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Bayesian network models provide an attractive framework for
multimodal sensor fusion. They combine an intuitive graphical rep-
resentation with efficient algorithms for inference and learning.
However, the unsupervised nature of standard parameter learning
algorithms for Bayesian networks can lead to poor performance
in classification tasks. We have developed a supervised learning
framework for Bayesian networks, which is based on the Adaboost
algorithm of Schapire and Freund. Our framework covers static
and dynamic Bayesian networks with both discrete and continuous
states. We have tested our framework in the context of a novel mul-
timodal HCI application: a speech-based command and control in-
terface for a Smart Kiosk. We provide experimental evidence for the
utility of our boosted learning approach.

Keywords—Bayesian networks, boosting, discriminative
learning, multimodal integration, speaker detection.

I. INTRODUCTION

Human-centered user interfaces based on vision, speech,
and other communication modalities present challenging
sensing problems in which multiple sources of information
must be integrated to infer the user’s actions and intentions.
A comprehensive framework for multimodal sensory in-
tegration should exhibit two key properties. It should: 1)
combine information from noisy and ambiguous sensors
with expert knowledge and contextual information; and
2) support tractable and accurate multimodal inference.
Statistical techniques which combine human knowledge and
data-driven learning can, therefore, play a critical role in
multimodal system design.

Bayesian network (BN) [23], [13] models are an attractive
framework for statistical modeling, as they combine an in-
tuitive graphical representation with efficient algorithms for
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inference and learning. BNs encode conditional dependence
relationships among a set of random variables in the form of
a graph. An arc between two nodes denotes a conditional de-
pendence relation, which is parameterized by a conditional
probability model. Section III-A contains an illustration of a
BN which fuses three vision-based sensors to estimate head
pose. The structure of the graph encodes domain knowledge,
such as the relationship between sensor outputs and hidden
states, while the parameters of the conditional probability
models can be learned from data. None of the simple vision
sensors in the example inSection III-A were originally de-
signed to analyze head pose, but they can be combined to
form a more complex head pose sensor using the BN frame-
work. Another advantage of the BN formalism is that it can
be easily extended to handle time series data, by means of the
dynamic BN (DBN) framework. Temporal modeling is very
important for many audio and video fusion tasks.

The challenge in applying BN and DBN models to
multimodal detection is twofold. First, the model has to ac-
curately encode dependency relationships between multiple
modalities that have been observed and identified by domain
experts. In addition, the parameters that encode the detail
of these dependency relations must be “refined” and rees-
timated from data in a particular multimodal context. This
may mean that model parameters adapt to a particular noise
level in the environment or that the strength of audiovisual
dependency changes according to the contextual state of an
environment. The classical BN learning paradigm can ad-
dress modeling issues through an established methodology
of parameter and structure learning techniques.

The second challenge in developing BN-based classifiers
is the need to develop effective discriminative learning
algorithms. In classical maximum-likelihood (ML) learning,
model parameters are adjusted to achieve the best fit to a
set of training data. Unfortunately, there is no guarantee
that a model obtained in this fashion will make optimal
classification decisions. A number of alternative discrimi-
native learning approaches that directly attempt to optimize
recognition accuracy have been considered in the past. For
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Fig. 1. The CRL Smart Kiosk. (a) Illustration of the Smart Kiosk as an information retreival
booth. (b) Genie Casino interface and data collection setup.

instance, Bahlet al. [1] have suggested a method called
“corrective training” for improving the performance of a
speech recognition system. The method iteratively adjusts
the parameter values to make the correct words more prob-
able while reducing the probability of the incorrect ones.
Similarly, [33] used a minimum classification error para-
digm to build a speaker identification system and reported
an improvement of 20% to 25% over a baseline ML model.

In this paper, we explore the use of boosting techniques
to develop discriminative parameter learning algorithms
for BN and DBN models. Boosting belongs to a family of
machine learning techniques forensembles of classifiers
[5], [21], in which a set of classifiers is combined in making
a decision. Most of the ensemble techniques rely either on
averaging the outputs of the various classifiers, or selecting
one of the classifiers from the pool depending on the input
data. For instance,boosting[29] iteratively trains a series of
classifiers that concentrate on errors made by their prede-
cessors, thereby improving overall recognition performance.
Hierarchical mixture of experts[15], on the other hand,
makes use of a gating network to determine the weights of
individual classifiers which are then linearly combined to
yield the final classification decision. This method requires
joint learning of parameters of the gating network and the
classifiers, which may not be feasible in high dimensional
spaces. Unfortunately, even though ensemble techniques are
designed to improve the classification error, they sometimes
yield small performance gains. One reason for this is that
they often disregard the correlation among the outputs of
individual classifiers.

In this paper, we describe a comprehensive BN frame-
work for integration of multimodal sensory information. We
demonstrate that BNs, as a class of graphical probabilistic
models, have the representational strength to fuse data from

weak sensors and encode dependency relationships between
multiple modalities, both statically and dynamically. We
show how such dependencies can be recovered and rees-
timated from data. In particular, we show that DBNs can
optimally combine “off-the-shelf” video and audio sensors in
solving a complex classification problem. We then describe
a novel learning algorithm for DBNs that uses boosting
to improve multimodal prediction accuracy. We refer to
these new models as theerror feedbackBN models—error
feedback BN (EFBN) and error feedback DBN (EFDBN). A
variation of Freund and Schapire’s Adaboost algorithm [30]
is used to estimate the model parameters. A linear network is
used to combine individual classifiers (here BNs and DBNs)
into an EFBN or EFDBN. While each individual classifier is
not trained to minimize the training error of the multimodal
decision, the boosted combination achieves this goal. We
demonstrate the utility of these new learning approaches
in the context of a novel application domain: multimodal
speaker detection for a Smart Kiosk user interface. In this
domain, video and audio sensing support a command-based
user interface which should be robust to multiple users
and unconstrained environments. Our experiments show
superiority of our model over the conventionally trained
DBNs as well as static BNs. On our speaker detection task,
we achieve an accuracy of 90%. These promising results
suggest the general applicability of our methodology to
other domains in which BN and DBN models are used.
Preliminary versions of this work appeared in [8], [9], [22],
[27].

II. TESTBED: MULTIMODAL SPEAKER DETECTION

Speaker detection is an important component of open-mi-
crophone speech-based user interfaces. For any interface
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which relies on speech for communication, an estimate of the
user’s speaking state (i.e., whether or not he/she is speaking
to the system) is important for its reliable functioning. In
an open-microphone interface, one needs to identify the
speaker and discriminate speech directed to the interface
from conversations with other users and background noise.
Both audio- and video-based sensing can provide useful
cues [4], [11]. Visual cues can be useful in deciding whether
a user is facing the system and whether they are moving their
lips. However, visual cues alone cannot easily distinguish
a speaker from an active listener, who may be smiling or
nodding without saying anything. Audio cues, on the other
hand, can provide useful evidence for speech production.
However, simple audio cues cannot easily distinguish a
user who is speaking to the system from someone who is
addressing their neighbor. Finally, contextual information
describing the “state of the world” also has a bearing on
when a user is speaking. For instance, in certain contexts,
the user may not be expected to speak at all. Hence, the ideal
solution would be to fuse audio, visual, and contextual cues
in order to detect the presence of a speaker.

The CRL Smart Kiosk [3], [26], which was developed at
the Cambridge Research Lab (CRL) of Compaq Computer
Corporation, provides the context for our research on speaker
detection. The Smart Kiosk is designed to provide informa-
tion and entertainment to multiple users in public settings
such as a shopping mall, subway station, etc. The kiosk has
a speech-based interface which allows users to interact with
the system using spoken commands. The public, multiuser
nature of the kiosk application domain makes it ideal as an
experimental setup for speaker detection task. The kiosk [see
Fig. 1(a)] has a camera mounted on the top that provides vi-
sual feedback. A microphone is used to acquire speech input
from the user while the audiovisual feedback for the user is
provided in the form of a graphical avatar.

The experimental results in this paper are based on a
specific instantiation of the Smark Kiosk known as the
Genie Casino. In this instance, the kiosk implements a mul-
tiplayer blackjack game in which users are playing against
the house in conjunction with other player avatars. Fig. 1(b)
shows a screen shot from the Genie Casino interface. A
command-and-control speech interface based on Microsoft
SAPI allows a user to issue verbal commands such as “hit”
or “stand,” thereby controlling the play of their hand.

A. Sensors

Audio and visual information can be obtained directly
from the two kiosk sensors (camera and microphone). We
use a set of five “off-the-shelf” visual and audio sensors:
the CMU face detector [28], a Gaussian skin color detector
[35], a face texture detector, a mouth motion detector, and
an audio silence detector. These components have the ad-
vantage of either being easy to implement or easy to obtain,
but they have not been explicitly tuned to the problem of
speaker detection. We now give a brief description of the
sensors used for this problem.

1) Skin Sensor:Skin detection is a standard method for
identifying skin-colored regions in an image. These regions

can identify the location of a user’s face and provide an at-
tentional mechanism for visual tracking algorithms. It has
been shown that skin pixels form a compact set in color space
under general lighting conditions [14], and under restricted
lighting conditions, the skin-color distribution can be char-
acterized by a multivariate Gaussian [35]. We have imple-
mented a simple Gaussian color model and applied it to skin
detection. The skin sensor takes a part of the image as an
input and outputs a scalar value which represents the pres-
ence or absence of skin in the image region. The percentage
of the pixels in the image which belong to the skin color
forms a measure for this sensor.

2) Texture Sensor:There are many objects, such as walls
and doors, whose color is similar to skin. A simple texture
feature is designed to help discriminate regions containing
faces from regions containing either very smooth patterns
such as walls or highly textured patterns such as foliage. A
simple correlation ratio of the image window defines
the feature

(1)

where is a parameter which can be varied depending upon
the smooth and coarse regions.

3) Face Sensor:By aligning the video camera with the
display, we can ensure that users who are facing the kiosk
will generate frontal, upright faces in the camera images.
We search for these faces using the neural network-based
Carnegie Mellon University (CMU),Pittsburgh, PA, face de-
tector [28]. Since this detector is computationally expensive,
we have built a linear Kalman filter model which keeps track
of the scale and position of the face in the previous frame, and
a region (spatial and scale) around that is used for searching
the face in the next frame. The output of this sensor is highly
saturated and pose sensitive. The tracker is capable of auto-
matic initialization any time the face becomes lost.

4) Mouth Motion Sensor:An approximate op-
tical-flow-based approach is used to measure the motion in
the mouth region of a face image. The sensor uses three im-
ages from a video sequence, and after affine stabilization to
compensate for head motion, the sensor outputs the residual
error in the mouth region. Affine warping is used to cancel
small global facial movements, and then the residual over
the mouth region is normalized with respect to the residual
over the remainder of the face. In the absence of correct
mouth segmentation, the detector results are sensitive to
head rotation. As the face pose approaches the profile view,
residuals around the occluding contour increase, biasing the
sensor.

5) Silence Detector:We employ a simple energy-based
silence detector to signal the presence of speech in the kiosk
environment. The audio is sampled at 4 kHz but then it is av-
eraged over multiple frames to synchronize the audio output
with the video. The energy of the signal is normalized using a
sliding window, then a threshold is set which decides whether
the environment contains any audio signal. The output of
the sensor is sensitive to any fluctuations in the background
noise.
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Fig. 2. (a) Vision network. (b) Simple naive Bayes network.

6) Contextual Information:In the case of the Genie
Casino kiosk interface, we have complete access to the state
of the interaction with the user, and this provides us with
a sensor for contextual information. This sensor is of the
utmost importance, since the blackjack game has a strong
turn-taking structure which influences the speaker state. For
example, when the dealer (the Genie) has asked the user to
place a bet, the likelihood of the user speaking increases
significantly. In contrast, while the dealer is speaking or
attending to another player, the likelihood that the user is
speaking decreases. In our implementation, we select a
simplified state of the game as the contextual information.
Namely, two game states are encoded: the user’s turn (to
interact) and its complement.

B. Experimental Setup

Fig. 1(b) shows the experimental setup for data collection.
A camcorder is used to record video, audio, and contextual
sensor data in a synchronized manner. In the Genie Casino
system, a finite-state machine encodes the progress of the
game. The game state is converted to a frequency-encoded
audio signal, which is output through the speaker port. This
signal is mixed with the single microphone input to provide
a stereo input to the camcorder. In this way, all of the sensor
data is synchronized in time and accessible using standard
digitization tools.

III. B AYESIAN NETWORKS FORSPEAKER DETECTION

Speaker detection represents a challenging ground for
testing the representational power of BN models in a com-
plex multisensor fusion task. Different types of sensors need
to be seamlessly integrated in a model that both reflects
the expert knowledge of the domain and the sensors and
benefits from the abundance of observed data. We approach
the model-building task by first tackling the expert design
of networks that fuse individual sensor groups (video and
audio). We then proceed with the integration of these sensor
networks with each other, with contextual information, and
over time. Finally, the data-driven aspect comes into play
with data-driven model learning.

A. Visual Network

The goal of the vision network is to infer whether a user
is present (i.e., their face is visible in front of the kiosk),
whether they are facing the kiosk, and whether their mouth
is moving. To accomplish the first two tasks, we designed a

small BN which fuses the output of the skin color, texture,
and face detector sensors and estimates the visibility and ori-
entation (frontal versus side) of the user’s face. This network
structure, which is an example of a polytree, is depicted in
Fig. 2(a). The “visible” and “frontal” variables are not di-
rectly observed, but can be inferred from sensory data. The
specific network topology results from our expert knowledge
of the sensor properties. The user being “frontal” clearly de-
pends on whether he is “visible.” If the user is “visible,” parts
of his skin and face will appear in the image. On the other
hand, the face detection sensor only detects frontal faces.
Hence, it is plausible to connect it to the “frontal” node.

The arcs between variables qualify the known conditional
dependencies. They are parameterized by conditional proba-
bility distributions that quantify those dependencies. The arc
between the two binary variables “frontal” and “visible,” for
example, stores the two-by-two conditional probability table
(CPT), frontal visible . In the rest of the paper, we will
refer to a total set of all CPT parameters for a particular net-
work by . The network topology will be denoted by. To-
gether, they form a tuple ( ) that fully specifies each net-
work.

The probability distribution defined by the visual network
is now

SK TX FD

SK TX FD

where , , SK, TX and FD correspond to the “visual,”
“frontal,” “skin,” “texture,” and “face detector” nodes,
respectively. If one wanted to use the visual network as a
face detector, the posterior distribution of interest would
be SK TX FD . This posterior can be efficiently
obtained using a number of BN inference techniques (e.g.,
junction tree potentials [23]). The optimal Bayesian decision
that the face was present is then made using the likelihood
ratio test

trueSK TX FD
falseSK TX FD

Consider the alternative face detector network illustrated
in Fig. 2(b), which is an example of a naive Bayes classi-
fier. In comparison to the vision network, this network would
make a poor face detector because it fails to take into ac-
count the fact that the neural network face detector (the FD
sensor) can only detect upright, frontal faces. If the face in
the image is tilted or rotated by more than 10to 15 , the
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FD sensor will not respond to it. For example, consider the
case where FD while SK and TX . This could
occur if the user has turned their head to one side to speak to
their neighbor. Significant skin and texture cues would still
be present, but the face detector would not register a face. In
the case of the naive Bayes classifier of Fig. 2(b), these con-
tradictory sensor readings would have the effect of reducing

true .
In the vision network, however, the sensor value FD

can beexplained awayby inferring that false while
true, effectively encapsulating the knowledge that the neural
network cannot detect nonfrontal faces. Thus, by moving to a
slightly more complex BN architecture, a polytree rather than
a tree, we not only increase the classification accuracy for
but also infer the value of without directly measuring it.
The phenomena of explaining away is a key property of BN
models for cue fusion. We can view the vision network as a
simple pose detector which is constructed from off-the-shelf
components, none of which explicitly measure the pose. The
simplicity and moderate computational cost of this approach
stands in contrast to the much more complex and costly pro-
cedures required for full-scale head tracking (see [20] for a
representative example).

1) Discrete and Continuous Sensor Models:In the pre-
ceding discussion, we have indirectly implied the discrete
nature of sensor outputs. All sensors were assumed to output
binary decisions, such as SK (skin not detected) and
SK (skin detected) for the skin sensor. This resulted
in the nonparametric distribution model for SK de-
fined by a two-by-two CPT. However, our framework is not
in any way restricted to a discrete sensor model. A para-
metric model such as a conditional Gaussian distribution can
be used to model SK , SK SK .
Indeed, we will use such models to study the influence of
sensor discretization in our application. As long as no in-
stances occur where a parent of a discrete child is a con-
tinuous variable, the inference and learning in BNs are of
equal complexity for discrete, continuous, and mixed vari-
able models alike [23].

B. Audio Network

The role of the audio network, depicted in Fig. 3, is to
infer whether speech production is occuring in the scene.
The two sensors “mouth motion” and “silence detector” pro-
vide complementary cues about speech production. The si-
lence detector measures any sudden change in the ambient
audio environment that would signal the onset of talking.
Since there are many possible sources of audio energy (from
background speech to copiers/printers), the mouth motion
sensor provides an additional test. An increase in audio en-
ergy which is correlated to mouth motion provides strong ev-
idence for talking. The probability distribution defined by the
audio network is simply

MM SL SL MM

where , MM and SL denote “audio,” “mouth motion,” and
“silence” nodes, respectively.

Fig. 3. Audio network for speaker detection.

C. Integrated Audiovisual Network

The integrated BN model combines the contextual sensor
(which encodes the state of the blackjack game) with the
visual and audio subnetworks described in the previous
two sections. It is illustrated in Fig. 4. The “speaker” node
comprises the output of the classifier (i.e., true if a speaker
was detected and false if it was not). The chosen network
topology represents our knowledge of the audio, visual, and
contextual conditions that correspond to the presence of a
speaker: in the course of the game when the user is expected
to speak, they should be facing the kiosk and talking. The
optimal classification decision is made by comparing the
posteriors true and false , where

SK TX FD MM CT is the total set of sensor
outputs.

D. Dynamic Network

The final step in designing the speaker detection archi-
tecture is the addition of a temporal component which links
the values of nodes over time. This effectively converts the
static BN of Fig. 4 into a dynamic BN. The temporal compo-
nent captures our intuition that decisions about the speaker
(as well as the frontal and audio states) should not change
dramatically over short time scales. As we will see in Sec-
tion VII, the dynamic component of the model significantly
improves the classifier performance by smoothing the esti-
mates over time and thereby eliminating rapid fluctuations
in classifier decisions.

Fig. 5 illustrates the temporal structure of our DBN model.
We introduce temporal dependencies between the three pri-
mary hidden states in the model. While individual sensors
may in fact exhibit their own temporal structure, we have
chosen to limit the temporal connections to the main hidden
states in order to control the complexity of the model struc-
ture. The presence of all possible arcs among the three hidden
state nodes results from our lack of exact knowledge about
the structure of the temporal dependencies, i.e., we allow for
all dependencies to be present and later on determine the spe-
cific parameters from the training data.

The final DBN model which incorporates all of the
previous elements is illustrated in Fig. 6. Here, the nodes
outlined by dotted lines are the direct observation nodes
while the once shown in solid are the unobserved nodes.
The speaker node (see Fig. 4) is the query node for the
classifier. The probability distribution encoded by this
network can be written as shown in the equation at the
bottom of the next page. This distribution is defined by the
parameters of a Markov model: a matrix of transitions
probabilities among states in Fig. 5 and their initial state
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Fig. 4. Integrated audiovisual network.

Fig. 5. Temporal dependencies between the speaker, audio, and
frontal nodes at two consecutive time instances.

distribution . In addition, the distribution of the integrated
audiovisual network acts as the measurement model with
CPT parameters .

Inference in this network now corresponds to finding the
distribution of the speaker variable at each time instance
conditioned on a sequence of hexamodal (six-tuple) mea-
surements from the sensors

SK TX FD MM CT SD

SK TX FD MM CT SD

Optimal detection of the speaker at timecan now be made
by comparing true to false .
These posteriors are obtained directly from the for-
ward–backward inference algorithm (cf. [24]). One may
also be interested in predicting the likelihood of the speaker
from all the previous observations, true .

With the topology of the models determined by expert
knowledge of the problem domain, the related tasks of pa-
rameter learning and optimal inference are tackled in the fol-
lowing sections.

IV. M AXIMUM -LIKELIHOOD PARAMETER LEARNING

We can describe the DBN model of Fig. 6 as the tuple
( ), where encodes the structure (i.e., the topology)
of the network and is the set of network pa-
rameters. In this case, has been specified manually. The
parameters can be learned from a training data setby com-
puting

(2)

where is a prior.1 When all of the nodes are observed,
this computation can be done in closed form [10].

Parameter learning is particularly simple for the network
of Fig. 6. Let denote the four hidden states anddenote
the six measurements. Let be the
sequence of hidden states and the corresponding se-
quence of measurements. Then we have

(3)

Thus, the parameters can be determined by counting how
often particular combinations of hidden state and measure-
ment values occur. In this simplest case, the parameters are
simply the counts in a histogram of the training data. We can
further expand the second term

(4)

1Throughout this work we have employed simple noninformative
Dirichlet priors to all discrete variables, which result in addition of
equal, small pseudocounts in all CPT estimates. No priors were used for
parameters of continous sensor models.

SK TX FD MM CT SD SP

SK TX FD MM CT SD SP

SP SK TX FD MM CT SD SP

SK TX FD MM CT SD SP SP SP
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Fig. 6. Two time slices of the dynamic BN for speaker detection.

Thus, the transition matrix can be viewed as a second his-
togram which counts the number of transitions between the
hidden state values over time. Inference is equally straight-
forward using the standard forward–backward algorithm.

V. DISCRIMINATIVE PARAMETER LEARNING AND BAYESIAN

NETWORK CLASSIFIERS

DBN models are an appealing framework for complex
inference problems because they are interpretable, compos-
able, and generative.Post hocanalysis of learned parame-
ters and network structure is an important source of insight
into network performance. Such insight can be difficult to
obtain in directly supervised learning approaches such as
neural networks. Second, it is fairly easy to compose large
BN models by combining subgraphs. This makes it possible
to reuse and extend modeling components without retraining
an entire model for each new problem [17]. Third, because
the BN models a joint probability distribution, sampling can
be used to generate synthetic data. This is another source of
insight into network performance.

However, standard ML BN learning techniques can make
them ill-suited for classification tasks such as speaker detec-
tion [7]. Parameter learning in a DBN is an example of a
density estimation problem in which all of the variables in
the model are treated equally. To understand how this could
result in poor classification performance, consider a dataset
of records . Let , where

is the classification node (e.g., the speaker node in Fig. 4)
and is the set of observations for record. Substituting into
(2), we have

(5)

The classification performance of the network is governed
by the first term in (6), known as the conditional log likeli-
hood. Since the parameter estimate maximizes the joint like-
lihood, it is not guaranteed to give an optimal estimate for

the conditional likelihood under the structure . Further-
more, if the structure is incorrect, the resulting classifier may
not generalize well during testing. Unfortunately, it does not
seem to be possible to extend the closed-form solutions for
(6) to the conditional likelihood term in isolation. See [7],
[12] for more details on this issue.

Our approach to the problem of discriminative learning
is to use boosted ensembles of classifiers. In the Adaboost
algorithm [29], [31], performance is improved by linearly
combining a sequence of weak classifiers, each of which is
trained to correct the mistakes of the previous one on the
training data.

More formally, consider a binary classification problem
with data given by . Here,
is a feature vector (for instance, the hexamodal audiovisual
feature), and is the desired label (speaker state). The goal
of the learning algorithm is to find a hypothesis (classifier)

that minimizes misclassification. In a binary clas-
sification scenario, . The standard Adaboost
algorithm is

Given: , ,
;

Initialize distribution over data pairs
;

For
Train hypothesis using data with

distribution .
Choose

where
Update:

where is the normalization factor.
The final hypothesis is
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Adaboost starts by assigning equal weight
to all the training data. In each iteration, the weight of the
misclassified samples is increased whereas that of correctly
classified samples is decreased—the algorithm “directs” the
consecutive classifiers to focus on samples which were pre-
viously difficult to learn. The weight factor depends on
the expected error made by the hypothesis . The new
hypothesis is then trained with respect to those weights

. After iterations, the final hypothesis is obtained as a
linear combination of individual hypotheses.

Adaboost has a number of appealing properties. It can
been shown that if the weights () are chosen in the way
described previously than the training error is bounded by

(6)

Hence, if the weak hypotheses are slightly better than the
chance, the training error decreases exponentially fast. Ad-
ditional bounds on the generalization error can also be de-
rived [29]. It has also been shown empirically that Adaboost
has a good generalization property, unless the number of hy-
potheses becomes too large. While most arguments about
the generalization property attribute it to the maximization
by boosting of the between-class margin [6], some recent
studies show that this can be explained by the additional
smoothing introduced by multiple ensemble decisions [18].
Finally, note the two-decision algorithm can be extended to
the case when takes multiple values by using the mul-
tiple-class version of Adaboost [29].

Boosting modifies the classifier design by changing the
weights on the training data according to the classifier’s per-
formance. This is attractive, as it means we can retain the
efficient parameter learning algorithms for DBNs. The flow-
chart of the DBN parameter boosting algorithm is shown in
Fig. 7.

Boosting has a particularly simple interpretation for the
network of Fig. 6. For simplicity, consider just the classi-
fier node (i.e., speaker) and the measurements. Boosting
modifies according to the distribution where

is the reweighted training data at iterationof boosting.
Intuitively, boosting will increase or decrease the weighted
counts in a particular bin ( , ) of the histogram
depending on whether the classification given by

is incorrect or correct.
Similarly, boosting modifies according to

. Intuitively, boosting will increase or
decrease the weighted counts for a pair of state transitions
( ) based on the classification performance for

(i.e., is in the th state). This can be viewed as an
error-driven duration density model for the Markov chain.

The boosting algorithm for a DBN is summarized as fol-
lows:

DBN Parameter Boosting
Training
Given: , ;

, a sequence of data records;

Fig. 7. Boosted parameter learning algorithm.

Initialize , ;
For ,

;
; end;

Testing
Given test data , evaluate classi-
fiers:

The combined classifier output is:

Function
;

;
Return ;
Function

, ;
;

;

if

if

;
Return ;

The algorithm maintains a weight distribution defined over
the data. It starts by assigning equal weight to all the samples.
As the algorithm proceeds, the weight of correctly classified
samples is decreased whereas that of misclassified ones is
increased. Our observations show that the points where the
error is made are normally the points which were classified
with low confidence.

At each iteration, algorithm obtains an observation density
matrix using the present distribution over the data given
by . The DBN learning algorithm gives an estimate of
the transition probability matrix , for which all the samples
are considered to be equally probable. Once DBN is trained,
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Fig. 8. Three frames from a test video sequence.

we use a DBN inference algorithm to decode the hidden state
sequence. During decoding we obtain the most likely state,
at any time, for the given observation sequence. This esti-
mated state is compared with the true state, the discrepancy
of which corresponds to an error. The final DBN model is
somewhat akin to a mixture of DBNs—it uses the weighted
sum of individual classifier decisions to yield an ensemble
decision.

VI. PREVIOUS WORK

A number of discriminative approaches to parameter
learning in hidden Markov models (HMMs) have been
developed by the speech recognition community. While
this body of work is quite different from our boosted
BN approach, it shares our goal of overcoming the poor
classification performance of ML learning. Examples of

Fig. 9. (a) Ground truth for the speaker state, where “True”
means that there is a speaker and “False” means an absence. The
x axis gives the frame number in the sequence. (b) Contextual
information, where “True” means it is the user’s turn to play and
“False” means the computer is going to play. (c), (d), (e), (f) Output
of texture, face, mouth motion, and silence detector, respectively.

discriminative HMM learning methods include corrective
training [1] and minimum classification error training [16],
[33].

In contrast to the ensemble of classifiers produced by our
boosting framework, these earlier discriminative techniques
attempted to optimize the parameters of a single HMM
classifier to achieve better generalization. This work lacks
the theoretical guarantees on generalization which exist for
boosting methods. Boosting is also considerably simpler and
more general, since it requires only trivial modification of
the base learning algorithm and can be applied to arbitrary
BN and DBN models. A disadvantage of boosting in com-
parison to this prior work is the need to evaluate multiple
classifiers during the testing phase.

The use of Adaboost to train a hybrid HMM/neural net-
work speech recognizer was recently reported in [32]. The
Adaboost algorithm was utilized to enhance the performance
of the neural network measurement model, hence resulting
in better overall recognition performance. In contrast, our
method addresses the boosting of both static and dynamic
model parameters within the same BN framework. Adaboost
has also been applied to confidence scoring for an audio-in-
dexing task [19].

Our application of boosted learning to audiovisual speaker
detection is unique. However, there are a number of publi-
cations on related audiovisual detection problems. The ma-
jority of these works perform audiovisual fusion at the data
level. For example, in [11], the mutual information between
video and audio signals is the basis for the identification of
joint audiovisual events. In [4], a time-delay neural network
is used to detect correlations between audio and video at the
signal level. In [34], a particle filter is used to fuse visual con-
tour measurements and microphone array data for speaker
tracking. The most relevant prior work is [2], which describes
a BN model for audio and video signals which is used for
speaker tracking. We differ from all of this previous work
both in the level at which audiovisual modalities are fused
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Fig. 10. Comparison of speaker prediction accuracy (%) obtained using different classification
strategies. The chart shows that the performance of DBN is better that the static BN. The results show
that EFDBN and EFBN outperform both static the BN and the DBN. EFDBN shows the highest gain
in performance among all the studied models.

(the symbolic level) and in our use of boosting to improve
classification performance.

VII. EXPERIMENTAL RESULTS

We have conducted a series of experiments using a
common data set to validate the modeling and predictive
ability of our mulitimodal integration framework. The data
set consists of five sequences of a user playing a blackjack
game in the Genie Casino setup. The sequences were of
varying duration (from 2000 to 3000 samples) totaling
12 500 frames. Fig. 8 shows some of the recorded frames
from the video sequence.

Each sequence included audio and video tracks recorded
through a camcorder along with frequency encoded contex-
tual information [see Fig. 1(b)]. The visual and audio sen-
sors were then applied to the synchronized audio and video
streams.

Because some of the sensors provide continuous estimates
of their respective functions (e.g., silence detector’s internal
output is the short-term energy of the audio signal), we con-
sidered two different modeling scenarios. In the first sce-
nario, wea priori binarized measurements of all multimodal
sensors. Decision thresholds were optimally determined for
each sensor from distributions of sensory measurements to
imply binary sensor states (e.g., silence versus nonsilence).
These discretized states were then used as input for the DBN
model. Examples of individual sensor decisions (e.g., frontal
versus nonfrontal, silence versus nonsilence, etc.) are shown
in Fig. 9. Abundance of noise and ambiguity in these sen-
sory outputs clearly justifies the need for intelligent yet data-
driven sensor integration. In the second modeling scenario,

we retained “soft decisions” of the continuous sensors and
used them directly in the integration architecture.

All detection measures were computed using fivefold
cross validation.

A. Experiment Using Static BN

The first experiment was done using the static BN (given in
Fig. 4) to form the baseline for comparison with the dynamic
model. In this experiment, all samples of each sequence were
considered to be independent of any other sample. Part of
the whole data set was considered as the training data, and
the rest was retained for testing. During the training phase,
output of the sensors along with the hand label values for
the hidden nodes (speaker, frontal, and audio) were presented
to the network. The network does learn CPTs that are to be
expected. The actual CPT values show that the presence of
the speaker ( ) must be expressed through the presence
of a talking ( ) frontal face ( ) in the appropriate
context of the game ( ). On the other hand, the existence
of the frontal face alone does not necessarily mean that the
speaker is present ( , ).

During testing, only the sensor outputs were presented and
inference was done to obtain the values for the hidden nodes.
Mismatch in any of the three (speaker, frontal, audio) is con-
sidered to be an error. Fivefold cross validation was used to
split the dataset into training and test sets and evaluate the
detection performance. An average accuracy of 70% is ob-
tained (see Fig. 10 for results on individual sequences). The
accuracy is low even though the learned network parame-
ters do seem intuitive, as explained previously. Fig. 9 de-
picts a typical output of the sensors along with the ground
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(a) (b) (c)

(d) (e) (f)

Fig. 11. (a) True state sequence. (b), (c), (d), (e), and (f) Decoded state sequences by static BN,
DBN, DDDBN, EFDBN, and expert (formulated by knowledge of the system), respectively. (State
1—no speaker, no frontal, no audio; state 2—no speaker, no frontal, audio; state 3—no speaker,
frontal, no audio; state 8—speaker, frontal, audio.).

truth for the speaker state. The sensor data is noisy, and it is
hard to infer the speaker without making substantial errors.
Fig. 11(a) shows the ground truth sequence for the state of the
speaker, and Fig. 11(b) shows the decoded sequence using
static BN. Nevertheless, because, on average, the speaker
was present in 10% to 15% of all sequence frames, our de-
tection rate is significantly above that of a random speaker
detection. Note also that performance of the inference algo-
rithm is especially poor on sequence 4. We attribute this to
the excessive head motion and increased background noise
present in this sequence, moreso than in the other four cases.
The diminished performance on sequence 4 will be exhibited
by all our inference algorithms, as will be seen in the sections
later.

B. Experiment Using DBN

The next experiment was conducted using the DBN
model. At sequence level, data was considered independent
(e.g., seq1 is independent of seq2). The learning algorithm
described in Section IV was employed to learn the dynamic
transitional probabilities among frontal, speaker, and audio
states. During the testing phase, a temporal sequence of
sensor values was presented to the model, and Viterbi
decoding (cf. [25]) was used to find the most likely sequence
of the speaker states. Overall, we obtained the accuracy
of the speaker detection (after cross validation) of about
80%, an improvement of 12% over the static BN model. An
indication of this can be seen in actual decoded sequences.

Table 1
The Learned CPT for Transition Probabilities in DBN Model

For instance, the decoded sequence using the DBN model
in Fig. 11 is obviously closer to the ground truth than that
decoded using the static model.

It is clear why the DBN model performed better than the
static one. Inherent temporal correlation of features was in-
deed exploited by the DBN. To see this, consider the en-
tries of the transition probability table of the DBN, shown
in Table 1.

These learned entries clearly indicate that strong correla-
tion does exist between states at consecutive time instances.

The effect of temporal smoothing can be seen by com-
paring the decoded speaker state using static and dynamic
BN models. Fig. 11 gives the results for a single test se-
quence. In comparing Fig. 11(b) to Fig. 11(c), it is clear that
the DBN produces a much smoother estimate, without the
rapid fluctuations in the static case (that produce the nearly
solid black columns in the plot). At the same time, we ob-
serve that the temporal locality of the speaker events, espe-
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Fig. 12. Duration density plots for states of the DDDBN model. (a) No speaker, no frontal, no
audio. (b) No speaker, no frontal, audio. (c) No speaker, frontal, no audio. (d) Speaker, frontal, audio
states. Thex axis gives the time instances, and they axis gives the probability.

cially their duration, is misestimated by the DBN. Essentially
what is happening is that the DBN is oversmoothing and ex-
tending the positive speaker state beyond the time interval in
which it is appropriate.

C. Experiment Using Duration Density DBN

One approach to obtaining the right degree of smoothing in
the DBN case is to apply explicit duration density estimation,
resulting in a duration density DBN (DDDBN). DDDBNs
are similar to explicit duration HMMs [25]. Duration densi-
ties for state durations of 1 up to 20 (time instances) were
learned from the labeled data. Fig. 12 shows the learned
CPTs. It is evident from these graphs that some of the du-
ration distributions clearly differ from the exponential dis-
tribution imposed by the DBN model. The accuracy of the
speaker detector improved slightly when DD modeling was
used. An average accuracy of 83% was obtained. Fig. 11(d)
shows an example of the decoded state sequence using the
DDDBN model.

Nonetheless, improved performance of the DDDBN
model is severely hampered by its complexity. The com-
plexity of inference in DDDBNs increases exponentially
with the duration of the states (compared to a DBN).
This suggests that in practice it may be more profitable to
retain the basic DBN architecture and modify the learning
procedure to improve classification performance.

D. Experiment Using Static EFBN

As a baseline test, we also implemented an error-feed-
back version of the static BN (the EFBN). The EFBN was
trained in the same fashion as its dynamic counterpart, using
the Adaboost algorithm described in Section V. Unlike the
EFDBN, there were no dynamic parameters to update in the
EFBN algorithm—the only update was done on the measure-
ment model parameter (see Section V). The performance
of EFBN, as seen from Fig. 10, is on par with that of the
DDDBN and the DBN. This is a clear example of the short-
comings of the ML estimation and the benefits of a discrim-
inative learning approach, as discussed in Section V.

E. Experiment Using EFDBN

The final set of experiments concentrated on the newly
designed EFDBN framework. We conducted two sets of
experiments corresponding to discrete and continuous
measurement variables. The learning algorithm described
in Section V was used. For a training sequence, we used
EFDBN to estimate the parameters which minimized the
classification error. A leave-one-out cross validation re-
sulted in an overall accuracy of 90.39%. Fig. 10 summarizes
classification results on individual test sequences. We see
that for all the sequences, an improvement of 5%–10% over
the best DBN result is obtained.
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(a) (b)

(c)

Fig. 13. Learned continuous sensor distributions: (a) silence, (b) skin texture, and (c) mouth motion.

One important issue deserves our comment: unless a clas-
sifier performs well on the training data, it cannot be expected
to do a great job on the test data. During DBN training, we
found the accuracy of classification on the training set of
about 82%. This implies that one should not expect perfor-
mance better than 82% on the test data (provided training
data is representative). In the boosted scenarios, however, we
were able to improve the performance on the training data to
as much as 95%. Such performance can be attributed to the
better-tuned representation power of the boosted ensemble
models—a boosted model, as mentioned previously, is akin
to a distribution mixture model. As expected, we also found
a greatly improved performance on the test data.

The DBN model learned using the EFDBN framework
was also applied to the prediction of hidden states. An overall
accuracy of 88% was obtained. This indicates, together with
the previously noted results, that EFDBN significantly im-
proves the performance of simple DBN classifiers.

F. Continuous Sensory Measurements

The use of continuous valued sensor outputs allows the
network to automatically learn optimal sensor models and,
in turn, optimal decision thresholds. Here all continuous
sensory outputs are modeled as conditional Gaussian distri-
butions, as shown in Fig. 13. The learned distributions allow

soft sensory decisions, which can be superior to discrete
sensory outputs in noisy environments. For instance, it is
well known that for a sensor whose distribution resembles
that of our mouth motion sensor in Fig. 13(c), a single
threshold decision results in high prediction error because
both class densities have very similar means. However,
because of their different variances the two classes may
be distinguished using maximuma priori estimation and
explicit distribution models. Note again that all of the
continuous representations point to the ambiguity of the
sensors—all sensory measurements are characterized by
highly overlapping class distributions.

Fig. 14 displays results of using different integration
frameworks with soft sensory measurement and their
comparison to the decisions made by models with discrete
sensory decision.

In all cases, except for sequence 5 and partially sequence
1, standard multimodal integration topologies (BN and
DBN) benefited significantly and expectedly from “soft
decision” sensors. Improvements of up to 16% were ob-
served on sequence 4 and the basic BN model. Interestingly,
the discriminative EFDBN model exhibited relatively
minor performance improvement with the introduction of
continuous sensors. This, indeed, could be attributed to the
better (and possibly sufficiently good) representation of the
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Fig. 14. Comparison of speaker prediction accuracy (%) obtained using static BN, DBN, and
EFDBN. ’Cont’ and ’Disc’ denote the models with continuous and discrete sensory inputs,
respectively.

true underlying data distribution by the ensemble model.
Similarly surprising was the almost uniformly good per-
formance, around 90% accuracy, of all integration models
on sequence 5. Again, as noted in the previous sections,
sequence 5 contained somewhat “cleaner” data than the
other four sequences.

VIII. C ONCLUSION

We have demonstrated the utility and practicality of using
boosted learning to improve the performance of BN clas-
sifiers. Our learning framework makes it possible to retain
all of the positive aspects of BNs for classification tasks,
without sacrificing classification accuracy. These positive as-
pects include interpretability, the use of sampling and sensi-
tivity analysis to analyze learned representations, and great
facility in handling time series data. Our boosting formu-
lation converts the standard parameter learning procedures
for BN and DBN models into supervised procedures. This
requires only minimal modification of the core parameter
learner and adds only a constant factor to the computational
cost of the training and testing phases.

We present a range of experimental results which validate
the benefit of our boosting framework. The context for our
experiments is a novel application of multimodal sensing to
a Smart Kiosk user interface. Audiovisual sensing is used to
detect when a user is speaking to the kiosk. This capability
can gate the application of a command-and-control speech
interface and support new forms of speech-based interaction.
We present experimental results for a speech-based interface
to a multiperson blackjack game, called the Genie Casino.
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Vladimir Pavlović (Member, IEEE) received
the Ph.D. degree in electrical engineering from
the University of Illinois, Urbana-Champaign, in
1999.

From 1999 until 2001, he was a Member of the
research staff at the Cambridge Research Labo-
ratory, Cambridge, MA. He is currently an Assis-
tant Professor in the Computer Science Depart-
ment, Rutgers University, Piscataway, NJ, and an
Adjunct Assistant Professor in the Bioinformatics
Program, Boston University, Boston, MA. His re-

search interests include statistical modeling of time-series, statistical com-
puter vision, machine learning, and bioinformatics.

James M. Rehgreceived the Ph.D. degree from
Carnegie Mellon University, Pittsburgh, PA, in
1995.

From 1996 to 2001, he led the computer
vision research group at the Cambridge Research
Laboratory, Cambridge, MA. In 2001, he joined
the faculty of the College of Computing, Georgia
Institute of Technology, Atlanta, GA, where he
is currently an Associate Professor. His research
interests include computer vision, machine
learning, human–computer interaction, computer

graphics, and distributed computing.

GARG et al.: BOOSTED LEARNING IN DYNAMIC BAYESIAN NETWORKS FOR MULTIMODAL SPEAKER DETECTION 1369


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


