P (X|α)P (Y |X, β, θ). (9)

The MNDS model has a MAR priorP (X|α), and a Gaussian process likelihoodP (Y |X, β, θ).
Thus it places the intrinsic sequencesX in the space of all AR sequences. Given an intrinsic
sequenceX, the measurement sequenceY is zero-mean normally distributed with the variance
determined by the nonlinear kernelKyx andX.
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3.2 Inference

Given a sequence of measurementsY one would like to infer its subspace representationX in
the MAR space, without needing to first determine a particular family of AR modelsAR(A),
nor the mappingC. (9) shows that this task can be, in principle, achieved using the Bayes rule
P (X|Y, α, β, θ) ∼ P (X|α)P (Y |X, β, θ).

However, this posterior is non-Gaussian because of the nonlinear mappingf and the MAR
prior. One can instead attempt to estimate the modeX∗

X∗ = arg max
X

{log P (X|α) + log P (Y |X, β, θ)} (10)

using nonlinear optimization such as the Scaled Conjugate Gradient in [9].
To effectively use a gradient-based approach, one needs to obtain expressions for gradients of

the log-likelihood and the log-MAR prior. Note that the expressions for MAR gradients are more
complex than those of e.g. GP due to a linear dependency betweenX andX∆.

3.3 Learning

MNDS space of sequences is parameterized using a set of hyperparameters(α, β, θ) and the choice
of the nonlinear kernelKyx. Given a set of sequences{Y (i)}, i = 1, .., S the learning task can be
formulated as the ML/MAP estimation problem

(α∗, β∗, θ∗)|Kyx
= arg max

α,β,θ

S
∏

i=1

P (Y (i)|α, β, θ). (11)

One can use a generalized EM algorithm to obtained the ML parameter estimates recursively from

two fixed-point equations:

E-step:
X(i)∗ = arg maxX P (Y, X(i)|α∗, β∗, θ∗)
M-step:
(α∗, β∗, θ∗) = arg max(β,α,θ)

∏K
i=1 P (Y (i), X(i)∗|α, β, θ)

3.4 Learning of Explicit NDS Model

Inference and learning in MNDS models result in the embedding of the measurement sequenceY

into the space of all NDS/AR models. GivenY , the embedded sequencesX estimated in Sec.3.3
and MNDS parametersβ, α, θ, the explicit AR model can be easily reconstructed using theML
estimation on sequenceX, e.g. :

A∗ = (X ′

∆X∆)−1X ′

∆X. (12)

Because the embedding was defined as a GP, the likelihood function P (yt|xt, β, θ) follows a well-
known result from GP theory

yt|xt ∼ N (µ, σ2I)

µ = Y ′Kyx(X, X)−1Kyx(X, xt)

σ2 = Kyx(xt, xt) − Kyx(X, xt)
′Kyx(X, X)−1Kyx(X, xt).
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The two components fully define the explicit NDS.
In summary, a complete sequence modeling algorithm consistof the following set of steps:

Input : Measurement sequenceY and kernel familyKyx

Output : NDS(A, β, θ)

1) Learn subspace embeddingMNDS(α, β, θ) model of training sequencesY , Sec.3.3.
2) Learn explicit subspace and projection modelNDS(A, β, θ) of Y , Sec.3.4.

Algorithm 1: NDS learning.

3.5 Inference in Explicit NDS Model

The choice of the nonlinear kernelKyx results in a nonlinear dynamic system model of training
sequencesY . The learned model can then be used to infer subspace projections of a new sequence
from the same family. Because of the nonlinearity of the embedding, one cannot apply the linear
forward-backward or Kalman filtering/smoothing inference. Rather, it is necessary to use nonlinear
inference methods such as (I)EKF or particle filtering/smoothing.

It is interesting to note that one can often use a relatively simple sequential nonlinear optimiza-
tion in place of the above two inference methods:

x∗

t = arg max
xt

P (yt|xt, β
∗, θ∗)P (xt|x

∗

t−1, A
∗). (13)

Such sequential optimization yields local modes of the trueposteriorP (X|Y ). While one would
expect such approximation to be valid in situations with fewambiguities in the measurement space
and models learned from representative training data, our experiments show the method to be
robust across a set of situations. However, dynamics seem toplay a crucial role in the inference
process.

3.6 Example

We illustrate the concept of MNDS on a simple synthetic example. Consider the AR modelAR(2)
from Sec.2. SequenceX generated by the model is projected to the spaceY = ℜ2×3 using a linear
conditional Gaussian modelN (XC, I). Fig. 2 shows negative likelihood over the spaceX of
the MNDS, a marginal model (GP) with independent Gaussian priors, a GP with the exactAR(2)
prior, and a full LDS with exact parameters. All likelihoodsare computed for the fixedY . Note
that the GP with Gaussian prior assumes no temporal structure in the data. This example shows
that, as expected, the optimal subspace estimates of the MNDS model fall closer to the “true” LDS
estimates than those of the the non-sequential model. This property holds in general. Fig.3 shows
the distribution of optimal negative log likelihood scores, computed at correspondingX∗, of the
four models over a 10000 sample ofY sequences generated from the true LDS model. Again,
one notices that MNDS has a lower mean and mode than the non-sequential model, GP+Gauss,
indicating MNDS’s better fit to the data. This suggests that MNDS may result in better subspace
embeddings than the traditional GP model with independent Gaussian priors.
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Figure 2: Negative log-likelihood of length-2 sequences of1D samples under MNDS, GP with
independent Gaussian priors, GP with exact AR prior and LDS with the true process parameters.
“o” mark represents the optimal estimateX∗ inferred from the true LDS model. “o” shows optimal
estimates derived using the three marginal models.
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Figure 3: Histogram of optimal negative log-likelihood scores for MNDS, a model with a Gaussian
prior, and the LDS with the true parameters.
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4 Human Motion Modeling using MNDS

In this section we consider an application of MNDS to modeling of the human motion from se-
quences of video images. Specifically, we assume that one wants to recover two important aspects
of human motion: (1) 3D posture of the human figure in each image and (2) an intrinsic represen-
tation of the motion.

We propose the following model in this context. Given a sequence of featureszt computed
from monocular images (such as the silhouette-based alt moments, orientation histograms etc. ),
the mapping into the 3D pose space represented by joint angles yt is given by a Gaussian process
modelP (Y |Z, θyz) with a parametric kernelKyz(zt, zt|θyz). An NDS is used to model the space
Y × X of poses and intrinsic motionsP (X, Y |A, β, θyx).

The jointconditionalmodel of the pose sequenceY and intrinsic motionX, given the sequence
of image featuresZ is approximated by

P (X, Y |Z, A, β, θyz, θyx) ≈ P (Y |Z, θyz)P (X, Y |A, β, θyx). (14)

The reason for this approximation is practical—modelingP (Y |Z) rather thanP (Z|Y ) yielded
better results and allowed a fully GP-based framework.

4.1 Learning

In the training phase, both the image featuresZ and the corresponding posesY are known. Hence,
the learning of GP and NDS models becomes decoupled and can beaccomplished using the NDS
learning formalism presented in the previous section and a standard GP learning approach [19].

Input : Image sequenceZ and joint angle sequenceY
Output : Human motion model.

1) Learn Gaussian Process modelP (Y |Z, θyz) using e.g. [19].
2) Learn NDS modelP (X, Y |A, β, θyx) as described in Sec.3.

Algorithm 2: Human motion model learning.

4.2 Inference and Tracking

Once the models are learned they can be used for tracking of the human figure in video. Be-
cause both NDS and GP are nonlinear mappings, estimating current pose (distribution)yt given a
previous pose and intrinsic motion space estimatesP (xt−1, yt−1|Z0..t) will involve nonlinear opti-
mization or linearizion, as suggested in Sec.3.5. In particular, optimal point estimatesx∗

t andy∗

t

are the result of the following nonlinear optimization problem:

(x∗

t , y
∗

t ) = arg max
xt,yt

P (xt|xt−1, A)P (yt|xt, β, θyx)P (yt|zt, θyz). (15)

The point estimation approach is particularly suited for a particle-based tracker. Unlike some
traditional approaches that only consider the pose space representation, tracking in the low di-
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mensional intrinsic space has the potential to avoid problems associated with sampling in high-
dimensional spaces.

A sketch of the human motion tracking algorithm is shown below.

Input : Imagezt, prior point estimates(w(i)
t−1, x

(i)
t−1, y

(i)
t−1)|Z0..t−1, i = 1, ..., S and Human

motion model (GP +NDS).

Output : Current pose/intrinsic state estimates(w
(i)
t , x

(i)
t , y

(i)
t )|Z0..t

1) Choose the initialize estimatesx(i)
t , y

(i)
t among the training data(X, Y, Z) using nearest

neighbor matching inZ space.
2) Find optimal estimates(x(i)

t , y
(i)
t ) using nonlinear optimization in (15).

3) Find point weightsw(i)
t ∼ P (x

(i)
t |xt−1, A)P (y

(i)
t |x(i)

t , β, θyx)P (y
(i)
t |zt, θyz).

Algorithm 3: Human motion tracking.

We apply this algorithm to a set of tracking problems described in Sec.6.2.

5 Related Work

Manifold learning approaches to motion modeling have attracted significant interest in the last
several years. Brand proposed nonlinear manifold learningthat maps sequences of the input to
paths of the learned manifold [3]. Rosales and Sclaroff [10] proposed the Specialized Mapping
Architecture (SMA) that utilizes forward mapping for the pose estimation task. Agarwal and
Triggs [1] directly learned a mapping from image measurement to 3D pose using Relevance Vector
Machine (RVM).

However, it is often advantageous to consider a subspace of e.g. the joint angles space that
contains a compact representation of the actual figure motion. Non-linear manifold embedding of
the training data in low dimensional spaces using isometricfeature mapping (Isomap), Local linear
(LLE) and spectral embedding [15, 11, 2, 18], have shown success in recent approaches [4, 12].
While these techniques provide point-based embeddings implicitly modeling the nonlinear mani-
fold through exemplars, they lack a fully probabilistic interpretation of the embedding process.

The GPLVM, a Gaussian Processes [19] model, produces a continuous mapping between the
latent space and the high dimensional data in a probabilistic manner [9]. Grochow et al. [6] use
a SGPLVM to model inverse kinematics for interactive computer animation. Tian et al. [16] use
a GPLVM to estimate the 2D upper body pose from the 2D silhouette features. More recently,
Urtasun et al. [17] exploit the SGPLVM for 3D people tracking. However these approaches
utilize simple temporal constraints in the pose space that often introduce “dimensionality curse”
to nonlinear tracking methods such as particle filters. Moreover, such methods fail to explicitly
consider motion dynamics during the embedding process. Ourwork addresses both of these issues
through the use of MNLDS models.
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6 Experiments

6.1 Synthetic Data

In our first experiment we examine the utility of MAR priors ina subspace selection problem. A
2nd order AR model is used to generate sequences in aℜT×2 space; the sequences are then mapped
to a higher dimensional nonlinear measurement space.

xt = A1xt−1 + A2xt−2 + wt

yt,1 = xt,1 cos(xt,1) + vt,1

yt,1 = xt,1 sin(xt,1) + vt,2

yt,3 = xt,2 + vt,3.

An example of the measurement sequence, a periodic curve on the Swiss-roll surface, is depicted
in Fig. 4.
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Figure 4: A periodic sequence in the intrinsic subspace and the measured sequence on the Swiss-
roll surface.

We apply two different methods to recover the intrinsic sequence subspace: MNDS with an
RBF kernel and a GPLVM with the same kernel and independent Gaussian priors. Estimated
embedded sequences are shown in Fig.5. The intrinsic motion sequence inferred by the MNDS
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Figure 5: Recovered embedded sequences:MNDS and GPLVM withiid Gaussian priors.

model more closely resembles the “true” sequence in Fig.4. Note that one dimension (blue/dark) is
reflected about the horizontal axis, because the embeddingsare unique up to an arbitrary rotation.
These results confirm that proper dynamic priors may have crucial role in learning of embedded
sequence subspaces. We study the role of dynamics in tracking in the following section.
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6.2 Human Motion Data

We conducted experiments using a database of motion capturedata for a 59 d.o.f body model from
CMU Graphics Lab Motion Capture Database [7]. Similar to [1, 16] we utilize synthetic images as
our training data. Our database consists of seven walking sequences of around 2000 frames total.
The data was generated using the software (3D model and Maya binaries) generously provided
by the authors of [14, 13]. We train our GP and NDS models with one sequence of 250 frames
and test on the remaining sequences. In our experiments, we exclude 15 joint angles that exhibit
small movement during walking (e.g. clavicle and fingers joint) and use the remaining 44 joints.
Our choice of image features are the silhouette-based Alt moments used in [16, 10]. The scale and
translational invariance of Alt moments makes them suitable to a motion modeling task with little
or no image-plane rotation.

A portion of the learned latent space is presented in Fig.6 with a few corresponding silhouette
images.

Figure 6: The learned 2-D latent space with of one walking sequence.

In the model learning phase we utilize the approach proposedin Sec.3. Once the model
is learned, we apply the tracking/inference approach in Sec. 4 to infer motion states and poses
from sequences of silhouette images. Fig.7 depicts a sequence of estimated poses. The initial
estimates for gradient search are determined by the nearestneighborhood matching in the Alt
moments space alone. To evaluate our MNDS model, we estimatethe same input sequence with
the original GPLVM tracking in [16]. Although the silhouette features are informative for human
pose estimation, they are also prone to ambiguities such as the left/right side changes. Without
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proper dynamics modeling, the original GPLVM fails to estimate the correct poses because of this
ambiguity.

Figure 7: First row: Input image silhouettes. Remaining rows show reconstructed poses. Second row—
GPLVM model. Third row—MNDS model.

The accuracy of our tracking method is evaluated using the mean RMS error between the true
and the estimated joint angles [1], D(y, y′) = 1

44

∑44
i=1 |(yi − y′

i)mod ± 180o|. Fig. 8 displays the
mean RMS errors over the 44 joint angles, estimated using three different models. The testing
sequence consists of 320 frames. The mean error for MNDS model is in range3o ∼ 6o. The inver-
sion of right and left legs causes significant errors in the original GPLVM model. Introduction of
simple dynamics in the pose space similar to [17] was not sufficient to rectify the “static” GPLVM
problem.
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Figure 8:Mean angular pose RMS errors. Left: MNDS model. Middle: original GPLVM model. Right:
simple dynamics in the pose space.
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Fig. 9 shows examples of trajectories in the embedded space corresponding to the pose esti-
mates. The points inferred from our MNDS model follow the path that is defined by the MAR
model, making them temporally consistent. The other two methods produced less-than-smooth
embeddings.
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Figure 9:Left: 2D latent space estimates using MNDS. Middle: latent space estimates using the original
GPLVM. Right: latent space estimates with simple dynamics in the pose space.

We applied the algorithm to tracking of various real monocular image sequences of the human
motion. The data used in these experiments was the sideview sequence in CMU mobo database
made publicly available under the HumanID project [8]. Fig. 10 shows one example of our track-
ing result. This testing sequence consists of 340 frames. Because a slight mismatch in motion
dynamics between the training and the test sequences, reconstructed poses are not geometrically
perfect. However the overall result sequence depicts a plausible walking motion that agrees with
the observed images.

It is also interesting to note that in a number of tracking experiments it was sufficient to carry a
very small number of particles (∼ 1) in the point-based tracker of Alg.3. In most cases all particles
clustered in a small portion of the motion subspaceX , even in ambiguous situations induced by
silhouette-based features. This indicates that the presence of dynamics had an important role in
disambiguating statically similar poses.

7 Conclusions

We proposed a novel method for embedding of sequences into subspaces of dynamic models. In
particular, we propose a family of marginal AR (MAR) subspaces that describe all stable AR
models. We show that a generative nonlinear dynamic system (NDS) can then be learned from
a hybrid of Gaussian (latent) process models and MAR priors,a marginal NDS (MNDS). As
a consequence, learning of NDS models and state estimation/tracking can be formulated in this
new context. Several synthetic examples demonstrate the potential utility of the NDS framework
and display its advantages over traditional static methodsin dynamic domains. We also test the
proposed approach on the problem of the 3D human figure tracking in sequences of monocular
images. Our preliminary results indicate that dynamicallyconstructed embeddings using NDS
can resolve ambiguities during tracking that may plague static as well as less principled dynamic
approaches.
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Figure 10:First row: Input real walking images. Second row: Image silhouettes achieved by background
subtraction. Third row: Side view of the reconstructed pose. Forth row: Front view of the reconstructed
pose.
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In our future work we plan to extend the set of evaluations andgather more insight into the-
oretical and computational properties of MNDS with linear and nonlinear MARs. In particular,
our on-going experiments address the posterior multimodality in the embedded spaces, an issue
relevant to point-based trackers. We also plan to extend theNDS formalism to collections of dy-
namic models using the switching dynamics approaches as a way of modeling a general and diverse
family of temporal processes.

8 Appendix: MAR Gradient

Log likelihood of MAR model is, using (4) and leaving out the constant term,

L =
N

2
log |Kxx| +

1

2
tr

{

K−1
xx XX ′

}

(16)

with Kxx = Kxx(X, X) defined in (5). Gradient ofL with respect toX is

∂L

∂X
=

∂X∆

∂X

∂L

∂Kxx

∂Kxx

∂X∆

+
∂L

∂X

∣

∣

∣

∣

X∆

. (17)

X∆ can be written as a linear operator onX,

X∆ = ∆ · X, ∆ =

[

0(T−1)×1 I(T−1)×(T−1)

0 01×(T−1)

]

, (18)

where0 andI denote zero vectors and identity matrices of sizes specifiedin the subscripts. It is
now easily follows that

∂L

∂X
= ∆′

(

NK−1
xx − K−1

xx XX ′K−1
xx

)

∆ · X + K−1
xx X. (19)
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