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Abstract 

This paper proposes a new framework for image 

segmentation based on the integration of MRFs and 

deformable models using graphical models. We first 
construct a graphical model to represent the relationship 

of the observed image pixels, the true region labels and 

the underlying object contour. We then formulate the 

problem of image segmentation as the one of joint region-
contour inference and learning in the graphical model. 

The graphical model representation allows us to use an 

approximate structured variational inference technique to 

solve this otherwise intractable joint inference problem. 
Using this technique, the MAP solution to the original 

model is obtained by finding the MAP solutions of two 

simpler models, an extended MRF model and a 

probabilistic deformable model, iteratively and 
incrementally. In the extended MRF model, the true 

region labels are estimated using the BP algorithm in a 

band area around the estimated contour from the 

probabilistic deformable model, and the result in turn 
guides the probabilistic deformable model to an improved 

estimation of the contour. Experimental results show that 

our new hybrid method outperforms both the MRF-based 

and the deformable model-based methods. 

1. Introduction 

Image segmentation is one of the most important and 

difficult preliminary processes for high-level computer 

vision and pattern recognition problems. The main goal of 

image segmentation is to divide an image into its 

constituent parts that have a strong correlation with 

objects or areas of the real world depicted by the image. 

Region-based and edge-based segmentations are the 

two major classes of segmentation methods. Though one 

can label regions according to edges or detect edges from 

regions, these two kinds of methods are naturally different 

and have respective advantages and disadvantages. 

Region-based methods assign image pixels to a region 

according to some image property (e.g., region 

homogeneity). These methods work well in noisy images, 

where edges are usually difficult to detect while the 

region homogeneity is preserved. The disadvantages of 

region-based methods are that they may generate rough 

edges and holes inside the objects, and they do not take 

account of object shape. 

On the other hand, edge-based methods generate 

boundaries of the segmented objects. A prior knowledge 

of object shape and topology can be easily incorporated to 

constrain the segmentation result. While this often leads 

to sufficiently smooth boundaries, the oversmoothing may 

be excessive. Because edge-based methods rely on edge 

detecting operators, they are sensitive to image noise and 

need to be initialized close to the actual region boundaries. 

A hybrid segmentation method that combines region-

based and edge-based methods may improve the 

segmentation results over the two methods alone. In this 

paper we propose a hybrid segmentation framework to 

combine the Markov Random Field (MRF)-based and the 

deformable model-based segmentation methods. To 

tightly couple the two models, we construct a graphical 

model to represent the relationship of the observed image 

pixels, the true region labels and the underlying object 

contour. Exact inference in the graphical model is 

intractable because of the large state spaces and the 

couplings of model variables. To tackle this problem we 

use a variational inference method to seemingly decouple 

the graphical model into two simpler models: one 

extended MRF model and one probabilistic deformable 

model. Then we obtain the MAP solution in the original 

model by solving the MAP problems of the two simpler 

models iteratively and incrementally. In the extended 

MRF model, the true region labels are estimated using the 

Belief Propagation (BP) algorithm in a band area around 

the estimated contour from the probabilistic deformable 

model, and the result in turn guides the probabilistic 

deformable model to an improved estimation of the 

contour. 

The rest of this paper is organized as follows: section 2 

reviews the previous work; section 3 introduces a new 

integrated model and its decoupled approximation using 

the variational inference method; detailed inferences on 

the decoupled models are described in section 4; section 5 

shows the experimental results; and section 6 summarizes 

the paper and future work. 
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2. Previous work 

Most segmentation methods are either region-based or 

edge-based. Among region-based methods, besides the 

classical region growing method [1], the MRF-based 

methods have been extensively used in different areas 

[2][3][4]. Because the exact MAP inference in MRF 

models is computationally infeasible, various techniques 

for approximating the MAP estimation have been 

proposed, such as Markov Chain Monte Carlo (MCMC) 

[5], iterated conditional modes (ICM) [6], maximizer of 

posterior marginals (MPM) [7], etc. Reference [8] 

presents a comparative analysis of some of these methods. 

In edge-based methods, since Kass et al. introduced 

Snakes [9], deformable models have attracted much 

attention. Variants of deformable models have been 

proposed to address different problems. For instance, 

Balloons [10] and Gradient Vector Flow (GVF) Snakes 

[11] introduces different external forces, and 

topologically adaptable Snakes [12] allow changes in the 

model’s topology. See [13] for a review of deformable 

models and [1] for other edge-based methods and some 

basic edge detecting operators. 

Hybrid approaches [14][15][16] attempt to combine 

region-based and edge-based segmentations to alleviate 

deficiencies of the individual methods. There are different 

choices of the combination. For instance, [16] proposes a 

way of integrating MRFs and deformable models. MRFs 

are used to initially estimate the boundary of objects in 

noisy images. Balloons are then fitted to the estimated 

boundary. The result of the fitting is in turn used to update 

the MRF parameters. Final segmentation is achieved by 

iteratively integrating these processes. 

While this hybrid method attempted to take advantage 

of both MRFs and deformable models, the model 

coupling was loose. This may cause failure of deformable 

models if the initial estimation of the boundary by MRF is 

not closed, and it may also yield oversmoothed 

boundaries. 

3. Our method 

We propose a new framework to combine MRFs and 

deformable models. The goal of our segmentation method 

is to find one specific region with a smooth and closed 

boundary. A seed point is manually specified and the 

region containing it is then segmented automatically. 

Thus, without significant loss of modeling generality, we 

simplify the MRF model and avoid possible problems 

caused by segmenting multiple regions simultaneously. 

In this section, we first briefly review MRFs and 

deformable models, define the notation, and then 

introduce our hybrid framework. 

3.1. MRF-based segmentation 

MRF models are often used for image segmentation, 

because of their ability to capture the context of an image 

(i.e., dependencies among neighboring image pixels) and 

deal with the noise. 

A typical MRF model for image segmentation, as 

shown in Figure 1, is a graph with two kinds of nodes: 

hidden nodes (circles in Figure 1, representing region 

labels) and observable nodes (squares in Figure 1, 

representing image pixels). Edges in the graph depict 

relationships among the nodes. 

Figure 1. MRF model 

Let n be the number of the hidden/observable states 

(i.e., the number of pixels in the image). A configuration 

of the hidden layer is: 

1
( ,..., ), , 1,...,n ix x x L i n= ∈ =x  (1) 

where L is a set of region labels, such as L = {inside,

outside}.

Similarly, a configuration of the observable layer is: 

1
( ,..., ), , 1,...,n iy y y D i n= ∈ =y  (2) 

where D is a set of pixel values, e.g., gray values 0-255. 

The relationship between the hidden states and the 

observable states (also known as local evidence) can be 

represented as the compatibility function: 

 ( , ) ( | )i i i ix y P y xφ =  (3) 

Similarly, the relationship between the neighboring 

hidden states can be represented as the second 

compatibility function: 

( , ) ( , )i j i jx x P x xψ =  (4) 

Now the segmentation problem can be viewed as a 

problem of estimating the MAP solution of the MRF 

model: 

 arg max ( | )MAP P=
x

x x y  (5) 

where 

( , )

( | ) ( | ) ( ) ( , ) ( , )i i i j

i i j

P P P x y x xφ ψ∝ ∝ ∏ ∏x y y x x  (6) 

As mentioned previously, the exact MAP inference in 

MRF models is computationally infeasible, and various 

techniques have been used for approximating the MAP 

estimation. In our method, we use the BP algorithm. The 
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estimation of the MRF parameters (i.e., the parameters in 

the compatibility functions) is another related problem, 

often solved using the EM algorithm [3]. However, in the 

presence of multiple regions in the image, the automatic 

determination of the number of regions and the initial 

guess of the parameters could be difficult. More 

importantly, like other region-based methods, MRFs do 

not take account of object shape and may generate rough 

edges and even holes inside the objects. 

3.2. Deformable model-based segmentation 

Many deformable model-based methods have also 

been used in segmentation. A deformable model is 

usually a parameterized geometric primitive, whose 

deformation is determined by geometry, kinematics, 

dynamics and other constraints (e.g., material properties, 

etc.) [17]. Snakes [9], a special case of deformable models, 

are a parametric contour: 
2     [0,1] ,

( ) ( ( ), ( )),s s x s y s

Ω = → ℜ
→ =c

where s is the parametric domain and x and y are the 

coordinate functions. The energy of the contour: 

int ext

22 2

1 2 2

( ) ( ) ( )

( ) ( ) ( ( ))

E E E

s s F s ds
s s

ω ω
Ω

= +

∂ ∂= + +
∂ ∂

c c c

c c
c

 (7) 

where 
1
( )sω  and 

2
( )sω  control the "elasticity" and 

"rigidity" of the contour, and F is the potential associated 

to the external forces. The final shape of the contour 

corresponds to the minimum of this energy. 

To minimize the above energy term, one can use the 

discretized first order Lagrangian dynamics equation: 

+ =d Kd f  (8) 

where d is discretized version of c, K is the stiffness 

matrix calculated from 
1
( )sω  and 

2
( )sω , and f is the 

generalized force vector. 

Image gradient forces are usually used to attract a 

deformable model to edges. However, when far from the 

true boundary, the model often gets attracted to spurious 

image edges. Balloon forces have been introduced to 

solve this problem [10]. Namely, the deformable model is 

considered a balloon, which is inflated by an additional 

force and stopped by strong edges. The initial contour 

need no longer be close to the true boundary. 

Mathematically, a force along the normal direction to the 

curve at contour node c(s) with some appropriate 

amplitude k is added to the original forces. 

 ' ( )k s= +f f n  (9) 

Deformable models can also be viewed in a 

probabilistic framework [13]. The internal energy Eint(c)

leads to a Gibbs prior distribution of the form: 

int

1
( ) exp( ( ))

i

P E
Z

= −c c  (10) 

while the external energy Eext(c) can be converted to a 
sensor model with conditional probability: 

ext

1
( | ) exp( ( ))

e

P E
Z

= −I c c  (11) 

where I denotes the image, and Eext(c) is a function of the 

image I.
The deformable models can now be fitted by solving 

the MAP problem: 

 arg max ( | )MAP P=
c

c c I  (12) 

where 

( | ) ( ) ( | )P P P∝c I c I c  (13) 

One limitation of the deformable model-based method 

is its sensitivity to image noise, a common drawback of 
edge-based methods. This may result in the deformable 

model being "stuck" in a local energy minimum of a noisy 

image. 

3.3. Integrated model 

As shown in equation (5) and (12), both the MRF-
based and the deformable model-based segmentations can 

be viewed as the MAP estimation problems. In previous 

work [16], these two models were loosely coupled. Our 

new framework uses the graphical model theory to tightly 
couple the two models. This is achieved, as depicted in 

Figure 2, by adding a new hidden state to the traditional 

MRF model to represent the underlying contour. 

Figure 2. Integrated model 

In the new model, the segmentation problem can also 

be viewed as a joint MAP estimation problem: 

,
( , ) arg max ( , | )MAP P=

c x
c x c x y  (14) 

where 

( , | ) ( | ) ( | ) ( )P P P P∝c x y y x x c c  (15) 
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To define the joint distribution of the integrated model, 

we model the image likelihood term ( | )P y x  as: 

( | ) ( | ) ( , )i i i i

i i

P P y x x yφ= =∏ ∏y x  (16) 

identical to the traditional MRF model. 

The second term ( | )P x c , modeling the distribution of 

the region labels conditioned on the contour, is defined as: 

( , )

( , )

( | ) ( , ) ( | )

( , ) ( | )

i j i

i j i

i j i

i j i

P P x x P x

x x P xψ

=

=

∏ ∏

∏ ∏

x c c

c
 (17) 

where we incorporated a shape prior c to constrain the 

region labels x, in addition to the original Gibbs 

distribution. Since we only segment one specific region at 
one time, we need only consider the pixels near the 

contour, and label them either inside or outside the 

contour. Now we can model the dependency between the 

contour c and the region labels x using the softmax 
function: 

1
( | )

1 exp( ( , ))
iP x inside

dist i
= =

+ −
c

c
 (18) 

 ( | ) 1 ( | )i iP x outside P x inside= = − =c c  (19) 

induced by the signed Chamfer distance of pixel i from 

the contour c:

( , ) ( , )min ( ) ( )
s

dist i sign i loc i s
∈Ω

= −c c c  (20) 

where ( , ) 1sign i =c  if pixel i is inside contour c;

( , ) 1sign i = −c  when it is outside, and loc(i) denotes the 

spatial coordinates of pixel i.

Lastly, the prior term ( )P c , as in equation (10), can be 

represented as a Gibbs distribution when the shape prior 

is given by a parametric contour c.

Despite the compact graphical representation of the 

integrated model, the exact inference in the model is 

computationally intractable. One reason for this is the 

large state space size and the complex dependency 

structure introduced by the Gibbs distribution of the prior 

( )P c . The second reason is the existence of loops in the 

graphical model, which preclude polynomial-time 

inference. To deal with these problems we propose an 

approximate, yet tractable, solution based on structured 

variational inference. 

3.4. Approximate inference using structured 

variational inference 

Structured variational inference techniques [18][19] 

consider parameterized distribution which is in some 

sense close to the desired posterior distribution, but is 

easier to compute. Namely, for a given image yY, a 

distribution ( , | , )Q θc x y with an additional set of 

variational parameters θ  is defined such that the 

Kullback–Leibler divergence between ( , | , )Q θc x y  and 

( , | )P c x y  is minimized with respect to θ :

*

,

( , | )
arg min ( , | , ) log

( , | , )

P
Q

Qθ
θ θ

θ
=  

c x

c x y
c x y

c x y
 (21) 

The dependency structure of Q is chosen such that it 

closely resembles the dependency structure of the original 

distribution P. However, unlike P the dependency 

structure of Q must allow a computationally efficient 

inference. 

In our case we define Q by decoupling the MRF model 

and the deformable model components of the original 

integrated model in Figure 2. The original distribution is 

factorized into two independent distributions: an extended 

MRF model QM with variational parameter a and a 

deformable model QD with variational parameter b

(Figure 3). The extended MRF model means we have an 

additional layer to the traditional MRF model to deal with 

the shape prior. 

Figure 3. Decoupled models 

Because QM and QD are independent, 

 ( , | , , ) ( | , ) ( | )M DQ Q Q=c x y a b x y a c b  (22) 

According to the extended MRF model, we have: 

 ( | , ) ( | ) ( | )M M MQ Q Q∝x y a y x x a  (23) 

 ( | ) ( | ) ( , )M i i i i

i i

Q P y x x yφ= =∏ ∏y x  (24) 

( , )

( , )

( | ) ( , ) ( | )

( , ) ( | )

M i j i i

i j i

i j i i

i j i

Q P x x P x a

x x P x aψ

=

=

∏ ∏

∏ ∏

x a

 (25) 

Hence, 

( , )

( | , ) ( , ) ( , ) ( | )M i i i j i i

i i j i

Q x y x x P x aφ ψ∝ ∏ ∏ ∏x y a  (26) 

The deformable model yields: 

 ( | ) ( | ) ( )D D DQ Q Q∝c b b c c  (27) 

 ( | ) ( | )D i

i

Q P b= ∏b c c  (28) 

leading to 

 ( | ) ( | ) ( )D i D

i

Q P b Q∝ ∏c b c c  (29) 
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The optimal values of the variational parameters 

( , )θ = a b  are obtained by minimizing the KL-divergence. 

It can be shown, using e.g., [20], that the optimal 

parameters * * *( , )θ = a b  should satisfy the following 

equations: 
* *

log ( | ) ( | ) log ( | )i i D iP x a Q P x=
c

c b c  (30)

* *
log ( | ) ( | , ) log ( | )

i

i M i i

x L

P b Q x P x
∈

=c y a c  (31) 

To obtain the term ( | , )M iQ x y a  we use the inference 

in the extended MRF with soft inputs a contributing 

according to ( | )i iP x a . On the other hand, to compute 

( | )DQ c b  one would have to find the distribution of all 

contours c given the "label image" energy landscape 

log ( | )P− b c , according to equation (11). 

Since the state space of c is too large, we simply use 

winner-take-all strategy and approximate ( | )DQ c b  as a 

delta function: 

1 if arg max ( | )
'( | )

0 else                              

D

D

Q
Q

=
= c

c c b
c b  (32) 

and equation (30) can be simplified to: 
*( | ) ( | )i i iP x a P x= c (33)

Equations (31) and (33) together with the inference 

solutions form a set of fixed-point equations. Solution of 
this fixed-point set yields a tractable approximation to the 

intractable original posterior. 

3.5. Algorithm description 

Initialize contour c;
while (error > maxError) { 
1. Calculate a band area B around c. Perform 

remaining steps inside B;
2. Calculate ( | )i iP x a  based on equation (33) 

using c;
3. Estimate the MRF-MAP solution ( | , )M iQ x y a

based on equation (26) using ( | )i iP x a ;

4. Calculate log ( | )iP b c  based on equation (31) 

using ( | , )M iQ x y a ;

5. Fit a deformable model with balloon forces 
based on equation (29) using log ( | )iP b c ;

}
The variational inference algorithm for the hybrid 

MRF-DM model is summarized as above. Steps 2 and 4 

follow directly from equations (33) and (31). The details 
of steps 1, 3 and 5 are discussed in next section. 

4. Implementation issues 

4.1. Solve MRF-MAP with EM and BP 

Step 3 of our algorithm solves the MAP problem in the 

extended MRF Model. The EM algorithm is used to 

estimate both the MAP solution of region labels x and the 

parameters of the model. 
Particularly, in E-step, the MAP solution of region 

labels x is estimated based on current parameters. Unlike 

most of the previous work mentioned in section 2, we 

solve this MRF-MAP estimation problem using the BP 
algorithm. BP is an inference method proposed by Pearl 

[21] to efficiently estimate Bayesian beliefs in the 

network by the way of iteratively passing messages 

between neighbors. It is an exact inference method in the 
network without loops. Even in the network with loops, 

the method often leads to good approximate and tractable 

solutions [22]. There are two variants of the BP 

algorithm: sum-product and max-product. The sum-
product message passing rule can be written as: 

( )\

( ) ( , ) ( ) ( )
i

ij j ij i j i i ki i

x k i j

m x x x x m x
∈ℵ

= Ψ Φ ∏  (34) 

The max-product has analogous formula, with the 

marginalization replaced by the maximum operator. At 

convergence: 

( )

arg max ( ) ( )
i

iMAP i i ji i
x

j i

x x m x
∈ℵ

= Φ ∏  (35) 

According our extended MRF model the compatibility 

functions are: 

 ( ) ( | ) ( | ) ( , ) ( | )i i i i i i i i i ix P y x P x a x y P x aφΦ = =  (36) 

 ( , ) ( , ) ( , )ij i j i j i jx x P x x x xψΨ = =  (37) 

We again note the difference from a traditional MRF 

model, due to the incorporated shape prior. ( | )i iP x a  is 

calculated in step 2 of the algorithm. ( , )i ix yφ  and 

( , )i jx xψ can be calculated using current MRF parameters. 

In this model we assume the image pixels are 

corrupted by white Gaussian noise: 
2

22

( )1
( , ) exp

22

i

i
i

i x

i i

xx

y
x y

µ
φ

σπσ

−
= −  (38) 

On the other hand, 

2

( )1
( , ) exp

i j

i j

x x
x x

Z

δ
ψ

σ
−

=  (39) 

where ( )xδ  = 1 if x = 0; ( )xδ  = 0 if x  0, σ  controls 

the similarity of neighboring hidden states, and Z is a 

normalization constant. 

As shown in step 1, in our algorithm belief propagation 

is restricted to a single band of model variables around the 

current contour estimates. A reason for this is that, in 

practice, we only need to care about the statistics of pixels 

near the boundary. More importantly, the banded 

inference significantly speeds up the whole algorithm. 

Although convergence of the banded algorithm is not 
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guaranteed, in our experiments, the BP algorithm does 

converge, usually in only one or two iterations. 

In M-step, the MRF parameters are updated based on 

the MAP solution of region labels x using following 

equations: 

( | , )

( | , )

M i i i i

i
l

M i i i

i

Q x l y a y

Q x l y a
µ

=
=

=
 (40) 

2

2

( | , )( )

( | , )

M i i i i l

i
l

M i i i

i

Q x l y a y

Q x l y a

µ
σ

= −
=

=
 (41) 

where { , }l inside outside∈ .

4.2. Probabilistic deformable model 

In step 5, as mentioned in section 3.4, we use the 

negative log term, log ( | )P− b c , as the external energy in 

the deformable model. In that case, the image force is 

simply (log ( | ))P∇ b c . With the additional balloon 

forces, this leads to the discretized first order Lagrangian 

dynamics equation: 

 (log ( | )) ( )P k s+ = ∇ +d Kd b c n  (42) 

We note that this formulation is different from that of 

[16] where the deformable model is fitted to a binary 

image obtained from the MAP configuration of x. That is, 

the label of each pixel is fixed, i.e., 

 ( | ) max ( | )P P=
x

b c x c  (43) 

while in our method, we use a probabilistic measurement 

of label of each pixel as specified in equation (31). 

Finally, following the definition in equations (18)~(20), 

we note that the gradient of the coupling energy at pixel i,

(log ( | ))P∇ b c , can be shown to be: 

log ( | ) log ( | )

( )

P P

loc i

∂ ∂= −
∂ ∂

b c b c

c
 (44) 

5. Experiments 

Our algorithm was implemented in MATLAB and all 

the experiments were tested on a 1.5GHz P4 Computer. 

Most of the experiments took less than one minute on the 

images of size 128 128× .

5.1. Synthetic images 

The initial study of properties and utility of our method 

was conducted on a set of synthetic images. The images 

were synthesized in a way similar to [8]. In [8], the 

64 64×  perfect images contain only 2 gray levels 

representing the "object" (gray level is 160) and the 

"background" (gray level is 100) respectively. In our 

experiments, we made the background more complicated 

by introducing a gray level gradient. The gray levels of 

the background are increasing from 100 to 160, along the 

normal direction of the object contour (Figure 4a). 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 4. Experiments on synthetic images 

Figure 4b shows the result of a traditional  MRF-based 

method. The object is segmented correctly, however some 

regions in the background are misclassified. On the other 

hand, the deformable model fails because of the leaking 

from the high-curvature part of the object contour, where 

the gradient in the normal direction is too weak (Figure 

4c). Our hybrid method, shown in Figure 4d, results in a 

significantly improved segmentation. 

We next generated a test image (Figure 4e) by adding 

Gaussian noise with mean 0 and standard deviation 60 to 

Figure 4a. The result of the MRF-based method on the 

noisy image (Figure 4f) is somewhat similar to that in 

Figure 4b, which shows the MRF can deal with image 

noise to some extent. But significant misclassification 

occurred because of the complicated background and 

noise levels. 

The deformable model either sticks to spurious edges 

caused by image noise or leaks (Figure 4g) because of the 

weakness of the true edges. Unlike the two independent 

methods, our hybrid algorithm, depicted in Figure 4h, 

correctly identifies the object boundaries despite the 

excessive image noise. For visualization purposes we 

superimpose the contour on the original image (Figure 4a) 

to show the quality of the result in Figures 4g and 4h. 

5.2. Real images 

Experiments with synthetic images in the previous 

section outlined some of the benefits of our hybrid 

method. The real world images usually have significant, 

often non-white noise and contain multiple regions and 

objects, rendering the segmentation task a great deal more 

difficult. In this section we show results of applying our 

method to real medical images on which we can hardly 

get satisfying results with either the MRF-based or the 

deformable model-based methods alone. 
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In the following comparisons, we manually specified 

the inside/outside regions to get an initial guess of the 

parameters for the MRF-only method. For the deformable 

model method, we started the balloon model at several 

different initial positions and use the best results for the 

comparison. On the other hand, our hybrid method is 

significantly less sensitive to the initialization of the 

parameters and the initial seed position. 

Figure 5a shows a 2D MR image of the left ventricle 

of the human heart. Figure 5b is the result of the MRF-

based method. While it is promising, the result still 

exhibits rough edges and holes. Figure 5c depicts the 

result of the deformable model-based method. Although 

we carefully chose the magnitude of the balloon forces, 

parts of the contour begin to leak others stick to spurious 

edges. Our hybrid method, started from the initial contour 

shown in Figure 5e, generated better result (Figure 5d). 

One of the intermediate iterations is shown in Figure 5f. 

The corresponding external energy in the band area is 

depicted in Figure 5g (gray values are proportional to the 

magnitude of the energy), showing a more useful profile 

than the traditional edge energy 2| ( * ) |G Iσ− ∇  shown in 

Figure 5h. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 5. Experiments on medical images (1) 

Figure 6a is an ultrasound image. The MRF gets rough 

edges and holes in the objects (Figure 6b) while the 

deformable model cannot escape a local minimum (Figure 

6c). Our hybrid method eliminates the rough edges and 

holes caused by the MRF while outlining the region more 

accurately than the deformable model. 

(a) (b) (c) (d) 

Figure 6. Experiments on medical images (2) 

(a) (b) 

(c) (d) 

Figure 7. Experiments on medical images (3) 

(a) (b) 

Figure 8. Experiments on medical images (4) 

Finally, Figures 7a and 8a are both examples of 

difficult images with complicated global properties, 

requiring the MRF-based method to automatically 

determine the number of regions and the initial values of 

the parameters. Figure 7b is obtained by manually 

initializing the MRF model. Our method avoids this 

problem by creating and updating an MRF model locally 

and incrementally. The images are also difficult for 

deformable models because the boundaries of the objects 

to be segmented are either high-curvature (Figure 7a) or 

low-gradient (Figure 8a). Figure 7c exemplifies the over-

smoothed deformable models. Our method’s results, 

shown in Figures 7d and 8b, do not suffer from either of 

the problems. 

6. Conclusions and future work 

We proposed a new framework to combine the MRF-

based and the deformable model-based segmentation 

methods. The framework was developed under the 
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auspices of the graphical model theory allowing us to 

employ a well-founded set of statistical estimation and 

learning techniques. In particular, we employed an 

approximate, computationally efficient solution to 

otherwise intractable inference of region boundaries. We 

showed the advantages and utility of our hybrid method 

on a number of synthetic and real-world images. 

Our current method lacks adaptive parameter selection 

for both the deformable and the coupling model, an issue 

we plan to address in the future.  Similarly, homogeneity 

of the MRF is a limiting factor that can be addressed 

using spatially-dependent models. Another interesting 

issue is how to apply other approximate inference 

algorithms, in particular belief propagation, to the whole 

model instead of the extended MRF alone. This may 

require a different representation of the probabilistic 

contour, possibly similar to [23] or [24]. Finally, the 

proposed framework can be extended to 3D segmentation 

as well as tracking problems requiring a shape prior, 

easily representable in our formalism. 
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