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Abstract

Deformable model tracking is a powerful methodology
that allows us to track the evolution of high-dimensional
parameter vectors from uncalibrated monocular video se-
quences. The core of the approach consists of using low-
level vision algorithms, such as edge trackers or optical
flow, to collect a large number of 2D displacements, or mo-
tion measurements, at selected model points and mapping
them into 3D space with the model Jacobians. However, the
low-level algorithms are prone to errors and outliers, which
can skew the entire tracking procedure if left unchecked.
There are several known techniques in the literature, such
as RANSAC, that can find and reject outliers. Unfortu-
nately, these approaches are not easily mapped into the
deformable model tracking framework, where there is no
closed-form algebraic mapping from samples to the under-
lying parameter space. In this paper we present two simple,
yet effective ways to find the outliers. We validate and com-
pare these approaches in an 11-parameter deformable face
tracking application against ground truth data.
keywords: “Outlier Rejection”, “Robust Methods”, “De-
formable Models”, “3D Face Tracking”.

1. Introduction

Tracking deformable models is a hard task. We need to
estimate the underlying parameters of our model, both rigid

and nonrigid, from only two-dimensional video sequences.
Face tracking, for example, is the first step in a series of im-
portant applications such as surveillance, face recognition,
human-computer interaction, and animation.

It is very hard to find correspondences between image
pixels and model points. Typically, we use computer vi-
sion algorithms (such as edge trackers and optical flow),
together with the inductive assumption of tracking, to es-
timate pixel correspondences between two consecutive im-
ages. We can then use an optimization procedure to find the
new value of the model parameters that minimize the two-
dimensional displacements between the model points and
the corresponding image pixels.

Computer vision algorithms are subject to errors. When
these errors are all characterized by a well-behaved distribu-
tion, then the use of a large number of image displacements
works as an averaging, or smoothing, procedure, and these
errors cancel one another out. Unfortunately, sometimes
there are gross outliers - elements that should not be there
and are not a good description of the underlying dynamics.
Outliers can occur because of invalid assumptions, numer-
ical errors, or just because some heuristics are not guaran-
teed always to work. It has been known that even a small
number of outliers can “poison” the result of an algorithm,
and deformable model tracking is no exception.

Robust algorithms in computer vision are hard to come
by [14]. Many applications are tailored to one particular
class of of data, and do not necessarily generalize well to
different types of inputs. Tracking three-dimensional mod-
els from a noisy image stream, as we do in this paper,
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without a proper statistical representation of the noise, is
a daunting task. Since we do not have the noise model, the
least that we can do is to eliminate the obvious outliers. In
this paper we describe and compare two techniques to detect
such outliers. The first method works in the image space,
but requires some numerical approximations. For this rea-
son, we develop a novel method that detects outliers in pa-
rameter space, without the need for any approximations.

The rest of the paper is organized as follows: We discuss
related work, provide an overview of deformable model
tracking, and describe the need for a robust outlier rejection
procedure. We then discuss the two approaches for finding
the outliers, and compare their performance in validation
experiments with ground truth data.

1.1. Related work

Deformable models and their representations are an ac-
tive area of research in computer vision. Stereo and shape
from shading methods obtain initial fits [21]. Within a sim-
ilar framework, [9] uses anthropometric data and inspired
deformations to generate faces. A learning-based statistical
model can help tracking of face models [3]. Eigen-based
approaches, such as PCA decompositions, can successfully
track, fit, and even recognize objects [15, 2, 17, 19]. In [5]
the head is modeled as a cylinder, and in [1] as a plane, and
in [17, 18] tracking is used for animation. In [4], tracking
uses adaptive texture. A powerful deformable volumetric
model has been also used for fast face tracking [23] and
subtle motion [27] capture. Integration of distinct cues have
been used to reduce the effect of outliers particular to a spe-
cific algorithm [8, 11]. In [11], the deformable model cues
have their distributions measured, but it ignores the effects
of possible outliers, and in [12], this distribution is used to
measure the observation of a predictive filter.

Outlier rejection is an important step in any field that
deals with noisy and corrupted data. Several methods use
sampling of multiple minimum-size sets to estimate com-
mon underlying parameters, and find out which elements
should be discarded. Among them there are RANSAC [10],
MLESAC [26], and IMPSAC [24]. M-estimators look for op-
timum weighting of each element, instead of just trying to
discard outliers [13, 6, 7]. There are good overviews and
comparisons of these methods, both in the general statistics
literature [20], as well as applied to computer vision partic-
ular problems [25].

2. Deformable Models for Tracking

Using a deformable model is appropriate whenever we
would like to track a non-rigid object, about which we have
a lot of prior knowledge (i.e., general shape and range of de-
formations). A deformable model has its geometric shape

q =

q0

q1

qn−1

qn

Figure 1. Parameter Vector controls shape
and rigid transformation.

fully determined by the value of a parameter vector q. Some
parts of q are responsible for the rigid motion, whereas oth-
ers change its shape. For example, in a deformable model
for face tracking, as in Figure 1, there are parameters for
eyebrow movement, and mouth opening and stretching. For
every 2D image point pi on the surface of our model, we
have a function

pi = Fi (q) (1)

that evaluates its position for every value of the parameter
vector q.

During a tracking session, for every new frame k, we
look for the value of the parameter vector qk that achieves
the best model-image correspondence. In the general case,
this task is very complicated. Even when we can find the
correspondence between image pixels and model points, the
functions Fi are usually nonlinear, and in the general case
there is no closed-form solution for this inverse problem.

Nevertheless, we can use computer vision algorithms,
such as edge trackers and optical flow, to find image to im-
age correspondences between frames. We then use these
two dimensional displacements fi, which we also call im-
age forces, to adjust the value of qk−1 to qk iteratively.
This adjustment is nothing more than a local optimization
in parameter space: the search for a new q that minimizes
the sum of the magnitude of all image forces fi.

The first step is to map all image forces into a single
contribution in parameter space, a generalized force

fg =
∑

i

B�
i fi, (2)

where Bi is the projected Jacobian of the model at point pi
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to which the image force fi is applied. Using the generalized
force fg we solve the dynamical system

q̇ = Kq + fg, (3)

where K is a stiffness matrix, using a simple gradient de-
scent method.

Obviously, the quality of the solution depends on the es-
timate of fg , which in turn depends on the quality of the
image force estimates fi. Computer vision algorithms are
known for their inconsistency, so the quality of the esti-
mates of fi tends to be uneven. The common way to deal
with this problem is to calculate a very large number of im-
age forces, and to hope that there is only a small number
of outliers which will be washed out through the averaging
process of Equation 2. Unfortunately, in practice, at best,
ignoring outliers results in noisy tracking. At worst, in the
presence of noisy data, or corrupted video sequences, there
typically is a significantly larger percentage of outliers than
normal, which can cause the system to lose track.

3. Outlier Rejection

The collection of image forces gathered by a computer
vision algorithm is normally corrupted by noise. In addi-
tion, another major source of errors comes from data point
outliers, due to failures of the underlying vision algorithms,
such as violations of assumptions, occlusions, and so on. If
we do not take such outliers into account, they can dramat-
ically throw off our estimates of the generalized forces.

Any attempt to detect the outliers based solely on the
2D characteristics of the image is bound to fail, because
it completely discards any information that we have from
the model. For instance, in our face model shown in Fig-
ure 1, different points of the model are controlled by dif-
ferent parameter subspaces, which in turn affects how we
expect these points to behave over time, with respect to tra-
jectory, velocity, and so on. This information is expressed
directly in the Jacobians of the points.

In general terms, robust outlier rejection is based on the
idea that a point is likely to be an outlier if in some frame
it dramatically differs from the expected behavior. In the
following we describe two different approaches to outlier
rejection that combine the information from the 2D image
and the model Jacobians.

3.1. Image Space Outlier Rejection

Many tracking applications use a Kalman filter, to com-
bine a prediction of the system’s state with a measurement,
or observation. The prediction model can be based on an
engineer’s empirical knowledge of the problem at hand, or
can even be learned from data.

Tracked pi

Predicted p̃i

Figure 2. Image space-based outlier rejection

The simplest method to perform outlier rejection of im-
age forces in a deformable model framework is to use the
Kalman filter’s prediction of the state [12], before the fusion
with the observation, to weed out the outliers. At frame k,
we have the multivariate Gaussian prediction q̃k of the pa-
rameter vector for frame k + 1, the covariance matrix Λq̃k

giving the uncertainty in the prediction, and the associated
predicted points in image space

p̃i = Fi (q̃k) . (4)

We cannot calculate the covariance matrix Λp̃i
of p̃i exactly,

because the functions Fi are nonlinear. We can, however,
calculate an approximation with a linearization of the Fi:

Λp̃i
≈ B̃�

i Λq̃k
B̃i, (5)

where B̃i is the projected Jacobian of the model at the pre-
dicted image point p̃i.

This covariance matrix defines an ellipsoid. If the pre-
diction model is good, the computer vision algorithms will
track and place the actual point pi at frame k + 1 some-
where in the vicinity of the predicted p̃i; that is, it will be
most likely contained within this ellipsoid (Figure 2). If pi

falls outside it, it is considered to be an outlier. Thus, we can
use the Mahalanobis metric in conjunction with a threshold
to determine which image forces should be considered and
which ones should be rejected:

x�Λ−1
p̃i

x ≤ threshold, (6)

where x = pi − p̃i is the difference between the respective
tracked and predicted image points.

This method requires a good prediction model of the sys-
tem’s evolution, and assumes that a Gaussian distribution
can properly represent the parameter vector’s distribution.
The most serious limitation of this approach is that it does
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Figure 3. Projection of two-dimensional force
into parameter space.

not take into account the nonlinearities of Fi when project-
ing the Gaussian distribution into image space. This limita-
tion suggests that a better approach is to perform the outlier
rejection in the parameter space, thus avoiding the projec-
tion and associated nonlinearity issues entirely.

3.2. Parameter Space Outlier Rejection

We would like to avoid a direct linearization of Fi, which
is necessary to project a Gaussian into image space, as in
the approach of the previous section. From Equation 2, fg
is defined as the sum of the image forces’ projections into
parameter space

fg =
∑

i

fgi, (7)

where
fgi = B�

i fi,

illustrated in Figure 3.
If we were follow the same idea as in the previous sec-

tion, we would like to predict the value of the generalized
force fg for frame k + 1, and use the Mahalanobis met-
ric on this higher dimension Gaussian distribution of the
parameter-space projection of the 2D forces (Equation 7).
Unfortunately, this approach turns out to be very unreliable,
because fg is directly related to the first derivative with re-
spect to the model parameters, and thus the prediction is
inherently too noisy to be of use.

The approach that we follow, instead of predicting fg ,
is based on estimating the distribution of fg in the current
frame and rejecting any force fgi that is not compatible with
this distribution. In previous work we showed that, as fg
is the sum of the parameter-space projection of many 2D
forces (Equation 2), a Gaussian reasonably represents the
distribution of the resulting generalized force fg [11], so
once we have estimated fg we can, in principle, again use
the Mahalanobis metric to test the individual fgi. We now
show how to measure the parameters of this Gaussian (mean

and covariance matrix) from the individual forces and their
associated Jacobians, and then show how to use a modified
Mahalanobis metric to identify forces that are not compati-
ble with the distribution.

Estimating the Distribution of fg
If we treat the generalized forces as cloud of points in the
parameter space, we can group them in a matrix

Fg =


 | | |

fg1 fg2 · · · fgN

| | |


 , (8)

and calculate the mean µ and the covariance matrix Λ
through

µ =
1
N

Fg




1
...
1


 , and Λ =

1
N

FgF
�
g . (9)

However, these simple estimates will be incorrect, be-
cause of the phenomenon of parameter unobservability.
When the original 2D force fi is non-zero, a zero entry in
the jth row of a generalized force fgi can have two different
meanings:

1. The jth parameter is already at a minimum, and thus
∂pi

∂j · fi = 0.

2. The point pi does not depend on the jth parameter, and
so ∂pi

∂j = 0.

In the first case, the jth entry of the generalized force should
be zero, but in the second case the parameter is unobserv-
able: we cannot draw any conclusions about its value, be-
cause it does not affect the point pi to which the 2D force fi
is being applied. With this interpretation in mind, it is clear
why it is incorrect to interpret Fg as a simple cloud of data
points in parameter space — these unobservable points drag
the mean and covariance values down.

To find the mean µ, we need to estimate each component
µj using only the subset Sj of generalized forces for which
the parameter j is observable:

Sj =
{

pi

∣∣∣∣∂pi

∂j
�= 0

}
. (10)

Then

µj =
1

Nj

N∑
i

fgi,j , (11)

where fgi,j is the jth component of fgi, and Nj = |Sj |.
The calculation of the covariance matrix Λ is more com-

plicated. If we start with Λ = FgF
�
g , and divide each el-

ement by a different number of valid terms (analogous to
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Equation 11), we may obtain a non-positive-definite matrix.
The off-diagonal elements of the covariance matrix cannot
be calculated from a subset of points that is different from
the subset used to calculate the pair of associated diagonal
elements; otherwise the positive-definiteness property does
no longer hold. To solve this problem, we assume that if
parameters j and k are observable from the different sets of
points Sj and Sk, respectively, they should be treated as in-
dependent. Thus, the cross-terms between these parameters
are zero:

Λjk =

{
1

Nj

∑N
i (fgi,j − µj) (fgi,k − µk) if Sj = Sk;

0 otherwise.
(12)

The covariance matrix calculated this way can always
be viewed as a block diagonal matrix (after rearranging the
parameters):

Λ =







,

where every sub-block is positive definite. Thus, Λ is posi-
tive definite.

Observable Subspace Mahalanobis Metric
The rejection criterion for every generalized force is based
on the Mahalanobis distance, restricted to the subset of ob-
servable parameters. The reason for this restriction is that
when a point pi has an unobservable parameter j, its gener-
alized force has a jth component fgi,j = 0, and the distance
between zero and µj might be large enough to pull the Ma-
halanobis distance above the threshold.

We accomplish this restriction by projecting the forces
and covariance matrix into the observable subspaces for
each point. If a point pi has l observable parameters, we
can build a projection matrix Pi, with dimensions l × n,
composed of only 0s and 1s, that projects a force from the
n-dimensional parameter space into the l-dimensional ob-
servable subspace. This same matrix is also used to project
the covariance matrix into the observable subspace, so the
acceptance criterion for a force is its observable subspace
Mahalanobis distance

(fgi − µ)� P�
i PiΛP�

i Pi (fgi − µ) ≤ threshold. (13)

4. Validation with 3D Face Tracking

Recall that the image space-based rejection method in-
volves a linearization, whereas the parameter space-based

Figure 4. Subject with eight markers physi-
cally drawn in the face.

rejection method does not. All other factors equal, we
therefore would expect the parameter space-based rejection
method to do better. To test this hypothesis, we imple-
mented the two methods in our existing 3D face tracking
system.

For a quantitative evaluation of the methods, we pro-
duced a video sequence at 60 Hz where we physically drew
markers on the subject’s face (Figure 4). We extracted the
2D image position of each marker for all frames in a semi-
automated manner based on thresholding. The 3D model al-
lowed us to compare the actual 2D marker position with the
projected position of marker in the 3D model at each frame
of the tracking experiment. Our evaluation criterion is the
distance between the projected and actual 2D marker posi-
tions, where lower numbers obviously mean better tracking.

We used an all-purpose deformable face model with
1101 nodes, 2000 faces, and 11 parameters that controlled
both the rigid transformation as well as the facial deforma-
tions (eyebrows, lip stretching, smiling, jaw opening, etc.)
of each of these points (see Figure 1). Before we can track
a new subject, the model’s mesh first needs to be fitted to
the face in an image at rest position, without the effect of
deformations. Note that this process needs to be only done
once for every subject, through methods such as [2, 9, 16].

For the purposes of these validation experiments, we fit-
ted the model in a semi-automatic way: the user manually
selected a few dozen model-image correspondences. Fit-
ting then consisted of solving Equation 3, with the user
correspondences as the image forces {fi} (Section 2, Equa-
tion 2), using a finite-element inspired set of shape deforma-
tions. Because the definitions of the facial expression defor-
mations are independent of the base mesh [11], the model
was ready for tracking immediately after fitting.
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Figure 5. Mean errors of visible markers.

To isolate and understand the effect of the outlier re-
jection techniques, we simplified the tracking procedure as
much as possible, leaving only one point-tracking algorithm
(cue), and removing tethering procedures. This algorithm
selected the model points that were most suitable for track-
ing [22], and then tracked them to obtain their displace-
ments fi at each new frame.

We compared the effects of no rejection, image space-
based rejection (Section 3.1), and parameter space-based
rejection (Section 3.2). Figure 5 shows the results of these
three different techniques. No outlier rejection (red, solid
curve) fares the worst, with the error quickly growing out
of control. Image space-based rejection (dotted blue curve)
and parameter space-based rejection (dashed purple curve)
fare much better, with parameter-space based rejection be-
ing more robust over the long run.

5. Conclusions

In this paper we have introduced two approaches for re-
jection of the outlier forces generated from low-level com-
puter vision algorithms. The first approach uses a multi-
dimensional Gaussian prediction, and the second one builds
a covariance matrix from the available data. In both tech-
niques, the final outlier detection criterion is a Mahalanobis
distance.

The first approach predicts the actual value of the pa-
rameters as a Gaussian distribution, projects this Gaussian
into image space through a first order linearization of the
deformable function (the Jacobian), and tests the 2D forces
against these 2D Gaussians. When the tracking system al-
ready has this prediction (through the use of a Kalman filter,
for example), this approach is an easy and computationally
cheap way to detect, and reject, outliers. It has a disadvan-
tage of incorrectly classifying some points, because of the
extra uncertainty of the prediction stage, and the first order

approximation necessary to propagate a Gaussian distribu-
tion through a non-linear function. The performance of this
procedure is closely related to the quality of the prediction.

The second approach builds a mean and covariance ma-
trix based on the available forces. We have to take spe-
cial care with the parameter observability issue, but there
is no predictive step involved, thus increasing robustness.
On the other hand, compared to the first method, this ap-
proach requires an extra step to calculate the covariance ma-
trix. However, since the outlier rejection is performed only
once per frame, this extra computational cost is insignificant
compared to the remaining operations necessary to track a
frame. In addition, since this approach works in a subspace
of the parameter space, it requires no linear approximations.
Overall, these factors and the validation results support a
clear preference for the second approach.
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