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Abstract

A mixture of Bayesian Network Classifiers(BNC) has a
potential to yield superior classification and generative per-
formance to a single BNC model. We introduce novel dis-
criminative learning methods for mixtures of BNCs. Un-
like a single BNC model where the discriminative learn-
ing resorts to a gradient search, we can exploit the prop-
erties of a mixture to alleviate the complex learning task.
The proposed method adds mixture components recursively
via functional gradient boosting while maximizing the con-
ditional likelihood. This method is highly efficient as it
reduces to generative learning of a base BNC model on
weighed data. The proposed approach is particularly suited
to sequence classification problems where the kernels in the
base model are usually too complex for effective gradient
search. We demonstrate the improved classification perfor-
mance of the proposed methods in an extensive set of eval-
uations on time-series sequence data, including human mo-
tion classification problems.

1. Introduction

Recently, it has been shown that applying a genera-
tive model(e.g. a Bayesian Network) to a classification task
yields performance comparable to sophisticated discrimi-
native classifiers such as SVMs and C4.5 [4]. A model
of this class, the Bayesian Network Classifier(BNC), can
be used in a wide range of applications including speech
recognition and motion time-series classification [1]. In-
stead of the traditional Maximum Likelihood(ML) learning
that fits a BNC model to data, maximizing a conditional
likelihood(CML) is known to achieve better classification
performance. For instance, in speech recognition, the ex-
tended Baum-Welch algorithm for HMM kernels is used
to approximate CML [23]. Unfortunately, the CML opti-
mization problem is, in general, complex with non-unique
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solutions. Typical CML solutions resort to gradient-based
numerical optimization methods. Despite improved clas-
sification performance, the gradient search makes standard
approaches computationally demanding.

Instead of working on a single BNC model, one may
benefit from an ensemble-based approach. For example,
in [8] AdaBoost of [2] is successfully applied to parame-
ter boosting of a set of BNCs to minimize the exponential
loss. However, the resulting model is not a generative model
which may limit its domain of applications to classification
tasks only. Rather, in this paper, we focus on a mixture of
BNCs. A mixture model has a potential to yield superior
classification performance to a single BNC model, as well
as a rich density estimator. For instance, [14] formulated a
recursive mixture-based approach to motion clustering. The
recursive approach has benefits such as the optimal order es-
timation and insensitive to the initial parameters. However,
its aim is not classification and it lacks a proper discrimina-
tive objective. This paper formulates a theoretically sound
approach to discriminate mixture modeling.

Unlike the single BNC model where the discriminative
learning resorts to a gradient search, we can exploit the
properties of a mixture to alleviate the complicated learning
task. The proposed algorithm learns a mixture recursively.
At each iteration, it finds a new component f that, when
added to the current mixture F', maximally decreases the
conditional loss. A crucial benefit of this method is its effi-
ciency; finding a new f requires ML learning of a base BNC
model on weighed data. Therefore, the proposed method
is particularly applicable to application domains where the
mixture kernels in the base model are so complex that it
is prohibitive to compute gradients with respect to model’s
parameters.

We compare this method to two new heuristic ap-
proaches that learn a mixture model discriminatively via
AdaBoost. These methods keep the components(or hy-
potheses) obtained from AdaBoost parameter boosting, and
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learn only the mixing proportions of the mixture model. In
an extensive set of experiments that include non-generative
discriminative approaches such as kNN, we show that the
newly proposed approaches can yield performance compa-
rable or better than that of many standard methods.

2. Discriminative mixture learning
2.1. Preliminaries

Let f(c,a)! denote a BNC with a class label ¢ and at-
tributes a. In sequence classification where a is a sequence
of measurement, f(c,a) can be modeled as a class prior
f(c) and the conditional f(a|c). The latter is possibly a
collection of HMM kernels, one for each class. Note that
this BNC may include many latent variables, such as the
state labels in an HMM. Given a BNC f(c¢,a) and mea-
surements a, the task of predicting the corresponding la-
bel ¢* is done by MAP decision, ¢* = argmax. f(c|a).
Given some training data D, the traditional ML learning op-
timizes mazy 3. ,ep log f(c,a), whereas the discrimi-
native CML learning optimizes maz s 3. ,yep log f(cla).

A mixture F(c,a) is composed of M components,
each of which is a BNC f(c,a). That is, F(c,a) =
2%21 am fm(c,a), where {a,,} are the mixing pro-
portions (i.e. o, > 0 and > a, = 1). The
class label of sequence a is predicted by the prediction

rule: ¢* = argmax. F(cla) = argmax.F(c,a) =

M
argmaxe y .. Qm fm(c, a).

2.2. Learning via functional gradient boosting

Here we assume binary classification, that is, ¢ € {0, 1},
where the extension to multi-class case can be done with-
out any effort. Let A denote the space of a(e.g., a space
of sequences). Given an empirical data set Dy, =
{(ci,a;)}_, learning a mixture model discriminatively
corresponds to minimizing the negative conditional log-
likelihood cost:

n

= F iy Ui
Jpis(F) = Z —logF(¢ila;) = Z —log;w. (1)
i=1 v

i=1

We want to search for a new BNC component f such that
when we replace F' with (1 — ¢)F + ¢ f for some small pos-
itive €, the objective Jp;s(+) is maximally decreased. As
described in [14], f should make the projection of the neg-
ative functional gradient of Jp;s onto f — F' maximized.
In order to derive a negative functional gradient of
Jpis(F'), we partition the data space D = {0,1} x A into
Dy ={(c =1,a)la € A} and Dy = {(c = 0,a)|a € A},
where the gradient is separately evaluated for each of these

IFor notational convenience, we use f(c, a) to represent either a BNC
or a likelihood at a data point (¢, a) interchangeably.

two sub-spaces. For x = (¢, a) € Dy,

~ OJpis(F) 0 lo F(c=1,a)
9F(zx)  9F(c=1La) Y F(a)
F(c=1,a)

OF(c= 1,a)lOgF(c: 1,a) + F(c=0,a)
Flc=1,a)+ F(c=0,a)
F(c=1,a)

(F(e=1,a)4+ F(c=0,a)) — F(c=1,a)
(F(e=1,a)+ F(c=0,a))?
_ F(c=0la) 1-F(c=1a)
~ F(c=1l,a)  F(c=1,a) @

In the same manner, we can derive the gradient for x =
(c,a) € Dy. As aresult, for any (c,a) € D,

dJpis(F) 11— F(c|a).

" 9F(c,a)  F(c,a) 3

(3) also holds for the multi-class cases.
Returning to the function optimization problem, the op-

timal f* that maximizes < f — F, 7?9#572,5;)}?) > is:
« - 1—-F C;|Q;
= arg max {Zf(ciaai) : F(ciai)) 4)

i=1

(4) indicates that the new f is learned with weighed data
where the weight of (¢;,a;) is (1 — F(c¢il|a;))/F(ci, a;).
Hence the data points having less likelihood(F (¢, a)) and/or
less conditional likelihoods(F'(c|a)) by the current mixture
are focused on by f in the next stage. This is intuitively a
correct argument.

In summary, given an initial mixture F' = f12, the
discriminative mixture learning can be done recursively by
the following three steps:

Step 1: Search for f*: (4) can be solved via EM.
That is, by taking a log, (4) is a log-sum maximization
which is then optimized by the conventional lower-bound
maximization technique via Jensen’s inequality.

wif(ciaai)
(E-step) G =< 5 (%)
P Zizl w; f(ci,a;)
B 1—F(ci|ai) .
where w; = Flear) (i=1,...,n)
M-st il iy Q). 6
Oser) g D log (o) ©

Step 2: Search for o*: Given F and f*, find o* € [0, 1]

2The choice of the initial component f1 is not significant, however, one
can use MLE typically.
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such that still remains computationally efficient because the number
n of parameters to be optimized, M, is a small constant in
o = argmin Z —log (1 — a)F + af*) (cila;)  (7) mostcases.
[e3

i=1

_ - (1 —a)F(ci,a;) + af*(ci,a;)
= aTgmo?éLX ; log( (1 —a)F(ai) —|—ozf*(ai)

Any line search method can be used to solve (7).

Step 3 (optional)’: Refinement : Refine all the parameters
in F, f*, and o* such that Jp;s((1 — a*)F + o*f*) is
minimized.

Note that the main complexity of the algorithm is in the
M-step of Step 1. This is simply a generative learning of
the base model on weighed data, requiring a trivial modifi-
cation of the original ML learning on un-weighed data. For
instance, refer to [1] for the HMM ML learning on weighed
data.

2.3. Heuristic learning via AdaBoost

We also suggest two other methods to learn a mix-
ture discriminatively. When a set of BNCs(or weak hy-
potheses) is obtained from the AdaBoost parameter boost-
ing [8], we can heuristically construct a mixture by keep-
ing these BNCs as its components, and learning only
the mixing proportions (i.e. a.,). The a-learning can
be done either generatively or discriminatively.  For-
mally speaking, given the M components {f,,} from
the AdaBoost, the generative a-learning finds oy,
argmaxq Y1y log( Zf\f:l @ [ (i, a;)), which can be
solved by the following EM algorithm:

m fm (€3, i)

= , 8
Z:f:l amfm(civai) ( )

(m=1,....M, i=1,...,n)
21;1 qmi
M
Zm:l Z?:l Qm,i
n
- 721‘:711""“, (m=1,...,M)

(E-step)

qm,i

(M-step) ap =

m

(€))

On the other hand, the discriminative c-learning optimizes:

).

3. Prior work

Time-series data classification is a very important prob-
lem in the computer vision and data mining communities.
The recent studies can be largely divided into two cate-
gories: instance-based vs. model-based. In the former, the
distance measure(or kernel) between a pair of sequences is
defined, which is then delivered to discriminative classifiers
such as kNN or SVMs. Dynamic Time Warping(DTW)
is often used to estimate Euclidean distances between se-
quences with unequal lengths. Recently in [15], the con-
strained DTW was proposed to improve the classification
performance on the time-series data. In [7] the kernel of two
sequences was defined as the inner product of their Fisher
scores with respect to the underlying generative model.
Even though these methods may achieve high accuracies,
the computational overhead to estimate the distance(or ker-
nel) between sequences and a lack of clear generative in-
terpretation is a major disadvantage. In a different set of
approaches generative models can be used as prototypes for
sequence clusters. The HMM is often used in this context
in speech recognition [9], gesture recognition [22, 18], and
gait recognition [5, 1]. The approach in [1] is closely related
to the base BNC model in our paper, however it is trained
to optimize a non-discriminative ML criteria.

Prior approaches to estimation of mixtures of Bayesian
Networks have emerged in recent years [21, 16, 12]. Our re-
cursive boosting algorithm for discriminative mixture learn-
ing is based on the functional gradient optimization of con-
vex additive models. While similar gradient approaches
have been introduced in the past [3, 11], they only provided
heuristic methods for the component search or did not focus
on mixtures of generative models. In [14], a mixture fitting
problem, reduced to the joint log-likelihood cost functional
optimization in the supervised setting, was solved in a non-
heuristic way. Our algorithm is similar to the framework
of [14], however, it is the first to derive the data weighing
schemes for the discriminative cost functional, an appropri-
ate cost model for the classification task.

There have been considerable researches that directly

n M
ab, = argmax Z log ( 2 m=1 Omfm(ci, ai)) learn HMMs discriminatively via the maximum mutual in-
s R Z%zl o, frm (@) ’ formation objective [13, 23]. Its major drawback is the com-
M putational overhead due to the gradient-based search.
subject to Z am =1, a; >0 (10)
m=1 4. Experiments

The above optimization problem has to be solved by numer-
ical methods (e.g. conjugate gradient search). However, it

3This optimization is very hard — at least as hard as CML of a single
BNC model. We can skip this step without any harm.

In this section, we demonstrate the classification perfor-
mance of the proposed methods. We focus on the task of
classifying sequences, a challenging problem in many areas
of pattern recognition, also relevant to the human motion
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Figure 1. Schematic view of true model
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Figure 2. Parameters of true model

modeling problem in computer vision. A NB with Gaussian
HMM(GHMM) class conditionals serves as a base BNC
model. We test the algorithms extensively on five datasets:
two synthetic datasets and three real world time-series
datasets. For each dataset, we compare the followings: (a)
ML: base BNC model learned generatively(e.g. [1]), (b)
BML: AdaBoost parameter boosting of [8], (c) MixBML.:
generative heuristic extension of BML learned via EM of
Sec. 2.3, (d) MixCML: discriminative heuristic extension
of BML via gradient search of Sec. 2.3, (e) BoostML: gen-
erative boosted mixture learning of [14], and (f) Boost-
CML: discriminative boosted mixture learning of Sec. 2.2.
All algorithms are implemented in Matlab.

4.1. Synthetic data generated by GHMM clusters

In this experiment, the true model is devised as a mixture
of four GHMMs, where its positive cluster is composed of
two GHMMs, f1p and f1y, and its negative cluster is an-
other mixture of two GHMMS, for and for. fig and fop
are chosen in a way that they generate sequences which look
very different, thus it is easy to distinguish the two. How-
ever, we constrain f1y and fop to generate sequences sim-
ilar to each other, that is, hard to classify. Thus they emit
sequences on the classification boundary. The base BNC
model to be learned has a suboptimal structure and con-
tains only two GHMM kernels, one for each class. Figure 1
shows a schematic view of this synthetic model. For sim-
plicity, we made all four GHMMs have the same order(the
number of states) as 2. The dimension is 2. For the de-
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Figure 3. Example sequences generated by true model

tails, the parameters of the model are chosen as in Figure 2.
The example sequences generated from this model are also
depicted in Figure 3.

The experiment was conducted by random 5-fold vali-
dation, where each fold comprised of a 50-sequence train-
ing set* generated by the true model. The test data con-
sisted of 100 sequences held constant during the experi-
ment. The sequence length was fixed to 30 samples, in
order to compare the method with standard distance-based
approaches. For simplicity, the order of the GHMMs in the
base model was fixed at 2, which equaled that of the true
model. The first component of BoostML and BoostCML
was chosen as the ML model, even though this is not re-
quired by the algorithms. The maximum number of itera-
tions of BoostML and BoostCML was set as 4. BoostCML,
however, sometimes stopped earlier than 4 when the condi-
tional log-likelihood score on the train data reached a value
sufficiently close to 0. We also ran BML for 10 iterations,
which seemed sufficiently large for convergence.

The average test errors and the normalized log-likelihood
scores on the test data are shown in Table 1. The table also
contains the test errors of 1NN classifiers, where the dis-
tance between sequences is estimated by either Dynamic
Time Warping(DTW) or naive Euclidean distance. Among
the set, BoostCML has the highest classification accuracy,
meaning that it boosts the incorrect base model structure
effectively. The other mixture models show significant im-
provement over the single ML model. However, the meth-
ods that utilize a generative objective tend to perform worse.

4We also performed the experiment with smaller(20-sequence) train
data under the same configuration as that of the larger one. The test errors
were: ML(19.00%), BML(6.80%), MixBML(7.00%), MixCML(6.00%),
BoostML(2.80%), BoostCML(1.60%), DTW(6.20%), and Euc.(25.4%).
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Table 1. Results for GHMM synthetic data: Average test error and
log-likelihood on the test data are shown. The log-likelihood score
is normalized with respect to the sequence length.

Test Error (%) | Log-Likelihood
ML 19.60 -5.51
BML 6.40 N/A
MixBML 5.40 -4.96
MixCML 5.20 -5.06
BoostML 4.20 -4.64
BoostCML 0.60 -5.15
1-NN DTW 2.60 N/A
1-NN Euc. 18.60 N/A

BoostML
BoostCML

Test Error(%)
=

1(=ML) 2 3 4
Mixture Order (# of Iterations)

Figure 4. Classification performance improvement over the boost-
ing iterations: BoostML vs. BoostCML

The log-likelihood scores of the mixture models are greater
than that of the single model, which implies that the mixture
models with proposed learning methods still enjoy the ben-
efits of generative models, such as the richness in synthesis.

Furthermore, we compared BoostML and BoostCML in
terms of performance improvement over the boosting iter-
ations. The test errors of BoostML and BoostCML, as the
mixture order varies from 1 to 4, are shown in Figure 4.
Note that the order-1 mixture is ML. As the order increases,
BoostCML achieves more dramatic decrease in the test er-
ror than BoostML, especially from order 1 to 2. From this,
we can conclude that the discriminative mixture learning
outperforms the generative counterpart.

4.2. Control Chart synthetic data

The control chart dataset® contains 600 time-series se-
quences synthetically generated by a statistical process.

5The dataset is obtained from [10].

Table 2. Test error(%) on Control Chart dataset

ML BML MixBML MixCML
931 4+£3.79 | 5.67 £2.50 | 551 +£2.36 | 476 +2.16
BoostML BoostCML | 1-NN DTW 1-NN Euc.
8074275 | 4114144 | 2734093 | 7.93 + 1.42

There are six different classes®, each of which has 100 se-
quences. Every sequence is 1D with the same length 60.
Since it is visually very easy to distinguish class 2(Cyclic)
from others, we eliminate class 2, thereby yielding a 5-class
problem. The experiments were conducted with a random
10-fold validation, where each fold consists of 50 training
sequences (10 sequences randomly from each of 5 classes)
and 450 testing. The GHMM order was fixed at 2, which
seemed best for generalization. The maximum number of
iterations of the boosting algorithms was set as 10. For
the algorithms based on the AdaBoost (i.e. BML, MixBML,
and MixCML), we applied AdaBoost.M1 of [2].

The test error is shown in Table 2. DTW shows excel-
lent classification performance, however, the drawback of
DTW is that the computational complexity is quadratic in
the number of sequences. On the other hand, all the pro-
posed mixture learning algorithms have complexities linear
in the number of sequences’. Among the generative mod-
els, BoostCML yields the best performance, which is com-
parable to 1-NN with DTW. We can also see that MixCML
slightly improves BML. From this experiment, we can con-
clude that a mixture learned discriminatively works well in
multi-class problem setting.

4.3. Gun/ Point data

The binary class dataset contains 200 sequences (100 per
class) of gun draw(class 1) and finger point(class 2).® The
sequence is 1D, representing the x-coordinate of the cen-
troid of the right hand, and the same length 150. This time-
series dataset is a typical example where 1-NN with either
a naive Euclidean distance or a DTW with small Sakoe-
Chiba [17] band size constraints extremely works well’.

Our experimental setting is as follows: 20 sequences (10
from each class) was randomly chosen as the training set,
and the remaining 180 for the test set, repeated 10 times to
form 10 random folds. The sequences were pre-processed
by Z-normalization, making mean = 0, stdev = 1. The

%Normal, Cyclic, Increasing trend, Decreasing trend, Upward shift, and
Downward shift.

"Here, we assume that the number of numerical steps in EM or gradient
search for the proposed algorithms is considered constant with respect to
the number of train/test sequences.

8For more information about the data, please refer to [10] from which
the dataset is obtained.

“For the notational convenience, the ordinary DTW which has no band
size constraints is denoted as either “DTW (c0%)” or just “DTW”.
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Table 3. Test error(%) on Gun / Point dataset

ML 36.22 £9.62 BoostCML | 17.28 + 5.67
BML 28.78 £ 13.75 || DTW (c0%) | 22.33 +5.75
MixBML | 27.67 £ 11.73 || DTW (10%) | 15.72 £ 3.47
MixCML | 27.39 4 12.06 DTW (3%) | 13.28 +4.83
BoostML | 19.28 £ 6.15 1-NN Euc. 19.39 + 5.60

0.5

GHMM order was fixed at 10 to describe 2-3 states for deli-
cate movement around the subject’s side, 2-3 states for hand
movement from/to the side to/from the target, 1-2 states at
the target, and 2-3 states for returning to the gun holster.
The maximum number of iterations of the boosting algo-
rithms was set as 10.

As shown in Table 3, 1-NN based on DTW with properly
chosen Sakoe-Chiba band size(3%) outperformed the gen-
erative models. BoostCML still achieves competitive recog-
nition accuracy, and best among generative models, on this
difficult problem. Note also that the performance of 1NN
varies significantly with the choice of the band parameter,
yielding subpar performance of unconstrained DTW.

4.4. Australian Sign Language(ASL)

This dataset'? is composed of about 100 signs generated
by five signers with different levels of skills. In this experi-
ment, we consider only 10 signs(hello, sorry, love, eat, give,
forget, know, exit, yes, no). In the original ASL dataset,
each time slice of a sequence consists of 15 features, corre-
sponding to the hand position, hand orientation, finger flex-
ion, and more. As recommended, we ignored the 5", 6",
and 11"-15!" features, yielding dimension 8.!' In contrast
with the Gun / Point dataset, the DTW is not very helpful
because the lengths of sequences in the dataset are very di-
verse(e.g. =57, 0 = 16, max = 296, min = 17). To prevent
occasional noisy spikes in the original sequences, we pre-
processed them by 1D median filter.

We consider to distinguish one sign from another, facing
45 binary classification problems. Instead of using all the
sequences in the original dataset, we selected 20 sequences
(4 from each of 5 signers) from each sign for the leave-one-
out test. In other words, each problem has 40 folds, each
of which is composed of a train set of 39 sequences and
1 test sequence. The GHMM order is chosen small(3) to
prevent overfitting. The boosting algorithms iterate up to
10 steps. All the results are recorded in Table 4. Note that
we included only the DTW with no band-size constraint,
which was superior to those with constraints. Figure 5 de-
picts the scatter plots of test errors comparing BoostCML

10The dataset is from UCI KDD archive [6].

It seems visually reasonable to ignore the 7t"-10" features because
they correspond to less significant finger flexion. The authors conducted
the same experiment by using only 6 features(15¢-6¢"), where the result
was more or less the same.
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Figure 5. Test error scatter plots for Australian Sign Language
dataset: Each point corresponds to each of 45 binary class prob-
lems.

against others. As before, the mixture models significantly
outperform a single model. In this instance, two heuris-
tic methods yield highest accuracies, while BoostCML per-
forms similarly well.

4.5. Georgia-Tech Speed-Control Gait database

The proposed algorithms were also tested on the human
gait recognition problem. The data of interest is the speed-
control gait data'> which was collected from Human Identi-
fication at a Distance(HID) project performed by computa-
tional perception laboratory at Georgia-Tech. The database
is originally intended for studying distinctive characteris-
tics(e.g. a stride length or a cadence) of human gait over

12The database is available online at “ftp://ftp.cc.gatech.edu/pub/
gvu/cpl/walkers/speed_control_data/”.
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Table 4. Classification accuracy on Australian Sign Language for 45 binary class problems: The numbers represent how many folds (out

of 40) are correctly classified. Higher scores are better.

Class | Class Mix Mix Boost | Boost | INN Class | Class Mix Mix Boost | Boost | 1NN
ML | BML ML | BML
1 2 BML | CML | ML CML | DTW 1 2 BML | CML | ML CML | DTW
hello | sorry | 32 37 37 37 35 37 35 love no 35 39 39 39 36 38 37
hello | love 32 36 37 37 35 36 37 eat give 39 37 39 39 39 39 34

hello | eat 37 39 39 39 36 40 38

eat forget | 35 37 38 38 37 36 27

hello | give 40 40 40 40 40 40 39 eat know | 39 39 39 39 39 39 40
hello | forget | 31 38 39 39 38 37 22 eat exit 38 38 38 38 36 38 34
hello | know | 39 39 39 39 40 39 40 eat yes 40 40 40 40 39 40 40

hello | exit 34 37 36 36 34 37 39

eat no 32 38 38 38 35 38 36

hello | yes 39 39 40 40 40 40 40

give forget | 39 39 39 39 39 39 24

hello | no 36 38 39 39 38 38 39

give know | 40 40 40 40 40 40 39

sorry | love 34 35 30 31 36 35 32

give exit 35 40 39 39 35 38 39

sorry | eat 37 36 37 37 33 34 31

give yes 39 39 39 39 39 39 40

sorry | give 38 38 38 38 39 38 34 give no 36 38 39 39 38 38 38
sorry | forget | 38 38 38 38 38 37 28 forget | know | 39 39 39 39 39 39 38
sorry | know | 39 39 39 39 40 39 40 forget | exit 39 39 39 39 39 39 32

sorry | exit 33 35 37 37 32 36 37

forget | yes 37 37 37 37 38 37 26

sorry | yes 40 40 40 40 39 40 36

forget | no 34 39 38 38 38 38 36

sorry | no 31 37 38 38 36 37 34

know | exit 39 39 39 39 39 39 39

love eat 35 36 37 37 32 37 35

know | yes 34 35 36 36 38 35 36

love give 39 38 38 38 39 39 31 know | no 38 38 38 38 38 38 36
love forget | 40 40 40 40 39 40 23 exit yes 38 38 38 38 38 38 35
love know | 39 39 39 39 40 39 40 exit no 35 38 38 38 38 38 34

love exit 34 36 35 35 34 34 37

yes no 27 36 36 36 36 35 36

love yes 40 40 40 40 40 40 40

36.5 382 | 382 | 375 37.9 352

Average

different speeds [19, 20]. For each of 15 subjects, and for
each of 4 different walking speeds(0.7m/s, 1.0m/s, 1.3m/s,
1.6m/s), 3D motion capture data of 22 marked points (as
depicted in [19]) were recorded in a sophisticated way, for
9 sessions. The data was sampled at 120 Hz evenly for
exactly one walking cycle, meaning that slower sequences
were longer than faster ones. The sequence length ranges
from approximately 100 to 200. Each marked point has a
3D coordinate, yielding 66(=22 - 3)-dim sequences.

Apart from the original purpose of the data, we are in-
terested in recognizing subjects regardless of their walk-
ing speeds. Taking only the first 5 subjects into consider-
ation, and not distinguishing their walking speeds, we for-
mulated a 5-class problem where each class consists of 36(=
4 speeds * 9 sessions) sequences. However, the dataset con-
tains extremely good features for classification. For exam-
ple, the single ML classifies almost all sequences correctly,
which implies there is nothing to improve(or boost). In
order to distinguish the performances of the algorithms, it
is necessary to make the problem more difficult. We con-
sidered two modifications: (1) Instead of using the origi-
nal one-cycle sequences, we took sub-sequences randomly

where the sub-sequence length was normally distributed
N (= 80,0 = 0.1xoriginal — length). Given the length,
the starting point of the sub-sequence was selected uni-
formly at random. (2) The features related only to the lower
body part were used: the joint angles of torso-femur, femur-
tibia, and tibia-foot. Thus total 6 features (left/right each)
were used.

With this manipulated data, each of 10 random folds of
train/test data was constructed as follows: For each subject,
and for each speed, we randomly picked 5 sequences (out of
9 sessions) for the train data. In other words, the train data
had 100(=5-5-4) sequences from all subjects with all speeds
evenly. The other 80(=4 - 5 - 4) sequences were put into a
test dataset. The GHMM order was fixed at 3, the maxi-
mum number of boosting iterations was set as 20. Table 5
summarizes the results. We included only DTW with no
band size constraints because the constrained DTWs work
very poorly (e.g. test errors > 25%). As in the ASL case,
MixCML has the smallest test error. BoostCML, compa-
rable to MixCML, outperforms 1-NN DTW. Therefore, the
proposed algorithms are shown to work well in the human
gait recognition problem as well.
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Table 5. Test error(%) on Georgia-Tech S

peed-Control Gait dataset

ML BML MixBML

MixCML

BoostML BoostCML 1-NN DTW

11.50 £4.78 | 10.13 £3.61 | 4.50 £3.55

4.00 + 3.48

11.87 £5.11 | 5.75+2.78 | 8.38 £ 3.68

5. Conclusions

We introduced novel discriminative methods for learn-
ing mixtures of generative models. Unlike traditional ap-
proaches to discriminative learning of generative models,
the proposed methods are highly computationally efficient.
This makes them suitable for domains described by com-
plex generative models, such as the spaces of time-series se-
quences. We show, through an extensive set of evaluations,
that a mixture learned discriminatively is not only superior
to a single generative model, but also comparable in perfor-
mance to ensembles of discriminative models. Moreover,
the mixture model continues to enjoy other benefits of gen-
erative models such as the potential for powerful synthesis
of data. In our future work, we will further examine the pro-
posed model’s performance in data synthesis contexts. We
will also consider principled ways to determine the order of
the mixture, a problem related to model selection. Finally,
we will examine other families of models, such the Markov
random fields, that may benefit from our approach.
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