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Abstract—The use of Bayesian networks for classification including computational molecular biology [49] [38] [28],
problems has received significant recent attention. Although com- computer vision [51] [44] [48], relational databases [19], text
putationally efficient, the standard maximum likelihood learning processing [11] [35] [31], audio processing [43] and sensor

method tends to be suboptimal due to the mismatch betweenf . 401 Its simolest f th Ve B lassifier. h
its optimization criteria (data likelihood) and the actual goal of usion [40]. Its simplest form, the naive Bayes classifier, has

classification (label prediction accuracy). Recent approaches to received significant amount of attention [33] [15] [37].
optimizing classification performance during parameter or struc- However, standard Maximum Likelihood (ML) parameter

ture learning show promise, but lack the favorable computational |earning in Bayesian network classifiers tends to be subop-
properties of maximum likelihood learning. In this paper we imai [18]. It optimizes the joint likelihood, rather than the

present Boosted Bayesian Network Classifiers, a framework to diti | likelihood | | lated to th
combine discriminative data-weighting with generative training condiuonal fixelinood, a score more closely related 1o the

of intermediate models. We show that Boosted Bayesian network classification task. Unlike the joint likelihood, however, the
Classifiers encompass the basic generative models in isolation,conditional likelihood cannot be expressed in a log linear form,
but improve their classification performance when the model therefore no closed form solution is available for the optimal
structure is suboptimal. This framework can be easily extended 5 3 meters. Recently there has been substantial interest in
to temporal Bayesian network models including HMM and D - . .
DBN. On a large suite of benchmark data-sets, this approach dlscrlmlnatllve _tra',n",qg Pf gen.eratlvg models coupled with
Outperforms generative graphica| models such as naive BayesY advances in discriminative Opt|m|zat|0n methods for CompleX
TAN, unrestricted Bayesian network and DBN in classification graphical models [23] [35] [31] [6] [2] [50].

accuracy. Boosted Bayesian network classifiers have comparable Under the correct model structure, the parameters that

or better performance in comparison to other discriminatively y4yimize the likelihood also maximize the conditional like-
trained graphical models including ELR-NB, ELR-TAN, BNC-2P, . - .
BNC-MDL and CRF. Furthermore, boosted Bayesian networks lihood (see section Ill). For this reason, structure learn-

require significantly less training time than all of the competing INg [10] [25] [20] [7] [26] [32] can potentially be used
methods. to improve the classification accuracy. However, experiments

show that learning an unrestricted Bayesian network fails to
outperform naive Bayes in classification accuracy on a large
. INTRODUCTION sample of benchmark data [18] [24]. Friedman et al. attribute
A Bayesian network is an annotated directed graph thiiis to the mismatch between the structure selection criteria
encodes the probabilistic relationships among variables (@fata likelihood) and the actual goal for classification (label
interest [42]. The explicit representation of probabilistic relgrediction accuracy). They proposed Tree Augmented Naive
tions can exploit the structure of the problem domain, makirBayes (TAN) [18], a structure learning algorithm that learns
it easier to incorporate domain knowledge into the modal maximum spanning tree from the attributes, but retains
design. In addition, the Bayesian network has a modulaaive Bayes model as part of its structure to bias towards
and intuitive graphical representation which is very beneficitie estimation of conditional distribution. BNC-2P [24], on
in decomposing a large and complex problem representatitie other hand, is a heuristic structure learning method with
into several smaller, self-contained models for tractability discriminative scoring function. Since BNC-2P relaxes the
and efficiency. Furthermore, the probabilistic representatitmee structure assumption of TAN and directly maximizes
combines naturally with the EM algorithm to address problentse conditional likelihood, it is shown to outperform naive
with missing data. These advantages of Bayesian netwoikayes, TAN, and generatively trained unrestricted networks.
and generative models as a whole, make them an attractMéhough the structures in TAN and BNC-2P are selected
modelling choice. discriminatively, the parameters are trained via ML training
In many problem domains where a Bayesian network fer computational efficiency.
applicable and desirable, we may want to infer the label(s)In this work we propose a new framework for discriminative
for a subset of the variables (class variables) given an imaining of Bayesian networks. Similar to a standard boosting
stantiation of the rest (attributes). Bayesian network claapproach, we recursively form an ensemble of classifiers.
sifiers [18] model the conditional distribution of the classlowever in contrast to situations where the weak classifiers
variables given the attributes and predict the class with thee trained discriminatively, the “weak classifiers” in our
highest conditional probability. Bayesian network classifiersethods are trained generatively to maximize the likelihood
have been applied successfully in many application areafsweighted data. Our approach has two benefits. First, ML



training of generative models is dramatically more efficiewe setf,, pq(.,) equal to Pz(z;|Pa(z;)) for each possible
computationally than discriminative training. By combining/alue of X; and Pa(X;)*. For notational simplicity, we define
maximum likelihood training with discriminative weightinga one-to-one relationship between the paramétemd the
of data, we obtain a computationally efficient method faentries in the local Conditional Probability Table. Given a
discriminatively training a general Bayesian network. Seconset of i.i.d. training dataD = {z!, 22, 23,... 2}, the goal
our classifiers are constructed from generative models. Thisislearning a Bayesian networB is to find a {G, 6} that
important in many practical problems where generative modelscurately models the distribution of the data. The selection
are desired or appropriate. of 6 is known as parameter learning and the selectioty a$
This work builds on our earlier effort to combine boostingtnown as structure learning.
with Dynamic Bayesian network in the application of audio- The goal of a Bayesian network classifier is to correctly
visual speaker detection [8] [39]. Preliminary results on theredict the label for clas&,. € X given a vector of attributes
BAN algorithm were published in [27]. X, = X\ X.. A Bayesian network classifier models the
The paper makes three contributions: joint distribution P(X.,X,) and converts it to conditional
1) We introduce a new discriminative structure learnindistribution P(X.|X,). Prediction for X, can be obtained
method, called Boosted Augmented Naive Bayes (BAN)y applying an estimator such as MAP to the conditional
classifier. We demonstrate that BAN is easy to impleistribution.
ment and computationally efficient, with classification
accuracy superior to naive Bayes, TAN, BNC-2P, BNC- 1. PARAMETER LEARNING

MDL, HGC and comparable to ELR. ) . .
2) We interpret a Boosted Bayesian network classifier as!n€ Maximum Likelihood (ML) method is one of the most
commonly used parameter learning techniques. It chooses

a graphical model consisting of a collection of En= a N
semble Bayesian Network models, and present the fiFQ{a parameter values that maximize the Log Likelihood (LL)

comprehensive empirical evaluation and comparison §fore, a measure of how well the model represents the data.

Boosted Naive Bayes against competing methods orcA/€N @ set of training data) with A/ samples and a

large number of standard datasets. Bayesian Network structur& with N nodes, the LL score
3) We extend Boosted Bayesian network framework {5 decomposed as:
include temporal models such as Dynamic Bayesian M M N
Networks (DBNs) and empirically demonstrate thatLLq(6|D) = Y log Ps(D') => > 1086, pa(s (1)
Boosted-DBN outperforms regular DBN in the tasks of i=1 i=1j=1 ’
sensor fusion and label sequence predictions. Furth'e.r- M Z Bo (x| Pa(x)) 108 Oy pa(s)-
more, we demonstrate that Boosted-DBN has classifi- el
cation accuracy comparable with Conditional Random Pa(@)epalx)
Fields (CRFs) [31], at the same time, have less compu-LL (4| D) is maximized by simply setting each parameter
tational cost in training. 0. Pa() 10 Pp (2| Pa(x)), the empirical distribution of the data
This paper is divided into 11 sections. Section 1 through 3. For this reason, ML parameter learning is computationally
review the formal notations of Bayesian networks and paramefficient and very fast in practice.
ter learning methodologies. Section 4 introduces AdaBoost asHowever, the goal of a classifier is to accurately predict the
an effective way to improve the classification accuracy of naivgbel given the attributes, a function that is directly tied to the
Bayes. Section 5 and 6 extend this work to structure learniegtimation of the conditional likelihood. Instead of maximizing
and proposes the BAN structure learning algorithm. Sectiontife LL score, we would prefer to maximize the Conditional
extends this work to temporal models by proposing Booste@dg Likelihood (CLL) score. As pointed out in [18], the LL
Dynamic Bayesian Network Classifiers. Section 8 contains tBeore factors as
experiments and analysis for BAN structure learning algorithm

M
and Boosted Dynamic Bayesian Network Classifiers. The LL¢(6|D) ZCLLG(Q‘D)ﬁ-ZlOng(.%‘i)
last three sections contain related works, conclusions and P ¢
acknowledgements.
where

II. BAYESIAN NETWORK CLASSIFIER

A Bayesian networkB is a directed acyclic graph that
encodes a joint probability distribution over a set of random = R
variablesX = {X;, X,..., Xy} [42]. It is defined by the M Y Pp(aeta) log Py(|z,). (3)
pair B = {G,0}. G is the structure of the Bayesian network. &

0 is the vector of parameters that quantifies the probabilistic

model. B represents a joint distributiofiz (X)), factored over  'We use capital letters to represent random variable(s) and lowercase letters
the structure of the network where to represent their corresponding instantiations. Subscripts are used as variable
indices and superscripts are used to index the training #at@X ;) represents
N N the parent node of; and Pa’(X;) is the jth instantiation ofPa(X;) in
P3(X) = H Ps(X;|Pa(X;)) = H Ox,|Pa(x,)- the training data. In this paper, we assume all of the variables are discrete
i1 i1 and fully observed in the training data.

CLLg(0|D)

M . .
> log Py(f|z)) )
=1



TABLE |
BOOSTEDPARAMETER LEARNING ALGORITHM.

1) Given a base structur@ and the training datd, where M is the number of training case® = {z !z}, z2z2, ..., 2,MxM} andz € {-1,1}.
2) Initialize training data weights wittv; = 1/M,:=1,2,..., M
3) Repeat fork =1,2,...

o Given G, 0, is learned through ML parameter learning on the weighted djta

o Compute the weighted erragyr), = Ew[l%#gk (za))s Br = 0.51log 1;5:”

o Update weightav; = w; exp{—0Brz. fg, (z,;)} and normalize.

4) Ensemble output: sigh’, Gk fg, (Ta)

Given the correct network structure G, parameters that mdr-binary classification, Equation 7 is then updated as:
imizes LLs also maX|m|zes CLk. Howe\{er, |n' practice 'thg B exp{aF(x,)}

structure may be incorrect and ML learning will not optimize Pp(2|z,) = exp{F(2)} + exp{—F(z)}

the CLL score, which can result in a suboptimal classification “ “

decision. Equation 3 is maximized when = xp{ae (7))
exp{z.F(x,)} + exp{—a.F(x,)}
emc H eza Pa(x, D = !
Py(ao|z) = Palt)  — Po(wla).  (4) 1+ exp{—22.F ()} ®)

7-2 efcc H axa\Pa(wa)

Similar to Equation 3, the negative CLL score for the ensemble

Bayesian network classifier can be defined as:
However, for a generative model such as a Bayesian network,

Equation 4 cannot be expressed in log-linear form and has no

closed form solution. A direct optimization approach requires —CLLr(FID) ZlOg z|x ©)
computationally expensive numerical techniques. For example, 1

the ELR method of [23] uses gradient descent and line search = M Z PD (z.7,) log 7(10)

to directly maximize the CLL score. However, this approach is wacXa Pr(te|ta)
unattractive in the presence of a large feature space, especially

when used in conjunction with structure learning. B. Exponential Loss Function as an upper bound on the

negative CLL score

As an alternative to the CLL score, we are proposing to
IV. BOOSTEDPARAMETER LEARNING minimize the classification error for binary ensemble classifier
via the following loss function.

A. Ensemble Model M
i i 0 forz<0
Instead of maximizing the CLL score for a single Bayesian L035F = Z 0=z, F(1,)),0(2) = { 1 otherwise
network model, we are going to take the ensemble approach =1
and maximize the classification performance of the ensemtigssr is simply the number of incorrectly predicted class
Bayesian network classifier. labels in the training data. An upper bound on Equation 11 is

Given the class,. and the attributes,, an ensemble model given by the following exponential loss function [17]:

has the general form: M , ‘
ELFp =Y exp{—z/F(z})} (11)
i=1
Fy (%) Zﬁkfk a (%a)- (5)  Solving for z.F(z,) in Equation 8 and combining with Equa-
tion 11, we have
where f; .. (z,) is the classifier confidence on selecting label _ 1 — Pr(z/|z,)
Z. given ;Z and g, is its corresponding weight. In the case LFr = ;eXp {QIOg Pr(z}|z) } (12)
where 2, € {—1,1}, fra (z.) is typically defined as the 1;4
following: S 1 — Pp(z/|z,)
— Pp(z}|z,)
.fk,.tc (xa) = Icfk’(xa) (6) =1
~ 1
where fi(x,) is the output of each classifier givep. Equa- - M Z PD(CEC%)\/ Pe(z|a) L (3)
tion 5 can be expressed as a conditional probability distribution e
over X, given the additive model F: Equation 13 simply leads to a loss function that uses the square
root of the inverse conditional distribution of the true training
P () = exp{F. (2a)} (7) Sequence, which can be readily proven as an upper bound for

> rex, exp{Fuy(2a)} negative CLL score in Equation 10.



C. Boosted Parameter Learning Di,s - 0;
An ensemble Bayesian network classifier takes the form o +
Fy 3 whered is a collection of parameters in the Bayesian o Be _ oo e
network model angb is the vector of hypothesis weights. We 2= : o !
want to minimize ELk g of the ensemble Bayesian network 00; - OZ +4,
classifier as an alternative way to maximize the CLL score. We o Tt of |
used Discrete AdaBoost algorithm, which is proven to greedily  °*| . o0
and approximately minimize the exponential loss function in b o osoa o O Mgt M
Equation 13 [17]. (a) BNB(0.151) vs NB(0.173)  (b) BNB(0.151) vs TAN(0.184)
At each iteration of boosting, the weighted data uniquely ,
determines the parameters for each Bayesian network classifi¢ .
0 and the hypothesis weights, via efficient ML parameter 04 o4
learning. The algorithm is shown in Table I. - > o p
There is no guarantee that AdaBoost will find the global g.. ﬂ’f ZZZ
minimum of the ELF. Also, AdaBoost has been shown to ©2 f @ o +
be susceptible to label noise [13] [3]. In spite of these °° Jr
issues, boosted classifiers tend to produce excellent resull oo
in practice [47] [14]. Boosted Naive Bayes (BNB) has been % <oi %z o5 o¢ os ST or__wn e s

BNB

previously shown to improve the classification accuracy of
naive Bayes [16] [45]. In the next section, we demonstraté® BNB(0-151) vs BNC-2P(0.164)d) BNB(0.151) vs ELR-NB(0.161)

that BNB outperforms naive Bayes and TAN on a large set gfy. 1.  Scatter plots for experiments on 25 sets of UCI and artificial
benchmark data. benchmark data. The average testing error is shown next to the method name.

D. Experiments we find BNB to slightly outperform the BNC-2P discrimi-

We evaluated the performance of BNB on 23 datasets frdéﬁtg% gflr)ucture learning algorithm on average testing error

the UCI repository [5] and two artificial data sets, Corral an ) )
Mofn, designed by John and Kohavi [30]. Friedman et al., We also compared BNB to ELR-NB, a naive Bayes trained

Greiner et al. and later Grossman et al. used this group of dding ELR algorithm. The p_erformancg scores for EI.‘R'
sets as benchmarks for Bayesian network classifiers. We u were taken from the auxiliary material published online

hold-out test for larger data sets and 5 fold cross vaIidaticW‘ItB[.z‘Q’]' From the grgrﬁ) héljkliléeasonha}ble 0 (;obnclu?]e thit
for smaller sets. Our implementation is based on the B Is comparable wit -NB on this set of benchmar

toolkit by Kevin Murphy [36]. For binary classification, ata. How_ever, BNB hgs computationa_l co_mplexity_a_symptot-
we used Discrete AdaBoost for parameter boosting. In tfﬁ?”y equivalent to naive Bayes, making it an efficient and

multi-class case, we used AdaBoost.MH [17]. The competir?éfnple alternative to ELR-NB.

Bayesian network classifiers are described below:
E. Computational Complexity of BNB

« NB: naive Bayes. Given a naive Bayesian network withv attributes and

« TAN: Tree Augmented naive Bayes [18]. training data with)/ samples, the ML training complexity is

« BNC-2P: Discriminative structure selection via CLLO(INM), optimal when every attribute is observed and used
score. [24]. for classification. Parameter boosting for a naive Bayes takes

« ELR-NB: NB with parameters optimized for conditionalO(NMT) whereT' is the number of iterations of boosting.
log likelihood [23] via gradient descent. In our experiments, boosting seems to give good performance

with a constant number (10-30) of iterations regardless of the
: : : ber of attributes. Therefore, the training complexity for
Table IV in Page 9 lists the average testing error f umo . o . . o
BNB and other Bayesian network classifiers including o NBHLS esise;]tlall)()(NM).Tms is consistent with the finding
of Elkan [16].

novel algorithm BAN, which is introduced in Section 5. : to other discriminative trained B .
Figure 1(a) to 1(d) presents the average testing errors annﬁn comparison 1o other discriminative traine ayesian
tworks, BNB has the least asymptotic training complexity.

their corresponding one-standard-deviation bars for competi le. TAN. widel ded the discriminati
Bayesian network classifiers. In Figure 1, points above the li r exampie, » Widely regarded as the discriminative

y — x correspond to data sets for which BNB outperforms thséruc:tur;a\l extension to naive Bayes, has training complexity

competing algorithm. The average testing error is shown nec;ItO(N M).

to the method name. We applied pairwise t-test on the 25 pairs

of average testing errors for competing algorithms to obtafn Ensemble Bayesian network classifier

confidence scores. The simplest form of Boosted Bayesian network is the
Figure 1(a) and 1(b) show that BNB has lower averagg@\B model. As shown in Figure 2, it can be represented as

testing error than NBp < 0.02) and TAN (p < 0.02). Also, a graphical model. We define a set of hidden binary nodes



Fig. 3. An example of ANC, the dotted edges are structural extensions to
Naive Bayes.

)231 Xa, - X.an model, but in practice, since the structure space is super
exponential in the number of variables in the graph, it is
not feasible in nontrivial networks. Several tractable heuristic

Fig. 2. Graphical representation for Boosted Naive Bayes. approaches have been proposed to limit the search space. The
K-2 [10] algorithm and the variant MCMC-K2 [20] define a
node ordering such that a directed edge can only be added from

¥; € {—1,1} which correspond to the outputs of the naiva high ranking node to a low ranking node. Heckerman [26]

Bayes classifier after each iteration of boosting. The lowgroposed a hill-climbing local search algorithm to incremen-

layer of the graphical model is a set of Bayesian netwotklly add, remove or reverse an edge until a local optimum is
classifiers, with parameters trained using ML learning on re=ached.

weighted training data. The top layer is a discriminative model. An alternative structure penalty is to simply limit the num-

From Equation 8, the top layer encodes the conditionbér of parents an attribute can have. An Augmented Network
distribution for X. given the value of the hidden nodes Classifier (ANC) [29], in which each attribute is limited to

where have at most one more parent besides the class node, is an
p B 1 example of this approach. Friedman et al. [18], based on the
(Telth1, .. N) = 1+ oxp{—25", et} work by [9], proposed an efficient algorithm to construct an

optimal Tree Augmented Naive Bayes (TAN), a special case
Since the lower layer model can be any generative mod¥lthe ANC model.
including naive Bayes, TAN, HMM and etc, we call this graph- K-2, Heckerman’s method, ANC and TAN all utilize stan-
ical representation as Ensemble Bayesian Network Classifi¢fard ML parameter learning for simplicity and efficiency.
Given the excellent performance of BNB, it is natural to ask
whether it could be combined with structure learning to further VI. BOOSTEDAUGMENTED NAIVE BAYES
improve the classification performance. In the next section, Although the training complexity of parameter boosting is
we introduce BAN, a novel discriminative structure learningyithin a constant factor of ML learning, combining parameter
algorithm. boosting with structure search is still impractical. Even with
constrained search space, hill-climbing search and K-2 algo-
V. STRUCTURELEARNING rithm could still search through a large number of structures.
Given training data D, structure learning is the task of On the other hand, TAN supports efficient learning by
finding a set of directed edge€ that best models the limiting the number of parents per attribute to two. TAN
true density of data. In order to avoid overfitting, Bayesiafugments a standard naive Bayes classifier by adding up to
Scoring Function [10] [26] and Minimal Description Length!V — 1 additional edges between attributes. The additional
(MDL) [32] are commonly used to evaluate structure carf:dges are constructed from a maximal weighted spanning tree
didates. The MDL score is asymptotically equivalent to thwith attributes as vertices. The weights are defined as the
Bayesian scoring function in the large sample case and tfRnditional mutual informatiod, (X,,; X, |X.) between two
paper will concentrate on the MDL score. MDL score igtributesX,,, X, given the class nod&’. where

defined as el (X X, | X.)
_log P(zq,2q,|xc)
MDL(B|D) = —=!|B| — LL(B|D) 14  _ p ] aiTa;|Te
2 z):( ('Taixajxc) ng(xai xc)P(xaj|xc)
where|B]| is the total number of parameters in modgl and xaiefiiexa;exaj

|D| is the total number of training samples. TAN | , lorith h imal
Grossman et al. [24] proposed the CMDL scoring function earning algorithm constructs the optimal tree-
ugmented networBr that maximized.L(Br|D). However,

by substituting LL score with CLL score in the second ter
01)! Equation 194]1_ rﬂ]e TAN model adds a fixed number of edges regardless of

the distribution of the training data. If we can find a simpler
CMDL(B|D) = log |D| |B| — CLL(B|D) modeI. to describe the underlying condit_ional distribution, then
2 there is usually less chance of over-fitting.
An exhaustive search over all structures against an evalua©Our BAN learning algorithm extends the TAN approach
tion function can in principle find the best Bayesian networnksing parameter boosting. Starting from a naive Bayes model,



TABLE Il
BOOSTEDAUGMENTED NAIVE BAYES.

1) Given training data D, construct a complete grapp,;; with attributesX, as vertices. Calculaté,(Xa,; Xq,|Xc) for each pair of attributes(q,

1 # j, where ( "
P(xg.xa,|Te
I,(Xa,; Xa. | Xe) = P(xa.xa,ze)l * 7 15
p( " a7| C) za,zE;(a, (xazmaj wC) ng(l‘az|$c)P($aj‘xc) ( )
waj€Xa; weEXe
2) ConstructGran from Gy, setGpan = naive Bayes, CLes; = — inf.

3) Fork=1to N—1
« Parameter boosting usingz 4 v as base structure.
« Evaluate the CLL score for the curre@ts 4 v, terminate if the new CLL score is less than GlL;.
o else, update CLi.;. Remove the edgéX., Xo;} containing the largest conditional mutual informationXa,; Xa;|Xc) from Gran and
add it tOGBAN.

at iterationk, BAN greedily augments the naive Bayes witlstate and an attribute variable. We 1€e to denote the state
k edges with the highest conditional mutual information. Weequence anX, to denote the discrete attribute sequénce
call the resulting structuréd3AN*. We then minimize the HMMSs can be decomposed into two components: the at-
ELF score of BANY* classifier with parameter boosting. BANtribute model in the form of a static Bayesian network, and
terminates when the added edge does not improve the Cihe state model that defines the state transition probability.
score. Since TAN containd’ —1 augmenting edges, BAN in In HMMSs, the state variables are distributed according to a
worst case evaluatd§—1 structures. This is linear comparingMarkov process.
to polynomial number of structures examined by K-2 or Heck- DBNs [22] generalizes HMMs by providing a more flexible
erman search. Moreover, in practice, BAN usually terminatespresentation of the dependencies within a time slice and
after adding 2 to 5 edges into naive Bayes. Therefore, thistween time slices. DBNs have successful applications to
approach is very efficient. system monitoring [34], gene discovery [53] and computer
The algorithm is shown in Table Il. Step 1 in BAN algorithnvision [41]. Structure learning [21] has been discussed for
has computational complexity ad(N?M ), where N is the DBN as well.
number of attributes and/ is the amount of training data.
Since we only add a maximum oV — 1 edges into the
network, step 2-4 has worst case complexity @fN2M). network
Thus BAN hasO(N?2M) complexity. o ) _
The BAN learning algorithm searches and evaluates onl Label sequence predlgtlon IS the tasl_< O.f inferring thg labels
a small number of structures, much less than competiﬂéthe state sequencé®, given an instantiation of the attribute

algorithms like BNC-2P and BNC-MDL. As a result, the basgcduenc&,. Typically HMM selects the label by applying an
Bayesian network structure constructed from BAN usual timator such as MAP to the estimated posterior distribution.

contains fewer edges than other competing structure learn in the §tat|c Bayesian n_etwork case, M L parameter leaming
algorithms. IN"HMMs is usually suboptimal for classification tasks. There-
fore, we extend the boosted parameter learning to Dynamic
Bayesian network to form an Ensemble Dynamic Bayesian
VIl. DYNAMIC BAYESIAN NETWORKS. network classifier.

, . . We propose to minimize the following label sequence
In this section, we extend the Boosting framework tBrediction loss function:

Dynamic Bayesian Networks (DBNs). We demonstrate that

B. Label Sequence Prediction and Boosted Dynamic Bayesian

the resulting classifiers outperform generatively trained DBNs J 1Ds] .
in label sequence prediction. We also show that Boosted Lossp = » Y O(—e/F(1a;)) (16)
Dynamic Bayesian networks has classification accuracy com- j=1i=1
parable with Conditional Random Fields (CRFs) [35], whilgyhere
has less training computational cost. _J 0 forz<0
O(z) .
1 otherwise

A. Hidden Markov Models Similar to the case of static Bayesian network, Equation 16
can be bounded by
A Dynamic Bayesian network extends a static Bayesian
network by explicitly representing the temporal relationship i
among the variables. Hidden Markov Models (HMMs) are ELSp = ZZGXP(*ICJ‘F(%J')) (17
one of the most commonly used DBN models, with successful 3=t
application to speech recognition [43], text classification [11]2x _ (y1 x2 . X7} andX. = {X.!, X.2,.., X.7}, whereT is

a ) “ta vt la

and computational biology [28]. A HMM model contains ahe length of the sequence.

J |Dj|



1) Given base DBN structure G anfitraining sequencd; o . 7, whereD; = {ma},xc},xa?,xci, . ,xa;Dj‘,xc‘ij‘}.
. J
2) Initialize data weightd}” with uniform distribution across all samples;; = 1/N,i=1,2,...,|D;| whereN = > |Dil.
i=1

3) Repeatfork =1,2,...,K
a) 6y is learnt through maximum likelihood parameter learning on the weightedidata
b) Compute the combined weighted label error for the training sequences = Ew[lmﬁﬁfek (za)) = 205 w} {1%;#% (za_,»>]

¢) Bi = 0.5logl=¢"k

erry,

d) Update weightsv, = w exp{Sxc/ fo, (za;)} and normalize.

K
4) Ensemble output: sigry_ B fo, (za)
k=1

TABLE Il
BOOSTFDBN TRAINS AN ENSEMBLE DYNAMIC BAYESIAN NETWORK CLASSIFIER TO IMPROVE LABEL PREDICTION ACCURACY

Given the weak classifief, (z,) at each iteration of boosting, True structure Naive Bayes
we can see, with easy maodification to the proof for Result @ Xc @ x°
in [17], that Discrete AdaBoost (Population version) greedily
and approximately maximizes Equation 17 by setting the / / \4\A
hypothesis weight$ as: Xa

yp ghtg oo >® .. o X @ . ()

B = 051 1—errg
k= 10108 erry, Fig. 4. Data is sampled from chain-structured Bayesian network. Therefore

h Naive Bayes is a sub-optimal classifier for this dataset.

where

= Ew[l%#gk ()] = ij {1%3#% ('”"f)} ’ distributions. Since the attributes are correlated, naive Bayes
N can sometimes give a suboptimal classification boundary.
The Boosted DBN parameter learning algorithm is shown in e present the average testing errors with their one-
Table II1. _ _ ~ standard-deviation bar in Figure 6. Figure 6(a) and 6(b) show
Step 3(a) in Table Il has computational complexity ofyat BNB and BAN has lower average testing error than NB
O(NM + C*>M), where C' is the cardinality of the state ;,, — 0.005). Figure 5 shows the decrease in negative CLL
space. This is essentially optimal when every feature is usgghre and testing error in each iteration of parameter boosting.
for classification in HMM. Step 3(b) evaluates the givemy, this dataset, BNB achieves the optimal Bayes error after 8
DBN via Forward-Backward algorithm with computationalierations but the negative CLL score continues to decrease.
complexity of O(C2NM). The computational complexity ywe want to point out that in 6 out of the 25 datasets, the
for Boost-DBN parameter learning algorithm is thereforgpoptimal posterior estimation by naive Bayes did not result
O(C?NMT), whereT is the number of boosting iteration. Iy |apel prediction error. In those datasets, NB, BNB and BAN
our experiments, Boosted DBN parameter learning algorith@aye similar testing error.
converges after 25-30 iterations of boosting. As shown in Figure 6(c), the average testing error for BNB
is only slightly higher than that of BAN. This is largely
because BNB achieved optimal Bayes error in 20 out of the
25 datasets due to the simplicity of our true model. BAN has
VIIl. EXPERIMENTS comparable testing accuracy with BNB in those 20 datasets

The experiments section is organized into three subsectiof8d has lower average testing error (difference of 2%) than
Subsection A through C contain experiments and ananyB in the remaining 5 datasets. I_\Iext section will show that
of BAN structure learning algorithm. Subsection D containi real-world datasets, where attributes often have complex

experiments and analysis for Boost-DBN algorithm. and strong dependence relationship, BAN outperforms BNB
by exploring the structures in the problem domain.

A. Experiments on BAN with simulated datasets

We show that when the structure is incorrect, BNB an%' Experiments on BAN with UCI datasets

BAN algorithm can significantly outperform their generative We used the same UCI datasets and evaluation procedures
counterparts. We generated a collection of data from binaag in Section 4.D to compare the accuracy of BAN with
chain-structured Bayesian network where the parent of eamtmpeting algorithms. For our experiments, we implemented
variable X; is its predecessak;_;. The class nod&; is the BAN, BNB, BNC-2P and TAN, and we used the performance
root of the chain. The chain-structured Bayesian network rigsults for BNC-MDL, ELR, C4.5 and HGC from [24] [23].
shown in Figure 4. We varied the number of attributes aldiGC [25] is a generatively trained unrestricted Bayesian
their parameter values to generate 25 datasets with differestwork. ELR-NB and ELR-TAN are Bayesian network
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Fig. 6. Test error on simulated experiment. We varied the number of nodes in the chain-structure Bayesian network and their parameter values to generate
different distributions (25 sets). Each point in the graph represents the classification accuracy for one particular model distribution. BNB and BAN outperforms
NB in 19 out of the 25 simulated datasets. In the remaining 6 datasets, the suboptimal posterior estimation by naive Bayes did not result in label prediction
error.
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| | data for BNC-MDL, HGC and C4.5. However, since BNC-2P

O seol ] has been previous shown to outperform HGC and BNC-MDL,

£ sop ] it seems reasonable to conclude that BAN is superior to HGC

> S40f ] and BNC-MDL as well.

i I ] As shown in Figure 7(c) and Table IV, BAN has comparable

" Boosting lteraions. classification accuracy as ELR-NB. However, BAN is much

o2 - . I more efficient to train in comparison to ELR-NB and ELR-

= TAN.

5 e As shown in Figure 7(e), the average testing errors for BAN

gox ] and BNB are 0.141 and 0.151 respectively. This difference is

g 022 1 significant with confidencg < 0.029. BAN has lower average

° 0, ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ testing error (difference of 0.5% - 5%) than BNB in 16 out
% " Boosting terations” ©° of the 25 datasets. BNB is better in 6 (difference of 0.5% -

2%) and they tie in 3. Since BAN generalizes BNB, in several
Fig. 5. Negative CLL score and classification error decreases with M@ tasets (MOFN IRIS) the structure chosen by BAN is very
boosting iterations. .. A ’ i

similar to BNB (with 0 and 1 augmented edges). BAN is
more beneficial in datasets where the conditional dependencies
among attributes are strong and complex (CORRAL).

learned using the ELR algorithm. The scatter plots a I . i . : -
A . . .~ This is an interesting result since it shows that combining
shown in Figure 7 and the average testing error is shown dn

Table IV. All points abovey — z are data sets in which BAN scriminative structure _Igarn_mg with parameter optimization
! . o . seems to improve classification accuracy.
outperforms its competitors. The abbreviations for competing

algorithms are described below: C. Discussion

The above experiments demonstrated that boosted parameter
optimization in conjunction with greedy structure optimization
can improve the classification performance. It is interesting to
NHPTHETE , , note that unlike the experimental results in combining ELR

« BNC-2P: Discriminative structure selection via CLLyith structure learning [24], we find significant benefit in

score. [24]. _ _ combining parameter boosting with structure learning.

« BNC-MDL: Discriminative structure selection Vvia e attribute the success of our approach to the following

CMDL score. [24] _ reasons. First, BAN takes advantage of AdaBoost’s resistance
« ELR-NB, ELR-TAN: NB and TAN with parameters i, oyer-fitting [46] and the variance reduction and bias reduc-

optimized for conditional log likelihood as in Greiner andjony property of ensemble classifiers [52]. Also, as a result of

Zhou [23]. ) ) the parameter boosting, the base Bayesian network classifier

« HGC: Generative structure search algorithm from Hecksynstructed by BAN is simpler than BNC-2P and TAN. In

erman et al. [26]. our experiments, BAN adds O to 4 edges to the naive Bayes

Figure 7(a) and 7(b) show that the average testing error fwhile BNC-2P typically adds 4 to 16 edges. If both Bayesian
BAN algorithm is significantly lower than naive Bay¢s < networks model the underlying conditional distribution equally
0.01) and TAN (p < 0.01). BAN also outperforms BNC-2P well, a simpler structure is usually preferred over a more
(p < 0.005) in Figure 7(d). We did not have access to varianagensely connected one.

« BAN: Boosted Augmented Naive Bayes.
« NB: naive Bayes.
« TAN: Tree Augmented naive Bayes.
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TABLE IV
TESTING ERROR FOR25 UCI DATASETS
Name BAN BNB TAN NB BNC-2P BNC-MDL NB-ELR TAN-ELR C4.5 HGC
australian 1812 .1609 .1855 .1368 .1768 .1405 .1488 1723 1510 .1445
breast .0513 .0549 .0312 .0200 .0330 .0518 .0339 .0351 .0610 .0245
chess .0253 .0640 .0753 .1180 .0428 .0450 .0600 .0375 .0050 .0469
cleve 1758  .1995  .2095 .1825 .2095 .2563 .1660 .0375 .2060 .2129
corral .0000 .0538 .0468 .1412 .0314 .0000 1273 0771 .0150 .0000
crx 1684 .1408 .1669 .1347 .1684 1397 .1505 .1603 1390 .1308
diabetes .2438 .2675 .2903 .2974 .2553 .2569 .2419 .2384 2590 .2569
flare 1698 .1848 .1679 .1707 1726 1776 .1803 .1780 1730 .1776
german 2510 .2580 .2980 .3000 .2910 2977 .2456 .2409 2710 .2748
glass 3175 .3221 .3456 .3268 .3535 .6884 4220 .5018 4070 .6884
glass2 .2023 .2083 .2269 .2087 .2269 4701 .1938 .2249 .2390 4701
heart 1556 .1593 .1371 .1741 .1667 .4635 .1550 .1847 2180 .1484
hepatitis 1125 1250 .1750 .1500 .1250 .1877 .1294 .1302 1750 .1877
iris .0533 .0533 .0800 .0667 .0733 .0563 .0485 .0763 .0400 .0427
letter 1433  .2076 .1511 .2520 1712 .3530 .3068 1752 1220 .3092
lymphography | .2078 .2097 .3453 .1452 2775 2794 .1470 1784 2160 .3624
mofn-3-7-10 .0000 .0000 .0830 .1357 .0908 .1328 .1367 .0000 .1600 .1328
pima 2427 .2394 2916 .2737 .2606 .2569 .2505 .2384 2590 .2569
satimage 1543 1712 .1374 .1920 .1795 .2220 1730 .1420 1770 .2710
segment .0415 .0510 .1364 .0740 .0500 .1364 .0701 .0571 .0820 .1130
shuttle-small .0113 .0052 .0108 .0142 .0102 .0186 .0083 .0052 .0060 .1349
soybean-large | .0758 .0704 .3451 .0885 .0746 3373 .0920 .0663 .0890 .6466
vehicle 3276 .3246 .3154 .4573 .3452 4478 .3453 2727 3170 .5077
vote .0552 .0552 .0851 .0966 .0621 .0420 .0370 .0487 .0530 .0463
waveform 1630 .1785 .2566 .1795 .2516 .3281 1772 .2534 3490 .4345
Average 1412 1506 .1837 .1734 .1640 .2314 .1613 .1554 1676  .2409
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Transition Model

FeatureiMode\ i

Transition Model

Fig. 8. DBN structure for Smart Kiosk dataset

We believe that the primary advantage of our approach is fig. 9. DBN structure for FAQ dataset
simplicity and computational efficiency, coupled with its good

. . ! . - N DBN | B DBN | CRF
performance in practice. Its use of weighted maximum likeli- | ame [ | Boosted [ € |
hood ter | . iquelv determines th rameter kiosk 0.7490 | 0.9120 0.9641
00d parameter learning uniquely determines theé parameters FAQl(fetish) | 0.8330 | 0.9156 0.8300
of the Bayesian network, providing an efficient mechanism for FAQ2(genetic) | 0.9242 | 0.9464 0.8756
discriminative training. FAQ3(general) | 0.8750 | 0.8960 0.9015
FAQ4(aix) 0.8767 | 0.9047 0.8663
FAQS5(bsd) 0.7981 | 0.8174 0.8033
. FAQ6(neural) | 0.9049 | 0.9173 0.9129
D. Experiments on Boost-DBN FAQ7(acom) | 0.8870 | 0.8884 0.8882

We used two real-world time-series data in our experiments. TABLE V

The first data set is taken from the Smart Kiosk project by Testine ERROR FORDBN, BOOSTEDDBN AND CRF. FOR EACH
Choudhury et al. [8] [40]. Smart Kiosk is a open-mike speecRataseT, THE ALGORITHM WITH THE BEST CLASSIFICATION ACCURACY
interface for a Black Jack game. The kiosk has a microphone IS HIGHLIGHTED.
and a camera input to retrieve visual and audio cues. Visual
cues include the detection of skin, face and lip-motion to sense
human presence. A simple audio cue is obtained by monitoring
excursions in the audio signal above and below its movingTab|e V lists the average label classification accuracy for
average. In addition to the sensors, we use the state of Bfosted-DBN together with DBN and Conditional Random
game as an auxiliary feature. In the training data, all state aft¢ld (CRF) [31]. CRF fits an exponential model to the condi-
features are binary and observed. The goal is to recover fignal distribution of the state labels given the attributes, and
state of the player (i.e. speaking or not) at each time sliée 9enerally considered as the state-of-the-art discriminative
given a sequence of observed sensory data. mod_el for Iabe_l sequence pr_ediction task. We provid_e a more

Figure 8 illustrates the topology of the DBN for the Kioskietailed description of CRF in the related work section.
experiment. In addition to the sensory node and player state®S shown in Table V, Boosted-DBN significantly outper-
node, we added two hidden state variables natiedntal forms DBN on the Kiosk dataset and moderately outperforms
and Speech, each is the parent node of related sensors. TRBN on the FAQ datasets. It is reasonable to conclude that
intermediate state variables define meta-features which §@osted-DBN is an effective method to improve the label
formed by a combination of attributes. sequence prediction accuracy. o

The second data set is a collection of 37 sequences ofA\lso, Boosted-DBN has comparable classification accuracy
multi-part FAQs, collected from various newsgroups. ThidS CRF. Boosted-DBN slightly outperforms CRF in 4 datasets,
dataset was previously used by McCallum et al. [35]. Eacihile CRF outperforms Boosted-DBN in 2 and they tie in 2.
time-sequence contains 1000 to 2500 data samples. EAVeVer, in our experiments, Boosted-DBN has much faster
sample corresponds to one sentence in the article and cont&fffvergence rate than CRF. While CRF takes more than 400
20 binary features and a state label for the topic of tHigration before convergence, Boosted-DBN takes only 10-
sentence (introduction, question, answer or conclusion). Iqu |t¢rat|ons to get' good classification accuracy. Slnce'each
this experiment, the goal is to accurately recover the state laffgfation of CRF training has roughly the same computational
sequence given a instantiation of feature sequences. Since $qi@Plexity as one boosting iteration for Boost-DBN, Boost-
is a 4 class problem, we used Adaboost.MH algorithm [1FBN has less training computational complexity.
on top of DBN.

The DBN topology for this problem is given in Figure 9. IX. RELATED WORK
For tractability, we used naive Bayes as feature model. All This work is an extension and generalization of our previous
experiments were done usigfold cross validation, wher®&  works [8] [39] [27]. In [8] [39], we empirically showed
is the total number of sequence available for particular datagbiat in the task of audio-visual sensor integration, AdaBoost
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improves the classification accuracy of Dynamic Bayesiafficient to train than ELR algorithm while having comparable
Network. [27] introduced BAN algorithm as an efficientaccuracy.
discriminative structure learning mechanism for the training of Furthermore, we expanded the previous work [8] on Boost-
static Bayesian network. This paper unifies two algorithms IyBN algorithm to include a more detailed theoretical anal-
proposing a Boosted Bayesian Network Classifier framewoykis, and conducted a comprehensive empirical experiments
and an interpret it as a graphical model. We also provids the Boosted-DBN model in both sensor fusion and part
a more detailed theoretical analysis and a more complete speech tagging task. We demonstrated that Boost-DBN
evaluation, particularly on the dynamic Bayesian network. model improves the classification accuracy of HMM, and have
Elkan [16] demonstrated the excellent classification perfatomparable performance as Conditional Random Field, but
mance of boosted Naive Bayes and pointed out its efficienajth significant faster convergence rate.
training mechanism. We build on this work by extending We believe the primary advantage of Boosted Bayesian
the use of boosting to structure learning. In contract to tidetwork classifiers is their implementation simplicity, efficient
experiments in [16], we include a more thorough comparisaraining algorithm and fast convergence rates. Coupled with
between BNB and a wide variety of competing methodsompetitive classification accuracy against other more complex
on large set of standard datasets. Greiner and Zhou [2B$criminative methods, we believe Boosted Bayesian Network
proposed the ELR algorithm to directly maximize the ClLlclassifiers are a collection of worthwhile tools for the machine
score of Bayesian network via gradient descent and line seargarning community.
Therefore ELR-NB is essentially a logistic regression model.
Their results and those of [24] all support our observation
that discriminative training methods over Bayesian networks
are preferred when the original model structure is incorrect. The authors would like to thank Matt Mullin for several
BNC algorithm constructs a Bayesian network by greedyuitful discussions and for suggesting the chain-structured
search for structures that maximize a discriminative criterimodel in Figure 5. We also would like to thank Minyoung
Schneiderman [48] used approach similar to BNC to di&im for providing an implementation of CRF and helping to
criminatively learn a restricted Bayesian network structure féenduct experiments on the FAQ datasets.
object detection. This material is based upon work supported in part by the
Maximum Entropy Markov Model (MEMM) [35] and National Science Foundation under NSF Grant [1S-0205507.
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