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ABSTRACT

In this paper we study the role of dynamics in dimensionaktyuction problems applied to se-
guences. We propose a new familyrofrginal auto-regressiveMAR) models that describe the
space of all stable auto-regressive sequences, regaadltssr specific dynamics. We apply the
MAR class of models as sequence priors in probabilistic segel subspace embedding problems.
In particular, we consider a Gaussian process latent Marggiproach to dimensionality reduction
and show that the use of MAR priors may lead to better estisnafteequence subspaces than the
ones obtained by traditional non-sequential priors. Wa fitepose a learning method for estimat-
ing nonlinear dynamic system (NDS) models that utilizesrtee MAR priors. The utility of the
proposed methods is demonstrated on several synthetisatisit@s well as on the task of tracking
3D articulated figures in monocular image sequences.



1 Introduction

Dimensionality reduction / subspace embedding methods asi®rincipal Components Analysis
(PCA), Multidimensional Scaling (MDS), Gaussian Proceateht Variable Models (GPLVM)]
and others, play an important role in many data modelingstéskselecting and inferring those
features that lead to an intrinsic representation of tha.das such, they have attracted significant
attention in computer vision where they have been used tesept intrinsic spaces of shape,
appearance, and motion. However, it is common that subspagection methods applied in
different contexts do not leverage inherent propertieshobé contexts. For instance, subspace
projection methods used in human figure trackirigl2, 16, 17] often do not fully exploit the
dynamic nature of the data. As a result, the selected subsacnetimes do not exhibit temporal
smoothness or periodic characteristics of the motion thegeh Even if the dynamics are used,
the methods employed are sometimes not theoretically sanddare disjoint from the subspace
selection phase.

In this paper we present a new approach to subspace embeafdseguential data that ex-
plicitly accounts for their dynamic nature. We first modet tbpace of sequences using a novel
Marginal Auto-Regressive (MAR) formalism. A MAR model debes the space of sequences
generated from all possible AR models. In the limit case MASRdibes alstableAR models. As
such, the MAR model is weakly-parametric and can be used asaf@r an arbitrary sequence,
without knowing the typical AR parameters such as the statesition matrix. The embedding
model is then defined using a probabilistic Gaussian Procatwnt Variable (GPLVM) frame-
work [9] with MAR as its prior. A GPLVM framework is particularly webkuited for this task
because of its probabilistic generative interpretatiohe fiew hybrid GPLVM and MAR frame-
work results in a general model of the space ohalhlinear dynamic systenfslDS). Because of
this it has the potential to theoretically soundly model lm@ar embeddings of a large family of
sequences.

The paper is organized as follows. We first define the familiiéfR models and study some
properties of the space of sequences modeled by MAR. Nexshee that MAR and GPLVM
result in a model of the space of all NDS sequences and distsupsoperties. The utility of
the new framework is examined through a set of experimentis gynthetic and real data. In
particular, we apply the new framework to modeling and tmnaglof the 3D human figure motion
from a sequence of monocular images.

2 Marginal Auto-Regressive Model

2.1 Definition

Consider sequenc¥ of length7" of N-dimensional real-valued vectors = [z oz 1...0¢ n-1] €
RN, Suppose sequencéis generated by the 1st order AR modeR(A):

Tt :l't_lA—F’LUt, t:O,...,T—l, (l)
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whereA is a specificV x N state transition matrix and, is a white iid Gaussian noise with unit
precision,w; ~ N(0,I). Assume that, without loss of generality, the initial cdrat »_; has
normal multivariate distribution with zero mean and uniggisiona;: z_; ~ N(0,a; '1).

We adopt a convenient representation of sequei@s al’ x N matrix X = [zgz)..2_;]
whose rows are the vector samples from the sequence. Ussgatation () can be written as

X =XAA4+W, (2)

whereW = [wyw)...w}_,]" and X is ashifted/delayedersion of X, X = [2/  xf...2% o] .
Given the state transition matrit and the initial condition, the AR sequence samples have the
joint density function

P(X|A,z_y) = (2m)NT/2
exp {—%tr (X — Xad)(X — XAA)’}} L ®)

The density in 8) describes the distribution of samples iff'dong sequence for a particular
instance of the state transition matuk However, we are interested in the distribution of all
AR sequences, regardless of the valuedof In other words, we are interested in the marginal
distribution of AR sequences, over all possible parameters

Assume that all elements; of A are iid Gaussian with zero mean and precisignz;; ~
N(0,a~1). Under this assumption, one can show thatrtieginal distribution of the AR model
becomes

P(X|z 1.0) :/AP(X|A,x_1)P(A|oz)dA:
(2m)VT2|K (X, X)|eap {%tr{Km(X, X)—lxxf}} (4)

where
K. (X, X) :XAX’A+oz‘1I. (5)

We call this density théarginal ARor MAR density. « is the hyperparameter of this class of
models,M AR(«). Intuitively, (4) favors those samples i that do not change significantly from
ttot+ 1 andt — 1.

MAR density models the distribution of all (AR) sequencedenfgth 7" in the spaceX =
RT>*N_ Note that while the error process of an AR model has Gausiigtribution, the MAR
density is not Gaussian. We illustrate this in Fig.The figure shows pdf values for four differ-
ent densities: MAR, periodic MAR (see Se&t2), AR(2),and a circular Gaussian, in the space
of length-2 scalar-valued sequendegz;|’. In all four cases we assume zero-mean , unit preci-
sion Gaussian distribution of the initial condition. All mhels have the mode &b, 0). However,
the variance of the AR model is elliptical, with axes detered by the state transition matrik
The MAR models define non-Gaussian distributions with nowar symmetry and with direc-
tional bias. This property of MAR densities is important whaewed in the context of sequence
subspace embeddings, which we discuss in $ec.



Figure 1: Distribution of length-2 sequences of 1D sampteten MAR, periodic MAR, AR, and
independent Gaussian models.

2.2 Higher-Order Dynamics

The above definition of MAR models can be easily extendednuliies of arbitraryD-th order AR
sequences. In that case the state matrix replaced by atv D x N matrix A = [A] A}...A,]" and
Xa by [XaXia...Xpa]. Hence, a\l AR(«, D) model describes a general space offaith order
AR sequences. Using this formulation one can also modeifgpelasses of dynamic models. For
instance, a class of all periodic models can be formed byngett = [A] — I]’, wherel is an
identity matrix.

2.3 Nonlinear Dynamics

In (1) and @) we assumed linear families of dynamic systems. One canrgigesthis approach
to nonlinear dynamics of the form, = ¢(x,_1|()A, whereg(-|¢) is a nonlinear mapping to an
L-dimensional subspace anddis a L x N linear mapping. In that cask,, becomes a nonlinear
kernel using justification similar to e.g9]f While nonlinear kernels often have potential benefits,
such as robustness, they also preclude closed-form sogutiblinear models. In our preliminary
experiment we have not observed significant differencesdmt MAR and nonlinear MAR.

2.4 Justification of MAR Models

The choice of the prior distribution of AR model’s state sdion matrix leads to the MAR density
in (4). One may wonder, however, if the choice of A0, a~!) results in a physically meaningful
space of sequences. We suggest that, indeed, such choideemuastified.

Namely, Girko’s circular law}] states that i%A is a randomV x N matrix with A/(0, 1) iid
entries, then in the limit case of large (¢,20) all real and complex eigenvaluesfdéreuniformly
distributed on the unit disk-or smallV, the distribution shows a concentration along the real line
Consequently, the resulting space of sequences descrjbid BMAR model is that oéll stable
AR systems
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3 Nonlinear Dynamic System Models

In this section we develop a Nonlinear Dynamic System viewhef sequence subspace recon-
struction problem that relies on the MAR representatiorhefpirevious section. In particular, we
use the MAR model to describe the structure of the subspaseqfences to which the extrinsic
representation will be mapped using a Gaussian Process \@eable model ofJ].

3.1 Definition

Let Y be an extrinsic or measurement sequence of durdtioh M/ -dimensional samples. Define
Y as theT" x M matrix representation of this sequence, similar to the dafmin Sec.2, Y =
[yoyy---vr_1)'. We assume thaf is a result of the proces’s in a lower-dimensional MAR subspace
X, defined by a nonlinear generative or forward mapping

Y = f(X]|0)C + V. (6)

f(-) is a nonlineal™ — RL mapping,C is a linearL, x N mapping, and’ is a zero-mean unit
variance Gaussian noise.

To recover the intrinsic sequencé in the embedded space from sequelici is convenient
not to focus, at first, on the recovery of the specific mapgihdience, we consider the family of
mappings wher€' is a stochastic matrix whose elements arecjjd~ N(0, 5~1). Marginalizing
over all possible mappings yields a marginal Gaussian Proce$S|[mapping:

P(Y|X,ﬁ,9):/CP(Y|X, C,0)P(C|B)dC

= 20)VT2| K (X, X)|eap {%tr{ny(X, X)—IYY’}} (7)

where
Kyo(X, X) = f(X]0)f(X]0) + 371 (8)

Notice that in this formulation th& — Y mapping depends on the inner prodyft.X ), f(X)).
The knowledge on the actual mappifigs not necessary; a mapping is uniquely defined by spec-
ifying a positive-definite kernek’,, (X, X |#) with entriesK (i, j) = k(x;, z;) parameterized by
the hyperparametér A variety of linear and non-linear kernels (RBF, squareagntial, various
robust kernels) can be used AS,. Hence, our likelihood model is a nonlinear Gaussian p®ces
model,as suggested byj[

In this manner we have constructed a marginal Nonlineardrii@/namic System (MNDS)
model that describes the joint distribution of all measwatand all intrinsic sequences ia< X
space:

P(X,Yl|a,3,0) = P(X|a)P(Y|X, 3,0). 9
The MNDS model has a MAR prioP(X|«a), and a Gaussian process likelihogdY | X, 3, 0).
Thus it places the intrinsic sequenc&sin the space of all AR sequences. Given an intrinsic
sequenceX, the measurement sequernces zero-mean normally distributed with the variance
determined by the nonlinear kerngl,, and.X.



3.2 Inference

Given a sequence of measuremeYit®ne would like to infer its subspace representationn
the MAR space, without needing to first determine a partictdenily of AR modelsAR(A),
nor the mapping”. (9) shows that this task can be, in principle, achieved usiegBayes rule
P(X|Y,«a,3,0) ~ P(X|a)P(Y|X, 3,0).

However, this posterior is non-Gaussian because of theimeanl mappingf and the MAR
prior. One can instead attempt to estimate the m&de

X* = arg max {log P(X|a) +1og P(Y|X, 3,0)} (10)

using nonlinear optimization such as the Scaled Conjugeddiént in p].

To effectively use a gradient-based approach, one needstamaxpressions for gradients of
the log-likelihood and the log-MAR prior. Note that the egpsions for MAR gradients are more
complex than those of e.g. GP due to a linear dependency eetlvand X A.

3.3 Learning

MNDS space of sequences is parameterized using a set offayperetersc, 3, ) and the choice
of the nonlinear kernek’,,. Given a set of sequencé¥?},i = 1, .., S the learning task can be
formulated as the ML/MAP estimation problem

S
(", 3%, 6%, argg}gggP(Y v, 3, 6). (11)
One can use a generalized EM algorithm to obtained the MLnpeter estimates recursively from
E-step
X@* = argmaxyx P(Y, X9 |a*, 5*,0%)

two fixed-point equatlons:M_step:

(o, 3*,60%) = arg maxg a9 Hfil PY® X0 a,3,0)

3.4 Learning of Explicit NDS Model

Inference and learning in MNDS models result in the embegldirthe measurement sequerice
into the space of all NDS/AR models. Givénh the embedded sequencEsestimated in Se@d.3
and MNDS parameters, «, 6, the explicit AR model can be easily reconstructed usingMihe
estimation on sequenck, e.g. :

A = (XA XA)TIXAX. (12)

Because the embedding was defined as a GP, the likelihootidnri®(y;|z;, 3, #) follows a well-
known result from GP theory

Yelzy ~ N (i, 0*1)
= Y,ny(Xa X)_lex(Xa xt)
0% = Koz, 24) — Ky (X, 24) Ky (X, X) T K (X, 24).
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The two components fully define the explicit NDS.
In summary, a complete sequence modeling algorithm coaosigte following set of steps:

Input  : Measurement sequenteand kernel familyx,,

Output : NDS(A, 3,0)

1) Learn subspace embeddingN DS(«, 3, 0) model of training sequencés, Sec.3.3.
2) Learn explicit subspace and projection mod@DS(A, 3,0) of Y, Sec.3.4,

Algorithm 1: NDS learning.

3.5 Inference in Explicit NDS Model

The choice of the nonlinear kernél,, results in a nonlinear dynamic system model of training
sequencey¥’. The learned model can then be used to infer subspace ponectf a new sequence
from the same family. Because of the nonlinearity of the eshdb®g, one cannot apply the linear
forward-backward or Kalman filtering/smoothing inferenBather, it is necessary to use nonlinear
inference methods such as (I)EKF or particle filtering/sthow.

It is interesting to note that one can often use a relativielpke sequential nonlinear optimiza-
tion in place of the above two inference methods:

zp = argmax P(y|z,, 37, 0) P(wi|27_y, A7). (13)

Such sequential optimization yields local modes of the posteriorP(X|Y). While one would
expect such approximation to be valid in situations with gwbiguities in the measurement space
and models learned from representative training data, sper@anents show the method to be
robust across a set of situations. However, dynamics seqaayoa crucial role in the inference
process.

3.6 Example

We illustrate the concept of MNDS on a simple synthetic exam@onsider the AR model R(2)
from Sec2. SequenceX generated by the model is projected to the space R2*? using a linear
conditional Gaussian modél (X C, I). Fig. 2 shows negative likelihood over the spateof
the MNDS, a marginal model (GP) with independent Gaussiamgra GP with the exagtR(2)
prior, and a full LDS with exact parameters. All likelihoodee computed for the fixedd. Note
that the GP with Gaussian prior assumes no temporal steigiuthe data. This example shows
that, as expected, the optimal subspace estimates of theSvhiialel fall closer to the “true” LDS
estimates than those of the the non-sequential model. Topepy holds in general. Fig shows
the distribution of optimal negative log likelihood scaresmputed at corresponding*, of the
four models over a 10000 sample Bf sequences generated from the true LDS model. Again,
one notices that MNDS has a lower mean and mode than the mpmsgal model, GP+Gauss,
indicating MNDS'’s better fit to the data. This suggests th&tM may result in better subspace
embeddings than the traditional GP model with independewisSian priors.
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Figure 2. Negative log-likelihood of length-2 sequencedDBfsamples under MNDS, GP with
independent Gaussian priors, GP with exact AR prior and LIS the true process parameters.
“0” mark represents the optimal estimaté inferred from the true LDS model. “0” shows optimal
estimates derived using the three marginal models.
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Figure 3: Histogram of optimal negative log-likelihood se®for MNDS, a model with a Gaussian
prior, and the LDS with the true parameters.
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4 Human Motion Modeling using MNDS

In this section we consider an application of MNDS to modgloh the human motion from se-
guences of video images. Specifically, we assume that ones\warecover two important aspects
of human motion: (1) 3D posture of the human figure in each evaayl (2) an intrinsic represen-
tation of the motion.

We propose the following model in this context. Given a segeeof features; computed
from monocular images (such as the silhouette-based altentsnorientation histograms etc. ),
the mapping into the 3D pose space represented by jointangke given by a Gaussian process
model P(Y'|Z, §,.) with a parametric kernek’,.(z, z|6,.). An NDS is used to model the space
Y x X of poses and intrinsic motion3(.X, Y|A, 3, 0,.).

The jointconditionalmodel of the pose sequenkeand intrinsic motionX, given the sequence
of image featureg is approximated by

P(X,Y|Z, A, B3.0,..0,0) ~ P(Y|Z,0,.)P(X,Y|A,B,0,,). (14)

The reason for this approximation is practical—modeliA@y’| Z7) rather thanP(Z|Y") yielded
better results and allowed a fully GP-based framework.

4.1 Learning

In the training phase, both the image featuresnd the corresponding posgsare known. Hence,
the learning of GP and NDS models becomes decoupled and aatbmplished using the NDS
learning formalism presented in the previous section anuadsrd GP learning approachd].

Input : Image sequencg and joint angle sequendé
Output : Human motion model.

1) Learn Gaussian Process mod¥l'|Z, §,.) using e.g. 19.
2) Learn NDS modeP(X,Y|A, 3,0,,) as described in Se8.

Algorithm 2: Human motion model learning.

4.2 Inference and Tracking

Once the models are learned they can be used for trackingedfitinan figure in video. Be-
cause both NDS and GP are nonlinear mappings, estimatingntyrose (distributiony, given a
previous pose and intrinsic motion space estima&tes 1, y;_1|Z,.;) will involve nonlinear opti-
mization or linearizion, as suggested in SBA&. In particular, optimal point estimates andy;
are the result of the following nonlinear optimization plen:
(zf,y:) = argm%XP(xt|xt—laA)P(yt‘xhﬁa‘9y:v>P(yt|Zt76yz)- (15)
Tt,Yt
The point estimation approach is particularly suited foratiple-based tracker. Unlike some
traditional approaches that only consider the pose spgwmesentation, tracking in the low di-
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mensional intrinsic space has the potential to avoid problassociated with sampling in high-
dimensional spaces.
A sketch of the human motion tracking algorithm is shown telo

Input  :Imagez,, prior point estimateiwt(i_)l,:cf 1,yt 1)\20 1,7 = 1,...,.5 and Human
motion model (GP +NDS).

Output : Current pose/intrinsic state estlma(aé xt ,yt )|Z0t

1) Choose the initialize estlmate$ ,yt among the training datéX,Y, Z) using nearest
neighbor matching ir¥/ space

2) Find optimal estlmate(s::t s Yy )) using nonllnear optlmlzatlon |rfL6)

3) Find point weightss,” NP( Ty |$t—1>A)P( Yy |$t B3, 0y0) P (yt |24, 0y2).

Algorithm 3: Human motion tracking.

We apply this algorithm to a set of tracking problems desatim Sec56.2.

5 Related Work

Manifold learning approaches to motion modeling have et significant interest in the last
several years. Brand proposed nonlinear manifold learthag maps sequences of the input to
paths of the learned manifol@]] Rosales and SclaroffL[)] proposed the Specialized Mapping
Architecture (SMA) that utilizes forward mapping for the ggestimation task. Agarwal and
Triggs [1] directly learned a mapping from image measurement to 3[@ pss1g Relevance Vector
Machine (RVM).

However, it is often advantageous to consider a subspaceyofte joint angles space that
contains a compact representation of the actual figure molon-linear manifold embedding of
the training data in low dimensional spaces using isomégdture mapping (Isomap), Local linear
(LLE) and spectral embedding }, 11, 2, 18], have shown success in recent approaches).
While these techniques provide point-based embeddingsaithpmodeling the nonlinear mani-
fold through exemplars, they lack a fully probabilisticerpretation of the embedding process.

The GPLVM, a Gaussian ProcesséS]|[model, produces a continuous mapping between the
latent space and the high dimensional data in a probabihiséinner §]. Grochow et al. §] use
a SGPLVM to model inverse kinematics for interactive congpanimation. Tian et al. 1[f] use
a GPLVM to estimate the 2D upper body pose from the 2D sillteuentures. More recently,
Urtasun et al. 17] exploit the SGPLVM for 3D people tracking. However these@aches
utilize simple temporal constraints in the pose space tfiahontroduce “dimensionality curse”
to nonlinear tracking methods such as particle filters. Mweg, such methods fail to explicitly
consider motion dynamics during the embedding processwOtk addresses both of these issues
through the use of MNLDS models.
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6 Experiments

6.1 Synthetic Data

In our first experiment we examine the utility of MAR priorsansubspace selection problem. A
2nd order AR model is used to generate sequence®iri‘dspace; the sequences are then mapped
to a higher dimensional nonlinear measurement space.
ry = Ay + Asxy_o + wy

Yea = Tp1 €OS(Ty1) + Ve

Yea = Ty SIn(Tr1) + Ve

Y3 = Ty2 + Vg 3.
An example of the measurement sequence, a periodic curdegeddwvtiss-roll surface, is depicted
in Fig. 4.

Figure 4: A periodic sequence in the intrinsic subspace hadreasured sequence on the Swiss-
roll surface.

We apply two different methods to recover the intrinsic sae subspace: MNDS with an
RBF kernel and a GPLVM with the same kernel and independens$§ian priors. Estimated
embedded sequences are shown in BigThe intrinsic motion sequence inferred by the MNDS

1
F B Y T T W w0 s @ w0 2 e 1% w0 &

Figure 5: Recovered embedded sequences:MNDS and GPLVMid/iBaussian priors.

model more closely resembles the “true” sequence in&ifjlote that one dimension (blue/dark) is
reflected about the horizontal axis, because the embeddirgsique up to an arbitrary rotation.
These results confirm that proper dynamic priors may haveiarwole in learning of embedded
sequence subspaces. We study the role of dynamics in tgairkthe following section.
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6.2 Human Motion Data

We conducted experiments using a database of motion cagdtador a 59 d.o.f body model from
CMU Graphics Lab Motion Capture Databasg [Similar to [1, 16] we utilize synthetic images as
our training data. Our database consists of seven walkiggesees of around 2000 frames total.
The data was generated using the software (3D model and Magads) generously provided
by the authors of 14, 13]. We train our GP and NDS models with one sequence of 250 same
and test on the remaining sequences. In our experimentsxelede 15 joint angles that exhibit
small movement during walking (e.g. clavicle and fingersifpand use the remaining 44 joints.
Our choice of image features are the silhouette-based Athemds used inl[6, 10]. The scale and
translational invariance of Alt moments makes them sugabla motion modeling task with little
or no image-plane rotation.

A portion of the learned latent space is presented in €igith a few corresponding silhouette
images.

Figure 6: The learned 2-D latent space with of one walkingisege.

In the model learning phase we utilize the approach propasetkec.3. Once the model
is learned, we apply the tracking/inference approach in 8do infer motion states and poses
from sequences of silhouette images. Figlepicts a sequence of estimated poses. The initial
estimates for gradient search are determined by the neaeggtborhood matching in the Alt
moments space alone. To evaluate our MNDS model, we estiimatgame input sequence with
the original GPLVM tracking in [6]. Although the silhouette features are informative for taum
pose estimation, they are also prone to ambiguities sucheakett/right side changes. Without
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proper dynamics modeling, the original GPLVM fails to estimthe correct poses because of this

 [nnan
LT
(UL

Figure 7: First row: Input image silhouettes. Remaining rows shovonstructed poses. Second row—
GPLVM model. Third ron—MNDS model.

The accuracy of our tracking method is evaluated using thennfRMS error between the true
and the estimated joint angled[ D(y,y') = & S0t [(yi — y/)mod + 180°|. Fig. 8 displays the
mean RMS errors over the 44 joint angles, estimated usiregttifferent models. The testing
sequence consists of 320 frames. The mean error for MNDS Insoberange3® ~ 6°. The inver-
sion of right and left legs causes significant errors in thginal GPLVM model. Introduction of
simple dynamics in the pose space similarid jwas not sufficient to rectify the “static’ GPLVM
problem.

RMS error in degree
~ IS >

RMS
~ -

RMS
N IS

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
frame numi ber frame number frame numi ber

Figure 8: Mean angular pose RMS errors. Left: MNDS model. Middle: ioig GPLVM model. Right:
simple dynamics in the pose space.
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Fig. 9 shows examples of trajectories in the embedded space pornéimg to the pose esti-
mates. The points inferred from our MNDS model follow thehpttat is defined by the MAR
model, making them temporally consistent. The other twoho@$ produced less-than-smooth
embeddings.

2
o
2

o
N
OO e R

x x
%
2
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Figure 9: Left: 2D latent space estimates using MNDS. Middle: latguatce estimates using the original
GPLVM. Right: latent space estimates with simple dynamidhe pose space.

We applied the algorithm to tracking of various real monacuinage sequences of the human
motion. The data used in these experiments was the sideegueace in CMU mobo database
made publicly available under the HumanlID projedt [Fig. 10 shows one example of our track-
ing result. This testing sequence consists of 340 framesal® a slight mismatch in motion
dynamics between the training and the test sequences,steacted poses are not geometrically
perfect. However the overall result sequence depicts ssjiiluwalking motion that agrees with
the observed images.

It is also interesting to note that in a number of trackingeskpents it was sufficient to carry a
very small number of particles{ 1) in the point-based tracker of Alg.3. In most cases all pkas
clustered in a small portion of the motion subspateeven in ambiguous situations induced by
silhouette-based features. This indicates that the pcesehdynamics had an important role in
disambiguating statically similar poses.

7 Conclusions

We proposed a novel method for embedding of sequences ibspaaes of dynamic models. In
particular, we propose a family of marginal AR (MAR) subspad¢hat describe all stable AR
models. We show that a generative nonlinear dynamic sysiéd&] can then be learned from
a hybrid of Gaussian (latent) process models and MAR priargjarginal NDS (MNDS). As
a consequence, learning of NDS models and state estintagickihg can be formulated in this
new context. Several synthetic examples demonstrate tteatpal utility of the NDS framework
and display its advantages over traditional static methodiynamic domains. We also test the
proposed approach on the problem of the 3D human figure trgdki sequences of monocular
images. Our preliminary results indicate that dynamicatynstructed embeddings using NDS
can resolve ambiguities during tracking that may plagugcste well as less principled dynamic
approaches.
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Figure 10:First row: Input real walking images. Second row: Imageaikites achieved by background
subtraction. Third row: Side view of the reconstructed poSerth row: Front view of the reconstructed
pose.
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In our future work we plan to extend the set of evaluations gatther more insight into the-
oretical and computational properties of MNDS with lineadaionlinear MARs. In particular,
our on-going experiments address the posterior multimtydial the embedded spaces, an issue
relevant to point-based trackers. We also plan to extendNi® formalism to collections of dy-
namic models using the switching dynamics approaches ag afa@odeling a general and diverse
family of temporal processes.

8 Appendix: MAR Gradient

Log likelihood of MAR model is, using4) and leaving out the constant term,
N 1 -1 /
L:51og|Km|+§tr{KmXX} (16)

with K, = K,.(X, X) defined in §). Gradient ofL with respect taX is

0L 0Xan OL O0K,, OL
— = + = a7
0X 00X 0Ky 0Xn  O0X |,
XA can be written as a linear operator an
Or—1yx1 Lr—1)x (=1
Xa=A-X, A= | xS0 (18)
0 O1x(7=1)

where(0 and/ denote zero vectors and identity matrices of sizes spedifidite subscripts. It is
now easily follows that

L
S—X = AN (NK,! - KJXX'KND)A X + KX (19)
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