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Abstract
We propose a probabilistic method for tracking articu-

lated objects, such as the human figure, across multiple lay-
ers in monocular image sequence. In this method, each link
of a probabilistic articulated object is assigned to one indi-
vidual image layer. The layered representation allows us to
robustly model the pose and occlusion of object parts dur-
ing its motion. Appearance of links is described in terms of
learned statistics of basic image features, such as color, and
geometric models of robust spatial kernels. This results in
a highly efficient computational method for inference of the
object’s pose. We apply this approach to tracking of the hu-
man figure in monocular video sequences. We show that the
proposed method, coupled with a learned dynamic model,
can lead to a robust articulated object tracker.

1. Introduction
Tracking and pose estimation of articulated objects, such

as the human figure or hand, is a critical task in applica-
tions ranging from smart surveillance to advanced user in-
terfaces. However, articulated objects often exhibit complex
and dynamic behavior that makes motion tracking challeng-
ing. The task becomes increasingly difficult if only monoc-
ular image sequences are available because of frequent oc-
clusions and shadowing among the moving object parts. A
final impetus present cluttered scenes and, possibly, other
moving objects.

Most articulated object tracking and pose estimation
methods from monocular sequences have been studied in
the context of the human figure. The approaches employed
differ in focus between those based on a more complex 3D
articulated human models [21, 6, 17, 16, 19, 20, 1] and sim-
pler 2D figure-based methods [12, 3]. While computation-
ally more efficient, the 2D model-based methods are often
unable to effectively deal with the self-occlusions of the hu-
man figure, image and dynamic ambiguities and discontin-
uous motion.

In this paper we revisit the 2D-based articulated object

tracking approach using a robust probabilistic, learning-
based method. The crux of our method are: (a) a layered
representation of the articulated object that approximates
the true 3D link relationships and (b) a robust paramet-
ric statistical representation of the link appearances. The
two representations are married together using a probabilis-
tic graphical modeling formalism with a dynamic motion
model representation. We assign each articulated object link
to a unique 2D image layer. Within each layer the pose
of the link is modeled using a robust kernel whose param-
eters encode the continuous 2D position, orientation, and
scale of the link. We model the link’s appearance using
region-based feature statistics, such as the color histograms.
The key advantages of this approach are in its computa-
tional efficiency and robustness to occlusions and ambigui-
ties. Computational efficiency is induced by: (a) the region-
based appearance representation, (b) continuous pose esti-
mates that preclude the need for combinatorial search, (c)
parametric density models, and (d) the layered representa-
tion that (seemingly) decouples the estimations of pose and
appearance. Kernel-based representation of links introduces
additional robustness to the approach.

This paper is organized as follows. Section 2 describes
the related work in human motion tracking area. Section 3
introduce the new tracking framework and its probabilistic
formulation, while in Section 4 we propose an efficient al-
gorithm for pose estimation and tracking. Sections 5 and 6
presents our experimental result and conclusions.

2. Related Work
Pose estimation and tracking of the human figure has at-

tracted substantial research interest over the past decade.
Baumberg and Hogg [2] track the outline of a moving body
using a flexible shape model. Ju et al. [12] proposed a pa-
rameterized motion model for tracking body parts, while
shifting the focus of tracking from edges to the intensity
pattern created by each body part in the image plane. Cham
and Rehg [3] presented a probabilistic multiple-hypothesis
framework for articulated figure tracking. They describe the
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figure by using Scaled Prismatic Models (SPM) and track
the modes in the state pdf using a combination of paramet-
ric and sampling methods. In a follow-up work, Pavlovic et
al. [14] addressed the problem of learning dynamics from
training data in a switching Bayesian framework, focusing
again on parametric models. Despite the use of dynamic
priors, the inability to robustly handle self-occlusions pre-
sented a serious drawback of the former approaches. Meth-
ods that include explicit occlusion models based on layered
representations of 2D images have been proposed in the past
by, e.g., Jojic and Frey [10]. However, such models have
typically not been used for articulated objects and often rely
on non-parametric pose models.

The use of 3D figure models for pose estimation and
tracking arose as a viable, albeit computationally more
expensive, alternative that handles self-occlusions and re-
solves some of the ambiguities resulting from 3D singular-
ities. Most of 3D human figure tracking approaches uti-
lize sampling-based methods to handle multiple hypothe-
ses and the non-linearities of the articulated and measure-
ment models. However, the sampling approaches often suf-
fer from the high dimensionality of the state space and the
sample impoverishment problems. Annealed sampling by
Deutscher et al. [6], importance sampling by Sidenbladh
et al. [17], and partitioned sampling by MacCormick and
Isard [13] were attempts to handle such problems. In the
2D case, Sminchisescu and Triggs [18] proposed a hybrid
parametric method to alleviate the problems induced by the
particle representation. Recently, alternative discriminative
approaches to 3D pose estimation and tracking [20, 1] have
shown initial promise, but remain in their infancy.

3. Articulated layers model

We present the formalism of the articulated layers model
using an example of the human figure shown in Figure 1.
In this model each articulated link is assigned to one image

Figure 1. Dynamic articulated layers. Example of a lay-
ered articulated structure.

layer. The layers are ordered according to their depth in
the 3D scene. Constraints imposed on the links across the

layers guarantee the consistency of the articulated structure,
e.g., layer 0 is above layer 1 and the parts in the two layers
are directly linked.

The model consists of four submodels whose graphical
representations are shown in Figures 2-4. Similar models
have been employed in other related Bayesian modeling ap-
proaches, e.g.,[10, 20]. We next discuss each of the four
submodels.

3.1. Kinematic model
The first component is the kinematic model at time t,

shown in Figure 2. We characterize the articulated model

Figure 2. Dynamic and kinematic models.

in terms of link joint angles ai,t and lengths li,t, with
i = {1, ..., N} the link index. For convenience of this pre-
sentation, unless we refer to the dynamic model, we often
drop the time index t. We assume a prior distribution of link
lengths, λi. ai and li together determine the joint angle po-
sitions xi in the image coordinate space, starting from the
root position x0. We assume that this dependency is deter-
ministic1 given the joint angles and the link lengths:

xi = R(ai + ai−1... + a1)
[

li
0

]
+ xi−1 (1)

R(a) =
[

cos(a) − sin(a)
sin(a) cos(a)

]
. (2)

3.2. Part pose and appearance models
We distinguish each link i from the corresponding artic-

ulated part i. The articulated part i is characterized by its
pose and appearance, as depicted in Figure 3. The pose of
part i is determined by its relative position yi in the local
coordinate system of the i-th link, relative orientation bi wrt
link i, and size di. The pose, in turn, has prior parameters
γi, βi, and δi. Together with the link position and orienta-
tion from the kinematic model, the relative pose induces the
absolute part pose Yi, Bi, di:

Bi =
i∑

j=0

aj + bi (3)

1This assumption is not necessary. However, it simplifies the overall
model without the loss of generality.
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Figure 3. Part pose and appearance model.

Yi = xi + R(Bi)
[

yi

0

]
. (4)

In our models we commonly make the assumption that the
relative part position y0

.= l0/2, i.e., the part is centered on
link i. Furthermore, it is convenient to assume that the link
is parallel with its respective part, b0

.= 0.
The part’s pose determines its appearance through the

mask (region of interest) mi ∈ {0, 1}Nx×Ny . This mask
assigns image pixels k with known position zk in the image
coordinates to part i:

P (mi,k = 1|Yi, Bi, di, zk) ∼
ρ

(|zk − Yi|′Q−1(Bi)|zk − Yi|
)
, (5)

Q(Bi) = R(Bi)
[

d2
i,x 0
0 d2

i,y

]
R(Bi)′. (6)

ρ is a robust kernel function with center Yi and scale Q(Bi).
Hence, each part is represented as an elliptical region of
size di. In our models we often used a truncated Gaussian
kernel:

ρ(x) =
{

exp(− 1
2x), x < 1

0, otherwise . (7)

Inside the masked region, mi = 1, the appearance of
part i is determined by the distribution θi of the appearance
features ci,k. Possible features are color, edges, texture, etc.
A critical assumption we make is that, given the pose of the
part, all features inside the part are homogeneous, i.e., they
do not depend on the position of pixels in the part. This
assumption allows computationally efficient estimation of
the part’s pose from image features. We also assume that
all appearance features are discretized, e.g., 256 levels of
gray or a set of discrete RGB values. In that case

P (ci,k|mi,k = 1, θi) = Mult(θi), (8)

where Mult(θi) is the multinomial distribution with param-
eters θi. This distribution can, in principle, vary from image
to image, with some prior parameters αi (e.g., Dirichlet or
a mixture of Dirichlet distributions.) Such formulation can
accommodate adaptive distribution estimation, due to, e.g.,
scene illumination changes or shadowing.

The appearance model proposed above is a generaliza-
tion of the commonly used robust region-based image mod-
els. For instance, color distributions of this type have been
used as the target model in several other tracking algorithms
as they exhibit robustness against non-rigidity, illumination
changes, and partial occlusions [4, 5, 15]. Unlike the het-
erogeneous representation of appearance in, e.g., [10] (each
pixel has a potentially different parametrization), our repre-
sentation also allows a computationally efficient and robust
inference of the part’s pose from appearance (see Section 4).

The pose and appearance of the background layer are an
exception to the previously described model. We assume a
static background layer, P (mN,k = 1) .= 1. Its appearance
is modeled by a set of heterogeneous features whose dis-
tribution depends on the pixel position, P (cN,k|mN,k) =
Mult(θN,k). In practice, however, we can often first re-
move the background layer using standard background sub-
traction methods.

3.3. Layered model
The layered model is the key link between the articulated

model and the formed monocular image. For simplicity, we
place each articulated part on a separate layer. Layers are
then ordered according to their visibility i.e., the depth of
the corresponding 3D scene. An example of this is depicted
in Figure 1.

We define the layered representation similar to [10]. The
ordering of layers and their corresponding parts is denoted
by the link index i. Note that, for simplicity of notation,
we so far assumed that the same index denotes the ordering
of the links in the articulated model (e.g., root-to-leaves)2.
Hence, the link with index 0 lays in the top layer, while the
last layer N models the background scene.

The observed monocular image c is formed as a linear
combination of the part masks mi, layer visibility vi and
latent layer images ci:

ck =
N∑

i=0

vi,kmi,kci,k. (9)

The visibility image vi of layer i is induced recursively
from the part masks in layers above i,

vi,k =
i−1∏
j=0

(1 − mj,k). (10)

2This, of course, is not true in general. e.g., not true for the human
model in Figure 1.
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For instance, pixel k in layer i will be visible if it is not
masked by any part in the previous i − 1 layers. This im-
age formation process is depicted in Figure 4. We note that

ck

v0,k

v1,k

m 0,k

m 1,k

Mask Visibility

Image

c0,k

c1,k

Layerappearance

Figure 4. Image formation through layered representa-
tion.

the layered representation we adopted differs from the one
in [10]—our image masks are binary variables unlike the
continuous alpha blending values of [10]. Despite this as-
sumption, our image formation model allows mixing of pix-
els intensities coming from different layers by the virtue of
uncertainties in layer models.

3.4. Dynamic model
The final component of our model is the dynamic model.

It links together articulated object poses across consecutive
frames, as indicated in Figure 2. We assume a multiple hy-
pothesis / switching linear dynamic model of [14]:

at = A(st)at−1 + w, (11)

where at is the vector of joint angles (and root link position)
of the articulated model, and w is a white Gaussian noise.
st denotes the id of the dynamic model at time t, among
several possible models.

4. Pose estimation and tracking using layered
articulated model

The ultimate goal of our approach is to estimate the pose
of the tracked articulated object over a sequence of monocu-
lar image frames. Given the probabilistic formulation of our
model this task can be accomplished using one of many in-
ference methods for probabilistic models. In this section we
derive a specific inference procedure that particularly suits
our model.

We first focus on the problem of pose estimation in a sin-
gle frame, given some prior pose estimate P (at). In the se-
quential pose estimation, this estimate typically comes from
the predictions of the dynamic model and a pose estimate

from the prior frame, P (at|c0, . . . , ct−1). Thus, in general,
we need to infer P (a|c, prior on a).

Unfortunately, the inference in the proposed model is in-
tractable. Assuming, for simplicity, that the part dimen-
sions dj , link lengths lj and part appearance distributions
θj are known, the intractability arises due to: (a) the exis-
tence of latent mask mi, visibility vi, and articulated joint
positions xj , and (b) the nonlinear kinematic model. As
expected, the latent variables introduce full coupling (de-
pendency) between the observed image ct and the object’s
pose.

To solve the pose estimation problem, we assume that
the true posterior can be approximated by the product of
two independent posteriors:

P (a|c) ≈
∑
m

Qa(a|ζa)Qm(m|c, ζm). (12)

Qa(a|ζa) is the posterior distribution of the object’s pose,
conditioned on a latent parameter set ζa. Similarly,
Qm(m|c) is the posterior distribution of the object’s masks,
conditioned on the observed image c. The employed ap-
proximation is of a (structured) variational type [11].

To estimate the parts’ masks we further assume that the
posterior distribution Qm is deterministic in the sense of

Qm(m|c, ζm) = δ(m − m∗), (13)

i.e., it is approximated with its most likely mode or a best
mask estimate.

The latent variational parameter ζa as well as m∗ can be
found by minimizing the KL-divergence between the true
and the approximate posteriors (see [11] for details). This
yields a set of fixed point equations whose solutions are
also the approximate posteriors for the pose and the masks:

input : Image c, prior on a.
output : Posterior of a, estimates of mask m.
while !converged do

Find modes of Qa(a|ζa), (a∗ =
argmaxa Qa(a|ζa).
Estimate m∗ = arg maxm Qm(m|c, ζm) =
argmaxm P (c|m)P (m|a∗).
Estimate Qa(a|m∗) ∼ P (m∗|a)P (a).

end

Algorithm 1: Pose and layer inference algorithm.

Intuitively, the algorithm first finds the optimal part masks
given an estimate of the articulated object pose. It then
uses the computed masks to refine the estimates of the
articulated structure. The two steps are repeated until
convergence. The algorithm is guaranteed to converge
under fairly general conditions, as long as the two step are
performed exactly [11].
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4.1. Mask estimation
The solution to the mask estimation subproblem can be

easily obtained by substituting the model definitions from
Section 3 into the estimation equation in Algorithm 1. This,
in turn, reduces to solving the following optimization prob-
lems for all pixels k in the image c, starting from the top
layer i = 0 down to the background i = N :

m∗
i,k = arg max

m∈{0,1}
[m (vi,k log θi(ck) + log P (mi,k = 1|a,d))+
(1 − m) (vi,k ĉi+1:N + log P (mi,k = 0|a,d))] .(14)

As before, vi,k denotes the visibility of pixel k in layer
i, (10). log θi(ck) is used to denote the likelihood of
image feature ck at pixel k under the model of layer i,
θi. Finally, ĉi+1:N is the average likelihood of the im-
age pixel under the models below layer i, ĉi+1:N =∑N

j=i+1
vj,k

vi,k
mj,k log θj(ck). The derivation above is simi-

lar to that of [10], however it differs in the underlying mod-
eling assumptions.

4.2. Pose estimation
Given the estimates of the mask images m∗ from Sec-

tion 4.1 that remove the occlusion uncertainties and assign
images to individual links, the estimates of the object’s pose
can now be obtained using one of several common methods
such as the iterated extended Kalman filter (IEKF) [7]. We
consider an alternative approach that robustly estimates the
mode of the posterior pose.

In this approach, rather than maximizing the regularized
likelihood score P (mi,k|a)P (a) over all poses a, we max-
imize a Bhattacharyya error-based objective function be-
tween the target mask image and the image induced by the
current mask position. This approach essentially extends
the kernel-based tracking method of [5] to an articulated
object setting.

We formulate the algorithm, without loss of generality,
on the case of a two-link articulated object. In that case, the
functional is

J(a1, a2) = log P (a1) + τ1BT (m1|a1, d1)+
τ2P (a2|a1) + log BT (m2|a2, d2), (15)

where BT (mi|ai, di) denotes the Bhattacharyya distance
between the mask image mi and the current estimate of the
kernel ρ(·)’s scale and position, as specified in (5) and (7).
This distance is defined as

BT (mi, |ai, di) =∑
k

(
1 −

√
mk,iP (mi,k = 1|Yi, Bi, di, zk)

)
.(16)

τ1 and τ2 are the precision weights that can be learned from
data.

We maximize J using recursive forward-backward
Newton-Raphson optimization steps. This approach
slightly differs from the traditional M-estimate (mean-shift)
search that typically only estimates the kernel positions, but
is similar to robust position-scale estimators found in statis-
tics literature, c.f.,e.g., [9]. We compute estimates of the
variance of a, needed for the dynamic predictions, based on
the Hessians computed in the Newton-Raphson optimiza-
tion step, following [3].

4.3. Dynamic prediction
To estimate the pose prior needed for the inference of

pose in Section 4.2 we use standard dynamic prediction
methods of linear dynamic systems. Because we character-
ize each pose estimate by its mode and variance, predicted
pose estimates retain the same structure. If one is to use the
switching formalism of [14] or multiple hypotheses of [3],
the need arises for pruning of the exponential number of
hypotheses. This could, in principle, be handled using a
number of different techniques, such as mixture collapsing.

5. Experiments

We conducted two sets of experiments to study the per-
formance and utility of the articulated layers tracking ap-
proach. The first set were the experiments on synthetic im-
ages, primarily aimed at the study of the proposed frame-
work in Section 3 and the pose estimation algorithm of Sec-
tion 4.2. In the second set, we applied the algorithm to
tracking of various monocular image sequence of the hu-
man motion. The algorithm was implemented in MATLAB
and the computation takes approximately 5 seconds/frame
on Pentium 4 2.26GHz PC.

5.1. Synthetic data
An example of the pose estimation on a synthetic 64×64

image is shown in Figure 5. Background image was gener-
ated with a uniform probability over the entire gray scale (0
to 255). Part appearances had uniform distribution over 50
gray levels. The articulated object of known dimensions and
part ordering had a probabilistic kinematic model with the
joint angles normally distributed about certain means, with
standard deviations of π/40. Initial pose estimates were
randomly chosen, while minimally overlapping the true ob-
ject. We chose the traditional (non-truncated) Gaussian ker-
nel as the parts’ mask model.

In 95% of the test cases, the algorithm converged within
4.2 pixels/joint of the true object pose. Figure 5(a) shows
one run of the algorithm. In addition to the final pose es-
timates, we also considered the estimated states of the im-
age masks mi, displayed in Figure 5(b). Images labeled as
“Mask+Img” show the true estimates of the masks in their
corresponding layers according to (14). We were also in-
terested in seeing the benefits of combining the pose with

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 



10 20 30 40 50 60

10

20

30

40

50

60

Final estimate

Initial
estimate

True pose

(a)

(1)

Mask+Img Mask Img

(2)

Mask+Img Mask Img

(3)

Mask+Img Mask Img

(b)
Figure 5. Pose estimation on a synthetic noisy image. The object contains three links with elliptical parts, one of which is fully
occluded. The largest part is the top layer. Binary images represent results of mask estimation in three different contexts. See text
for detailed explanation.

the image data, as in (14). Images “Mask” display mask
predictions based on the current pose, using (5). On the
other hand, images “Img” are the posterior estimates of the
masks using the image data alone (obtained by setting the
predicted mask terms, P (mi,k = 1|a) to 1/2.) One can
clearly see the influence of the image/background noise and
the out-of-layer parts on the estimates of masks using the
image data alone. On the other hand, the mask predictions
are, initially, far from the true part masks. Once the two es-
timates are integrated in the true mask posterior, the mask
density peaks in the regions belonging to the respective ob-
ject’s part.

The algorithm always exhibited convergence, despite the
approximations due to nonlinearity in the pose inference
step, Section 4.2.

5.2. Real image sequences
The second set of experiments tested the utility of our

approach for tracking articulated objects in real monocular
image sequences. In particular, we focused on tracking and
pose estimation of the human figure. The data used in these
experiments was partially collected in-house; we also used
the motion sequences made available under the HumanID
project [8]. We employed a basic background subtraction
procedure 3.

While the proposed framework, in principle, allows un-
supervised learning of all model parameters, we initially
estimated them from hand-labeled data. Furthermore, we
assumed fixed and know ordering of the layers, as depicted
in Figure 1. This assumption is reasonable as long as the ob-
ject’s 3D orientation does remain steady with respect to the
imaging plane 4. Initial pose of the figure was manually set
in the first frame, as well as the scale which was kept con-

3The framework inherently includes a background subtraction step,
given a known background model. This preprocessing step is strictly
speaking unnecessary but, in practice, reduces the effects of complex back-
grounds.

4Changes of orientation can, in principle, be handled using a set of
view-specific models

stant for a given video sequence. We learned the appearance
color model in HSV space from a set of random, segmented
video frames. Finally, the dynamics within a single motion
type (e.g., walking) were modeled using a linear model of
the 1st or 2nd order (joint angles, angular velocities and ac-
celerations, and corresponding linear motion states for the
torso). Parameters of the model were estimated from train-
ing data.

Figure 6 illustrates the process of the pose estimation and
layer separation inside a video frame. The final estimate of
the pose is shown on the left. Images on the right depict the
estimates of the part masks mi and visibilities vi for layers
6 through 9. For instance, the left-most images of the mask
and visibility graphs correspond to layer 6, while the right
most ones refer to layer 9.

Figures 7 and 8 show results of pose estimation and
tracking on two video sequences of walking motion. To
test the robustness of our approach neither of the instances
used multiple hypotheses for the pose estimation or the dy-
namic predictions. Despite the common self-occlusions and
shadowing, estimates of the best modes were sufficient to
successfully track the pose over moderately long video se-
quences.

The pose estimation algorithm, similarly confirmed by
our simulation studies in Section 5.1, showed robustness to
poor dynamic model predictions. For instance, Figure 7
shows the dynamic model prediction (p) and pose estima-
tion results (e) using the 1st order dynamic model. One
can observe the relatively inadequate dynamic model pre-
dictions, compared to the 2nd order model employed in Fig-
ure 8. Even when the 2nd order dynamic prediction showed
the lack of accuracy (bottom row of Figure 8), our alrorithm
estimated the quite adequate pose (top row of Figure 8).

The most common failure modes occurred due to shad-
owing of the body parts, esp. the occluded arms and legs.
Our present model does not attempt to model the changes in
appearance due to shadowing. However, adaptation (on-line
learning) of, e.g., color distribution, can be accomplished in
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Figure 6. Inference of pose in image sequence. The human figure pose predicted by the articulated layers algorithm is shown
on the left. Subsequent rows (dark background) show the estimated mask images and (white background) visibility images. White
color corresponds to the ’on’ or ’1’ state.

(e)

(p)
Figure 7. Tracking results for an in-house motion database sequence. (e) Pose estimates are marked using ellipses. (p) Dynamic
model predictions are marked with ellipses on the background subtracted images (background is masked with blue color).

Figure 8. Tracking results for a CMU motion database sequence. Top row: pose estimates, bottom row: dynamic model predic-
tions.
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the same framework by inducing a stochastic dependency
between the priors and current appearance parameters, αi

and θi. Similar adaptation of the other parameters (e.g.,
part sizes) could be performed in the same manner, at the
additional computational cost.

The overall computational cost of the tracking algorithm
is, on average, low. The layer mask estimation of Sec-
tion 4.1 is proportional to the number of layers and the num-
ber of pixels inside each kernel’s region of support. The es-
timation of the object’s pose, described in Section 4.2, con-
verges after a few iterations. Moreover, because the pose es-
timates is based on binary mask pixels mi,k, not the image
pixels ck that belong to a much higher dimensional space,
the BT computation is significantly simplified, compared to
the traditional kernel-based methods [4, 5, 15].

6. Conclusions and future work

In this paper we proposed a probabilistic method for
tracking articulated objects in monocular image sequence.
To deal with the object self-occlusions, each link of the ar-
ticulated object is assigned to a separate image layer. The
appearance of object parts is represented using spatially ho-
mogeneous image features. The problem of pose estimation
and tracking is then posed as an inference problem in this
complex probabilistic model. We solve it using a recursive,
robustified variational inference approach. Our preliminary
results show the utility of this tracking approach on syn-
thetic data as well as real video sequences. Despite the lack
of full 3D object models, our method was able to success-
fully and robustly estimate and track 2D pose of the human
figure across a number of image sequences.

Our future work proceeds in several directions. We will
first consider additional image features as well as other in-
ference methods for estimation of masks and part poses,
e.g., true mask posterior estimates and IEKF for poses, and
study their impact. Secondly, we will extend the formal-
ism to include switching among several layered models, in
order to handle continuous changes in the 3D object’s orien-
tation. Finally and most interestingly, we will consider ap-
proaches towards learning, unsupervised batch and on-line,
of the model’s parameters. This will include estimation of
the ordering of layers in an object which is known to be an
ill-posed problem.
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