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Abstract. Inferring users’ actions and intentions forms an integral part of design
and development of any human-computer interface. The presence of noisy and at
times ambiguous sensory data makes this problem challenging. We formulate a
framework for temporal fusion of multiple sensors using input–output dynamic
Bayesian networks (IODBNs). We find that contextual information about the state
of the computer interface, used as an input to the DBN, and sensor distributions
learned from data are crucial for good detection performance. Nevertheless, clas-
sical DBN learning methods can cause such models to fail when the data exhibits
complex behavior. To further improve the detection rate we formulate anerror-
feedbacklearning strategy for DBNs. We apply this framework to the problem
of audio/visual speaker detection in an interactive kiosk application using ”off-
the-shelf” visual and audio sensors (face, skin, texture, mouth motion, and silence
detectors). Detection results obtained in this setup demonstrate numerous benefits
of our learning-based framework.

1 Introduction

Human-centered user-interfaces based on vision and speech present challenging sens-
ing problems. Multiple sources of information, including high-level application-specific
information, must be combined to infer the user’s actions and intentions. Statistical
modeling techniques play a critical role in the design and analysis of such systems. Dy-
namic Bayesian network (DBN) models are an attractive choice, as they combine an
intuitive graphical representation with efficient algorithms for inference and learning.
Previous work has demonstrated the power of these models in fusing video and audio
cues with contextual information and expert knowledge both for speaker detection and
other similar applications [3, 5, 4, 2].

Speaker detection is a particularly interesting example of a multi-modal sensing
task with application in video conferencing, video indexing and human-computer inter-
action. Both video and audio sensing provide important information in a multi-person
and noisy scenarios. Contextual information or the state of the application is another
important component because it often governs the type of interaction. This naturally



leads one to consider a special DBN architecture known as input/output DBN (Fig-
ure 2(b)). The state of the application forms an input to the system which is, along with
the sensory outputs, used to determine the state of the user. We are interested in network
models that combine “off-the-shelf” vision and speech sensing with contextual cues.

Estimation of the DBN model parameters is a key step in the design of the detection
system. Strengths of the DBN arcs in Figure 1, from context to task variables to sen-
sors, can be automatically learned from data using standard maximum-likelihood (ML)
learning schemes, similar to [3]. However, it is often the case that the chosen model
structure only approximately represents the data. To circumvent this drawback we in-
troduce a learning algorithm for DBNs that useserror-feedbackto improve recognition
accuracy of the model. In error-feedback DBNs (EFDBNs) strengths of DBN arcs are
iteratively adjusted by focusing on data instances incorrectly detected by the previous
models.

This paper demonstrates that modeling the contextual states of the application as
an input to a DBN together with the learning of continuous sensor distributions can
enhance performance of DBNs which fuse temporal data from weak multimodal sen-
sors. We also show how EFDBN learning strategy yields significant improvements in
detection accuracy. We present these results in the context of a network architecture
of Figure 1 which infers the state of the speaker who actively interacts with the Genie
Casino game. Our evaluation of the learned DBN model indicates its superiority over
previous static [7] and dynamic [3, 5] detection models.

2 Speaker Detection

An estimate of the persons state (whether s/he is or isn’t a speaker) is important for the
reliable functioning of any speech-based interface. We argue that for a person to be an
active speaker, s/he must be expected to speak, face the computer system and actually
speak. Visual cues can be useful in deciding whether the person is facing the system
and whether he is moving his lips. However, they are not capable on their own to distin-
guish an active user from an active listener (listener may be smiling or nodding). Audio
cues, on the other hand, can detect the presence of relevant audio in the application.
Unfortunately, simple audio cues are not sufficient to discriminate a user in front of
the system speaking to the system from the same user speaking to another individual.
Finally, contextual information describing the “state of the world” also has bearing on
when a user is actively speaking. For instance, in certain contexts the user may not be
expected to speak at all. Hence, audio and visual cues as well as the context need to be
used jointly to infer the active speaker.

We have analyzed the problem of speaker detection in a specific scenario of the
Genie Casino Kiosk. The Smart Kiosk [6] developed at Compaq’s Cambridge Research
Lab (CRL) provides an interface which allows the user to interact with the system using
spoken commands. This version of kiosk simulates a multiplayer blackjack game (see
Figure 4 for a screen capture.) The user uses a set of spoken commands to interact with
the dealer (kiosk) and play the game. The kiosk has a camera mounted on the top that
provides visual feedback. A microphone is used to acquire speech input from the user.



We use a set of five “off-the-shelf” visual and audio sensors: the CMU face detec-
tor [8], a Gaussian skin color detector [10], a face texture detector, a mouth motion
detector, and an audio silence detector. A detailed description of these detectors can be
found in [7]. Contextual input provides the state of the application (the blackjack game)
which may help in inferring the state of the user.

2.1 Bayesian networks for speaker detection with continuous sensors and
contextual input

We adopt a modular approach towards the design of the Bayesian network for speaker
detection. We have designed modules for vision and audio tasks separately which are
then integrated along with the higher level information.

The graph in Figure 1 shows the vision network for this task. This network takes the
output of the vision sensors and outputs the query variables corresponding to visibility
and the frontal information of the user. Face detector gives a binary output whereas the
output of the texture detector is modeled as a conditional Gaussian distribution whose
parameters arelearned from the training data. We contrast this to the cases studied
in [3, 5] where all sensors had binary outputs.

The audio network combines the output of the silence detector and the mouth mo-
tion detector. These detectors provide continuous valued output as the measure of the si-
lence and mouth motion respectively. The audio network selected for this task is shown
in Figure 1. The output of the audio network corresponds to the probability that the
audio in the application corresponds to the user present.

Once constructed, the audio and visual networks are fused to obtain the integrated
audio–visual network. The contextual information acts as an input to the model with the
sensory observations as the output. The state of the user (e.g. speaker vs. nonspeaker)
forms the state of the model and needs to be inferred given the observations and the
inputs. The final network obtained is shown in Figure 1.

The final step in designing the topology of the speaker detection network involves
its temporal aspect. Measurement information from several consecutive time steps can
be fused to make a better informed decision. This expert knowledge becomes a part
of the speaker detection network once the temporal dependency shown in Figure 2(a)
is imposed. Incorporating all of the above elements into a single structure lead to the
input/output DBN shown in Figure 2(b). The input/output DBN structure is a gener-
alization of the input/output HMM [1]—here the probabilistic dependencies between
the variables are governed by the BN shown in Figure 1. The speaker node is the final
speaker detection query node.

The use of continuous valued sensor outputs allows the network to automatically
learn optimal sensor models and, in turn, optimal decision thresholds. In the previous
work [3, 5] sensor outputs were first discretized using decision thresholds set by expert
users. Here all continuous sensory outputs are modeled as conditional Gaussian distri-
butions, as shown in Figure 3. The learned distributions allow soft sensory decisions
which can be superior to discrete sensory outputs in noisy environments. Indeed, re-
sults outlined later in this paper show that improved performance is obtained using this
model.
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Fig. 2. (a) Temporal dependencies between the speaker, audio, and frontal nodes at two consec-
utive time instances. (b) The input output DBN, with contextual information as input and the
sensory observations as outputs.

3 Learning dynamic Bayesian networks

Dynamic Bayesian networks are a class of Bayesian networks specifically tailored to
model temporal consistency present in data. In addition to describing dependencies
among different static variables DBNs describe probabilistic dependencies among vari-
ables at different time instances. A set of random variables at each time instancet is
represented as a static BN. Out of all the variables in this set temporal dependency is
imposed on some. Thanks to its constrained topology efficient inference and learning
algorithms, such as forward-backward propagation and Baum-Welch, can be employed
in DBNs (see [5] for more details.)

However, classical DBN learning algorithms assume that the selected generative
model accurately represents the data. This is often not the case as the selected model is
only an approximation of the true process. Recently, Schapire et al. [9] have proposed
a method calledboostingaimed at improving the performance of any simple (classifi-
cation) model. In particular, theirAdaboostalgorithm “boosts” the classification on a
set of data points by linearly combining a number of weak models, each of which is
trained to correct “mistakes” of the previous one. In a similar spirit we formulated the
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Fig. 3. Learned continuous sensor distributions: (a) silence, (b) skin texture, and (c) mouth mo-
tion.

Error Feedback DBNframework [5]. Here we extend this framework to handle the case
of continuous sensory outputs and contextual input.

3.1 Error Feedback DBNs

Consider the training dataD = f(s1; y1; i1); :::; (sT ; yT ; iT )g of durationT , wheres
denotes DBN states,i are the inputs, andy are the measurements, and the DBN shown
in Figure 2(b). The goal of DBN learning is to, given dataD, obtain the DBN model
� = (A;B; �), (where A is the transition probability matrix dependent on inputi, B is
the observation matrix which mapsst to yt and� is the initial distribution ofs0) which
minimizes the probability of classification error ins on datasetD. EFDBN algorithm
for this setting can be formulated as follows.

Given: Df(s1; y1; i1); :::; (sT ; yT ; iT )g;

Assume all states are detected equally well, P
(1)

D
(t) = 1=T ;

For k = 1; :::; K
� Train static BN with st as the root node

to obtain Bk . Use P
(k)

D
as the weight over

the training samples.
� Use the DBN learning algorithm to obtain A
for fixedBk .
� Use the learned DBN,� = (A;Bt; �) to
decode (ŝ1; :::ŝT )
from (y1 ; :::; yT ) and (i1; :::; iT ).
� Update:

if ŝk = sk then

P
(k+1)

D
(t) / P

(k)

D
(t) exp(��k)

else

P
(k+1)

D
(t) / P

(k)

D
(t) exp(�k)

The final DBN model is � = (A;B; �)

whereB =

P
K

k=1
�kBkP

K

k=1
�k

The algorithm maintains a weight distribution defined over the data. It starts by
assigning equal weight to all the samples. As the algorithm proceeds, the weight of
correctly classified samples is decreased whereas that of misclassified ones is increased.
Details of the original algorithm can be found in [5].



4 Experiments and Results

We conducted three experiments using a common data set. The data set comprised of
five sequences of a user playing the blackjack game in the Genie Casino Kiosk setup.
The experimental setup is depicted in Figure 4. The same figure shows some of the
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Fig. 4.Data collection setup for Genie Casino kiosk and three frames from a test video sequence.

recorded frames from the video sequence. Each sequence included audio and video
tracks recorded through a camcorder along with frequency encoded contextual infor-
mation (see Figure 4.) The visual and audio sensors were then applied to audio and
video streams. Examples of individual sensor observations (e.g., frontal v.s. non frontal,
silence v.s. non silence, etc.) are shown in Figure 5. Abundance of noise and ambiguity
in these sensory outputs clearly justifies the need for intelligent yet data-driven sensor
fusion.

4.1 Static Bayesian network

The first experiment was done using the static BN of Figure 1 to form the baseline for
comparison with the dynamic model. In this experiment all samples of each sequence
was considered to be independent of any other sample. Part of the whole data set was
considered as the training data and rest was retained for testing. During the training
phase, output of the sensors along with the hand labeled values for the hidden nodes
(speaker, frontal and audio) were presented to the network.

During testing only the sensor outputs were presented and inference was done to
obtain the values for the hidden nodes. Mismatch in any of the three (speaker, frontal,
audio) is considered to be an error. An relatively low average accuracy of77% is ob-
tained (see Figure 6 for results on individual sequences.) The sensor data (as shown in
Figure 5) is noisy and it is hard to infer the speaker without making substantial errors.
Figure 7(a) shows the ground truth sequence for the state of the speaker and (b) shows
the decoded sequence using static BN. However, this detection accuracy is superior to
68% obtained in [3, 5] when discrete sensors and non-input context were used.
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Fig. 5. (a) Ground truth for the speaker state: 1 indicates the presence of the speaker. (b) Con-
textual information: 1 indicates user’s turn to play. (c),(d),(e),(f) Outputs of texture, face, mouth
motion and silence detectors, respectively.
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4.2 Input/output DBN

Second experiment was conducted using the input/output DBN model. The standard
ML learning algorithm described in Section 3 was employed to learn the dynamic tran-
sitional probabilities among frontal, speaker, and audio states. During testing phase a
temporal sequence of sensor values was presented to the model and Viterbi decoding
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Fig. 7. (a) True state sequence. (b),(c),(d) Decoded state sequences by static BN, DBN, EFDBN,
respectively. (state 1 - no speaker, no frontal, no audio; state 2 - no speaker, no frontal, audio;
state 3 - no speaker, frontal, no audio; state 8 - speaker, frontal, audio)

was used to find the most likely sequence of the speaker states. Overall, we obtained the
accuracy of the speaker detection of85%, an improvement of� 10% over the static BN
model. An indicative of this can be seen in actual decoded sequences in Figure 7. The
improved performance by the use of DBN stems from the inherent temporal correlation
present between the features. Again, the use of continuous sensors and input context
produced significant improvement compared to 80% rate of [3, 5].

4.3 Error-feedback DBN

Our final experiment employed the newly designed EFDBN framework for continu-
ous sensors and contextual application input. The learning algorithm described in Sec-
tion 3.1 was used. For a training sequence, we used EFDBN to estimate the parameters
which minimized the classification error. A leave-one-out crossvalidation resulted in
the overall accuracy of92%. Figure 6 summarizes classification results on individual
sequences. We see that for all the sequences, an improvement of5� 10% over the best
DBN result is obtained. While the improvement is less dramatic over the 90% detec-
tion rate of the EFDBN with discrete sensors and contextual measurement [5], it still
remains significant.

The DBN model learned using the EFDBN framework was also applied to the pre-
diction of hidden states. An overall accuracy of88% was obtained. This indicates, to-
gether with the previously noted results, that EFDBN significantly improves the perfor-
mance of simple DBN classifiers. In comparison of the results with the ones reported
in [3, 5], we observe that significant improvement in performance is obtained. This
can be attributed to the use of continuous sensory observations and input/output DBN
structure.



5 Discussions and Conclusions

We have presented a general purpose framework for learning input/output DBN mod-
els for fusion of continuous sensory output and contextual, application-specific input.
The framework encompasses a new error-feedback learning procedure which can cir-
cumvent the effects of simple models and complex data. The results obtained for the
difficult problem of speaker detection where a number of noisy sensor outputs need to
be fused indicate the utility of this algorithm. Significant improvements in classification
accuracy over a simple DBN model were achieved without sacrificing of complexity of
the learning algorithm. We have also demonstrated a general purpose approach to solv-
ing man-machine interaction tasks in which DBNs are used to fuse the outputs of simple
audio and visual sensors while exploiting their temporal correlation.

Reliability and confidence of sensors during inference is one crucial aspect of sen-
sor fusion tasks which was not addressed in this framework. For instance, the number of
skin colored pixels in the whole image can be used as a measure of the reliability of the
skin sensor and hence weigh its contribution relative to other sensors. Future research
will focus on incorporating sensor reliabilities into our current framework. Another
interesting opportunity in this DBN framework arises as a consequence of modeling
application-specific context as input. Namely, one can study methods of designing con-
textual input which will force the user from its present state (e.g., non-speaking) to a
new desired state in a number of steps. These opportunities become even more sig-
nificant when the number of system states becomes large, a case often encountered in
dialog systems.
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