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ABSTRACT

Most hybrid 3D segmentation methods either heuristically couple 

the respective algorithm or combine a true 3D with a 2D algorithm 

due to computational considerations. In this paper we propose a 

new probabilistic framework for 3D image segmentation that com-

bines tightly linked region- and shape-based constraints. Region-

based label constraints are modeled by a 3D Markov random field, 

and are tightly coupled to shape-based constraints of a 3D De-

formable Model. The full 3D nature of the combined model leads 

to a robust smooth surface segmentation that outperforms the sin-

gle constraint, slice-based as well as the loosely coupled 3D meth-

ods.

1. INTRODUCTION 

Image segmentation is one of the most important medical image 

processing tasks. Recently, increasing availability of high-

resolution 3D volume data using modalities such as Magnetic 

Resonance (MR) and Computed Tomography (CT) has prompted 

the need for true 3D segmentation approaches. However, 3D seg-

mentation remains an extremely difficult problem, due to the com-

plex topology of 3D objects, the massive data, and demanding 

computational algorithms. 

Most 3D methods solve the segmentation problem using ei-

ther region- or shape-based approaches. Unfortunately, region-

based methods often result in rough and inaccurate object bounda-

ries as well as disconnected object regions. Shape-based methods, 

on the other hand, explicitly model object boundaries but are sensi-

tive to noise and may lead to oversmoothing. One possible answer 

to improved 3D segmentation relies on hybrid methods that com-

bine region- and shape-based approaches. Many hybrid methods, 

however, assume weak coupling of the two modalities, failing to 

fully benefit from the region-shape dependencies. Moreover, many 

3D approaches are often 2D in nature (i.e., slice-based), further 

discarding potential benefits of the 3D data. 

In this paper, we propose a new framework for 3D image 

segmentation based on the integration of 3D Markov Random 

Fields (MRFs) and Deformable Models (DMs). The proposed 

method is a true 3D method unlike the traditional 2D slice-based 

approaches. The algorithm is semi-automatic requiring only a 

shape prior or two manually picked seed points (one inside the 

object, the other outside but close to the object boundary). As a 

consequence, our approach is able to fully exploit the structure of 

the 3D data, resulting in improved object segmentation. The cou-

pling also leads to computationally more efficient solutions. 

2. 3D SEGMENTATION USING MRFS 

MRFs have long been used for image segmentation because of 

their ability to model spatial contextual information of an image 

and deal with the noise. The simplest way to extend a 2D MRF-

based segmentation method to 3D is to apply the 2D algorithm 

slice by slice to the 3D volume data [1]. The lack of interaction 

among individual slice solutions, however, leads to results that are 

inferior to true 3D-based solutions [2]. 

A true 3D MRF model is shown in Fig. 1. Each voxel of the 

3D volume data is an observable node oi, which is connected to a 

hidden node si representing the region label of that voxel (Fig. 1a). 

Each hidden node is also connected to 6 (or more if needed) 

neighboring hidden nodes (Fig. 1b). 

a. one pair of hidden/ 

observable nodes b. grid of hidden nodes 

Fig. 1. 3D MRF models 

The segmentation problem can be viewed as a problem of es-

timating the maximize-a-posterior (MAP) solution of the MRF 

model:

 arg max ( | )
MAP

P
s

s s o  (1) 

where

( , )
( | ) ( | ) ( ) ( ) ( , )

i i ij i ji i j
P P P s s ss o o s s  (2) 

The compatibility function ( )
i i

s  defines the relationship be-

tween a pair of hidden and observable nodes, and ( , )
ij i j

s s  de-

fines the relationship between a pair of neighboring hidden nodes. 

The EM algorithm is used to estimate both the MAP solution 

of the region labels and the model parameters (i.e., the parameters 

in the compatibility functions) [3]. In E-step, the MRF-MAP solu-

tion is estimated based on the current model parameters. Belief 

propagation (BP) is an efficient inference method for this problem 

[4]. In M-step, the MRF parameters are updated based on the MAP 

solution of the region labels. 

The performance of the 3D MRF-based segmentation method, 

verified by our experiments, has advantages over slice-based 

methods. However, it still may suffer from the common problems 

of region-based methods. 
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3. COUPLING 3D MRFS AND DMS 

Geometrically Deformed Models (GDMs) [5] and Finite-Element 

Method (FEM)-based Balloon models [2] are commonly used for 

the representation of 3D surfaces and segmentation of volume data. 

While a deformable surface is often sufficiently smooth, the 

oversmoothing may be excessive; and it often suffers from local 

energy minima in noisy images. 

A hybrid 3D approach was proposed in [6], attempting to 

couple MRFs and DMs to alleviate the deficiencies of the individ-

ual methods. However, the MRF model is applied slice by slice 

due to the computational complexity, which may lead to inconsis-

tencies between neighboring slices and fail to build the deformable 

surface. Moreover, the MRF and the DM are coupled in a loose 

manner (e.g., there is no direct guidance from the DM to the MRF). 

[4] proposed a method for tight coupling of the MRF and DM con-

straints in 2D segmentation, which tangible benefits. In the 3D 

case, however, the model expansion process far away from the true 

boundary can be time-consuming and needs frequent reparametri-

zation, and may suffer from local energy minima in noisy images. 

We address these issues here and propose a true 3D hybrid seg-

mentation framework. 

3.1. The graphical model representation 

Our new framework uses the graphical model theory to tightly 

couple 3D MRFs and DMs. This is achieved, as depicted in Fig. 2a, 

by constraining region labels s with the underlying 3D object sur-

face v. To simplify the graph, only one pair of s and o nodes is 

drawn, which represents the whole grid in Fig. 1. 

a. Integrated model b. Extended MRF c. Modified DM

Fig. 2. Integrated and decoupled models 

DMs can often be viewed in a probabilistic framework, in 

which the internal energy 
int

( )E v  leads to a Gibbs prior distribu-

tion of the form: 
1

int
( ) exp( ( ))

i
Z

P Ev v  (3) 

while the external energy 
ext

( )E v  from the data can be converted 

to a sensor model with conditional probability: 
1

ext
( | ) exp( ( ))

e
Z

P Eo v v  (4) 

where 
ext

( )E v  is some function of the image o.

Rather than directly conditioning the image o on the DM, we 

assume that the conditioning is indirect, through constraints on the 

image region labels: 

( | ) 1 (1 exp( ( , )))
i

P s inside dist iv v  (5) 

 ( | ) 1 ( | )
i i

P s outside P s insidev v  (6) 

induced by the signed distance of voxel i from surface v:

( , ) ( , ) min ( )
j

j

dist i sign i loc iv v v  (7) 

where ( , ) 1sign i v  if voxel i is inside surface v; ( , ) 1sign i v

when it is outside. Mathematically, this sign can be determined by 

checking the surface normals. ( )loc i  denotes the spatial coordi-

nates of voxel i, and vj denotes the discretized spatial coordinates 

of a vertex of surface v.

This leads to a tightly coupled MRF-DM probabilistic model, 

( , , ) ( | ) ( | ) ( )P P P Po s v o s s v v . The segmentation can hence be 

viewed as a joint MAP estimation problem: 

( , )

( , ) arg max ( , | )
MAP

P
v s

v s v s o  (8) 

where 

( , | ) ( | ) ( | ) ( )P P P Pv s o o s s v v  (9) 

3.2. Variational inference for hybrid MRF-DM 

Despite the compact graphical representation of the integrated 

model, the exact inference in the model is computationally intrac-

table. One reason is the large state space size and the complex 

dependency structure introduced by the Gibbs distribution of the 

prior P(v). The second reason is the existence of loops in the 

graphical model precludes polynomial-time inference. To deal 

with these problems we use an approximate, yet tractable, infer-

ence solution. 

Given an image o, structured variational inference finds a dis-

tribution ( , | , )Q v s o , with an additional set of variational pa-

rameters , which is close to the original posterior: 

*

,

( , | )
arg min ( , | , ) log

( , | , )

P
Q

Qv s

v s o
v s o

v s o
 (10) 

In addition to being “close”, the dependency structure of Q must

allow a computationally efficient inference. In our case the Q fac-

torizes the integrated model P into two independent distributions: 

an extended MRF model QM with variational parameters a and a 

modified DM QD with variational parameters b (Fig. 2b and 2c): 

 ( , | , , ) ( | , ) ( | )
M D

Q Q Qv s o a b s o a v b  (11) 

The extended MRF model means we have an additional part to the 

traditional MRF model to deal with the shape prior: 

( , )
( | , ) [ ( ) ( | )] ( , )

M i i i i ij i ji i j
Q s P s a s ss o a  (12) 

The modified DM uses the variational parameter b in place of the 

region labels: 

( | ) ( | ) ( )
D i Di

Q P b Qv b v v  (13) 

The optimal values of the variational parameters are obtained by 

minimizing the KL-divergence [7]: 
* *

log ( | ) ( | ) log ( | )
i i D i

P s a Q P s
v

v b v (14)

* *
log ( | ) ( | , ) log ( | )

i
i M i is L

P b Q s P sv o a v  (15) 

Eq. (12) (13) allow us to apply efficient inference methods to 

the decoupled models (e.g., BP for MRF-MAP and FEM for DM 

fitting). Eq. (14) (15), on the other hand, ensure the new distribu-

tion is as close as possible to the original distribution. These four 

equations form a set of fixed-point equations. Solution of this 

fixed-point set yields a tractable approximation to the intractable 

original posterior. 

Incorporating a DM in the MRF framework smoothes out the 

rough boundaries, and more importantly, introduces a shape prior 

into our model. The presence of the shape model allows us to per-

form the BP only in a band of model variables around the current 

surface estimates. The number of voxels in the band depends only 
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on the band thickness and the area of the object, instead of the 

whole image volume. In most of our experiments, this proportion 

is usually small (e.g., 20%). This significantly speeds up the whole 

algorithm. The hybrid MRF-DM algorithm is summarized: 

1. if (shape prior v is not given) { 

1.1. Use the 3D MRF segmentation algorithm (Sec. 2) to 

generate an initial region segmentation; 

1.2. Use the Marching Cubes [8] algorithm to get an ini-

tial surface v from the region segmentation; } 

2. while (error > maxError) { 

2.1. Calculate a band area B around v. Perform the remain-

ing steps 2.2~2.5 inside B;

2.2. Calculate ( | )
i i

P s a  based on Eq. (14) using current 

surface model v;

2.3. Estimate the MRF-MAP solution ( | , )
M i

Q s o a  based 

on Eq. (12) using ( | )
i i

P s a , which is essentially the BP-

based 3D MRF segmentation; 

2.4. Calculate log ( | )iP b v  based on Eq. (15) using 

( | , )
M i

Q s o a ;

2.5. Deform the deformable model v to fit the data based 

on Eq. (13) using the generalized force: 

log ( | ) / log ( | ) / ( )P P loc ib v v b v ; } 

4. EXPERIMENTS 

Our algorithm is implemented in MATLAB with embedded C 

code, and tested on a 3GHz Pentium 4 PC. The running time varies 

from less than one minute to some dozen minutes depending on the 

data size and noise level. 

4.1. Simulated images 

The initial study of properties and utility of our method was con-

ducted on a 64 64 64  synthetic volume, which contains an 

“S”-like object of intensity 160 from frame 29 to 36, and the inten-

sity of the background is 100. Gaussian noise with mean 0 and 

standard deviation 60 is added to the whole volume, and extra 

Gaussian noise with mean 160 is added to frames 32 and 33 (Fig. 

3a). The 3D MRF model results in better segmentation than the 2D 

MRF, especially on frames 32 and 33, due to the interaction be-

tween neighboring frames. However, there is obvious error in the 

first and last frames because these two outermost frames suffer 

more interference from the background. This is improved by cou-

pling the DM with the 3D MRF. Other frames are also smoother in 

Fig. 3d. The average error rates are shown in the figure. 

We then tested our algorithms on simulated brain MRI data 

from BrainWeb [9]. There are two anatomical models: normal and 

multiple sclerosis. For both of these, full 3D data volumes have 

been simulated using three sequences (T1-, T2-, and proton-

density- (PD-) weighted) and a variety of slice thicknesses, noise 

levels, and levels of intensity non-uniformity (RF inhomogeneity). 

Three different white matter segmentation results from normal 

brain data volumes using our hybrid method are shown. Fig. 4a is a 

slice from the ground truth data of the white matter, and 4b is the 

result from our hybrid method. Fig. 4c is a slice of the T1 image 

without noise and intensity non-uniformity. The segmented white 

matter (Fig. 4d) is slightly thicker than the results from the ground 

truth, because some of the grey matter is misclassified due to its 

similar grey value to the white matter. Same misclassification can 

be observed in Fig 4f, which is the segmentation result on the T1 

image with 9% noise and 40% intensity non-uniformity (Fig. 4e). 

One possible solution to the misclassification problem is to initial-

ize the 3D MRF with more accurate model parameters, which 

could be learned beforehand or specified by users. 

We do not show the results of the slice-based method using 

2D MRFs mainly because we cannot get satisfying results. One 

reason is that the white matter is a complicated object with high 

curvature, so there are more inconsistencies between the slice-

based segmentation results. Another reason is that the traditional 

MRF model is sensitive to initialization, especially when there are 

multi-regions. The brain MRI data consists of many different re-

gions (e.g., white matter, grey matter, skull, etc.), thus different 

slices may require different initializations. With our hybrid method, 

one only needs to consider the voxels close to the current boundary, 

i.e., we simplify the problem to only two regions (inside or out-

side). Even without a shape prior, the 3D MRF model is more 

robust than the 2D MRF to start with. 

4.2. Real medical images 

The real world images usually have significant, often non-

white noise and contain complex high-curvature objects, rendering 

the segmentation task a great deal more difficult. In this section we 

show experimental results of applying our methods to a real 3D 

volume [10], which is an MR image of a head with the skull par-

tially removed to reveal the brain. We again segmented the white 

matter from the volume. Fig. 5a is one of the slices from the vol-

ume. The result of 3D MRF only and that of 3D MRF + DM are 

shown in Fig. 5b and 5c. To show the benefits of DMs, the upper-

right parts of 5b and 5c are magnified in 5d and 5e. The arrows 

point to some incorrect patches that are eliminated by the deform-

able model fitting process (the colors of these patches are clearly 

different to their neighboring patches, which obviously shows the 

spatial discontinuities). To avoid oversmoothing, the parameters 

are usually chosen according to experts’ opinions. 

5. DISCUSSIONS 

We have proposed a new tightly coupled hybrid framework to 

segment 3D medical images. The efficiency of the BP algorithm 

makes it affordable to apply a true 3D MRF model. DMs further 

improve the performance and decrease the computational complex-

ity. A graphical model-based approach yielded an approximate, 

computationally efficient solution to otherwise intractable infer-

ence of region boundaries. We showed the advantages and utility 

of our hybrid method on a number of synthetic and real-world 

images, supported by the quantitative evaluations as well as quali-

tative expert opinions. 

We are currently working on more precise quantitative 

evaluation of the segmentation algorithms, which requires manual 

segmentations by the experts and an appropriate metric. BrainWeb 

provides excellent ground truth for region segmentations; however, 

since our method is a region-boundary hybrid method, for those 

voxels that split by the boundary surface, the accurate evaluation 

of sub-voxel segmentation is still a problem using the traditional 

voxel based ground truth. Moreover, the quantitative metric should 

also be able to measure the smoothness of the surface, in addition 

to the accuracy of voxel classification. 
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a. Corrupted slices (Frame 29 ~ 36) 

b. 2D MRF segmentation slices (error = 3.98%) 

c. 3D MRF segmentation slices (error = 2.79%) 

d. 3D MRF + DM segmentation slices (error = 1.62%) 

Fig. 3. Synthetic volume 

a. Ground truth image slice b. Result on ground truth 

c. T1 image slice d. Result on T1 image 

e. Noisy T1 image slice f. Result on noisy T1 image 

Fig. 4. Simulated Brain Volume 

Without the shape prior, our present method uses the 3D MRF 

and the Marching Cubes algorithm to build the initial deformable 

surface. An alternative initialization method is to start a GDM or a 

balloon from inside the desired region, making the initialization 

easier and less prone to initial outliers, even in the presence of 

multiple regions in the image [4]. However, this may increase the 

complexity of computation and reparametrization, which, in the 

3D case, is still of main concern. 

a. Test image slice b. 3D MRF only c. 3D MRF + DM 

d. Upper-right part of b e. Upper-right part of c 

Fig. 5. Real Brain Volume 
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