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Abstract

Classification of real-world data poses a number of chal-
lenging problems. Mismatch between classifier models and
rrue dara distributions on one hand and the use of ap-
proximate inference methods on the other hand all con-
tribate to inaccurate classification. Recent work on boost-
ing by Schapire et al. and additive probabilistic models by
Hastie et al. have shown that improved classification can
be achieved by linearly combining a number of simple clas-
sifiers. Building upon this spirit, we present a Bayesian
network-based framework for mixing multiple classifiers.
We also analyze the bound on the generalization error for
this combined classifier. We give results on some standard
darasets and demonstrate its usefulness in a real-world task
of multimodal speaker detection where we improve upon
performance of a more complex Bayesian network model.
Improved results indicate the significant potential of the
Bayesian network of classifiers approach. 7

1 Introduction

Combining the predictions of multiple classifiers has
been shown to improve classification error rate as compared
to the error rate obtained by learning a single model of the
data. Recently, many researchers [1, 10, 9, 3] have demon-
strated that using classifier ensembles leads to improved
performance for many difficult generalization problems.

In this paper, we propose a Bayesian networks to ef-
ficiently combine simple classifiers. We show that if a
Bayesian network is used (o combine the classifiers, the
classification performance of the combined classifier is go-
ing to be at-least as well as the best classifier (on the training
data) in the set, under fairly weak conditions and in practice
this combined classifier indeed performs much better than
any individual classifier in the set. It allows the classifiers to
be trained independently of each other, and combined based
on their joint performance on the training data. It turns out
that the bounds given for decision tree [3] can be extended
to bound the generalization performance of the combined
classifier. We present a novel algorithm that forms a deci-
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sion tree of classifiers by ordering the classifiers in order of
their performance on the training data. We refer to a deci-
sion tree obtained in this way as the pruned decision tree.
Because of the small number of leaf nodes in the decision
tree obtained as such, we show that much smaller bound on
generalization error is obtained.

We give results on a number of standard datasets from
UCI ML repository and DELVE database and compare the
performance with Adaboost [9] (a popular technique to
boost the classification performance.}) We also analyze the
performance of this technique in solving the problem of
real-world speaker detection. We show that the Bayesian
network of classifiers improves classification performance
significantly using linear perceptron and Bayesian networks
as component classifiers.

2 Bayesian Network of Classifiers

Let us consider two popular techniques of combining the
classifiers. ) Supra Bayesian approach and 2) Stacking
Algorithm. The principle underlying the Supra Bayesian
approach is that from the viewpoint of the decision maker
(the final classification)}, the opinions expressed by experts
(base classifier) are data. Consequently, a decision maker
combines the prebability distributions provided by the in-
dividual experts via Bayes' rule. Let "s” be the quantity of
interest (the output of the classifier), P; = p;{s|H;) denote
the expert i's probabhility distribution for ‘s’ when its know!-
edge is H;, then the decision maker would base its decision
on p(s|H, P, ..., Py,) where H is the knowledge decision
maker has about the event ‘s’

Wolpert's stacking work as follows: suppose we have
L different leaming algorithms A;,..., Ay and a set § of
training examples {(z1, 81), -, (Tm,5m )}, where z; € X
and s; € {—1,1}. One applies each of the training algo-
rithms to the training data to produce classifiers hy, .. hp
st hi 0 X = {—1, 1}. The goal of the stacking is to leam
a good combining classifier h* such that the final classifica-
tion will be computed by h* (A (x), ..., hr (x)).

Motivated by these two algorithms, we propose a
Bayesian network (BN} based approach to combine the
classifiers. The idea is to use the BN structure shown in Fig-
ure 1 {a) to combine the classifiers. The BN can be thought



of as classifier h* in Wolpert's stacking algorithm or it can
be thought of as a decision maker making its decision based
onp(slhy,...,hm). In[6], itis shown that an ensemble can
be more accurate only if the individual classifiers disagree
with each other. The strength of the BN lies in the fact that
it utilizes the correlation present between the classifiers, and
is able to improve the classification performance even if the
error rate of individual classifier falls below 0.5 This aspect
of the approach becomes clear from the following theorem.

Consider two classifiers i1, ho whose output is fed to
the BN (y, hy, ho € {—~1,1}) shown in Figure 1 (a) and the
output of the network is considered to be the output of the
classification algorithm. Let the network be trained for the
sample set S = {(z1, 81), ..., (Tn,5n)}, where z is the in-
put vector and s is corresponding true label ({—1, 1}). Then
the probabilities of this BN, learned according to Maximum
likelihood principle, are going to be

Py = ilha(x), ha(2)) = P(hl(z;;(hfz((mz))ishj(i))l))(s =

where i € {—1,1} and s is the true label for the input z.
Now the following theorem holds-

4o o8}

Figure 1. (a) Bayesian Network for combining two hy-
potheses, (b) Multiple hypotheses case.

Theorem 1 The classification error (under absolute loss
cost function) for the output of the network in Figure I (a),
where the leaf node represents the output of the individual
classifier, is less than or equal to the minimum of the classi-
fication error of by and hs. That is

P(Y{z:) # sifhi(2:), ho(z:)) <
min{ P(h1{x:) # s:), Plha(z:i) # 5:)) 2}

Conditioned upon: 1) The output of the classifier s b, hy are sta-
tistically independent. 2) Perfect error-free classifier exists.

Before proving the theorem, we would like to give some
basic definitions and will make the scenario more clear. Let
us consider the case of binary classification where each clas-
sifier maps the data h; : z € D — {0,1}. Also consider
that the data space I can be expressed as ) = {Do, Dy}
where, the perfect classifier (which is always correct) would
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mapz € Dp = {0}andz € Dy, = {1}. By by =i we
mean that given-the sample, h; says that it has label "i”.
k1, hz can also be seen as dividing the data space into four
parts ie. = {Dog, D1, Py, DIO} such that, if z € Dij
implies that h; = i, hy = j. Since hy, b2 are not perfect,
they are going to make some errors during the classification.
Let us express these as :

P(hy = 1|Do) = es;
P(he = 1|Do) = f1;

P(hl = 0|D1) = €23 3)
Plha = 0|D1) = f;

Namely, the probability of ky deciding “1” is e; when the
data actually had the label “0”. Also, independence of
hy, hy implies that P(hy = 1,he = j|D} = P(ly =
ilD) - P(hy = j|D). Under these conditions, the deci-

sion I(y|hy, ha) learned by the network in Figure 1 can be
described as:

t,he = f)then Iy = lhy = 4,ha = ) =1
otherwise I{y = 1|h; = ¢, ha = j) = 0.
Proof:
Let P. denote the probability of emror for the network
shown in Figure' 1, and Peq, Pe; denote the probability of

error of hypothesis &, hy respectively. Then for N training
samples:

Pe = P(y=1|Dy) - P(Do)+ P(y = 0|Dy)- P(D1)
= Q.Y =1 =4,k =)
i ]
P(h1 =i, he = j1Dg)) - P(Do) +
Q> =0k =i hy =)
P(hy =4, ha = §|D1))) - P(D1)
P€1 = P(h] =1iD0)P(DQ)+P(”!~1:O|D1)'P(D1)
P(Do)el + P(D1)82
P(hy = 1|Dy) - P(Dg) + P(ha = 0|Dy) - P(Dy)
= P{Dy)fi + P(D1) )2

Pe2

Gy

Depending upon the performance of the classifiers, we
can have a number of cases relating the probability of data
being “1”* or “0” given the output of the individual hypoth-
esis. Lets consider a particular case-

Casel:

Ply=1lh1 =1,hy =1}
Ply=1lhi =0,h; = 1)
P(y = 1|h.1 =1h= 0)
Ply=1h1=0,h=0)

Ply =0k = 1,hy = 1)
Py = 0jhy = 0,k = 1)
P(y=0hy =1,k =0}
P(y =0lh, =0,k = 0)

®)

IA A A Y



Now from Equation 3,Equation 4 we get

Pe = P(Dy)eifiteafo—ea—fa)tea+ fa—erfs
Pel = P(Do)(el - Ez) =+ €2
Pey = P(Do){fi — fo) + fa

(©)

Let A; = Pe; ~ Pe and Ay = Pe; — Pe. It can be
easily shown {using simple algebra) that A, A; are non-
negative. This proves that the error using the network shown
-in Figure 1 is less than or equal to the minimum of the two
hypothesis.

(@ (b)

Figure 2. (a) Multiple hypotheses case, reconfiguring the
network shown in Figure 1, (b) Graphical interpretation of
the theorem.

This formalism can be extended to cases other than bi-
nary classification and to any number of base hypotheses.
Figure 1 (b} shows network which would be used for com-
bining “n” hypothesis by the Bayesian network framework.
Instead of doing analysis directly on this network, we con-
sider a simplified form shown in Figure 2(a} which has been
obtained by introducing some extra nodes. In Figure 2(a),
blank nodes represent the intermediate values (they are not
observed and are.introduced for the ease of analysis). At
each blank node, the performance of the node (if the output
of that node is interpreted as the classifier output) is going to
be better than each of its children. This argument will hold
recursively. In the end, the performance of the top node is
going to be better than or equal to the best classifier in the
set. A similar formalism can be given for the multiple class
case. Consider that the output lies in 2% dimensional space.
Then the classifier can be thought of as a combination of k
different classifiers. The analysis of the multiple hypotheses
case can now be extended to take this into account.

We give the insight into the theorem by the aid of the
graph shown in Figure 2(b). Consider the case of binary
classification when the input feature vector z lies in a two
dimensional space. The two classes are marked as "Class
0" and "Class 17, and the different shading shows the re-

.gions of each class in the feature vector space. An error
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free hypothesis (ground truth) is the non-linear boundary
between the two regions. Let h; and hy be two linear hy-
pothesis shown as a filled line and dotted line, respectively.
Assume that the probability of error of each hypothesis is
the class probability measure of the regions where the hy-
pothesis makes the wrong decision. In this case, h; makes
errors in regions F, G and C; h; makes errors in regions E,
G and B. For simplicity, assume that the class probability
measure of each of these regions is uniform. Hence, the
area of each of the error regions is directly proportional to
the classification error on those regions. For example, Fig-
ure 2(b) corresponds to the case stated in the proof of The-
orem | in the following way: C < B,E < F,G < A. The
new classifier, Y, as suggested by the Bayesian network, is
depicted in Figure 2(b) as a thin dotted line. The error of
Y now becomes the sum of the regions E, G and C. This is
clearly smaller then the error made by the two hypothesis,
as expected from Theorem 1. The theorem can be analyzed
similarly for other cases. This mixture will not give any im-
provement if the area of the region B is same as C and of
region E is same as F In this case, if we relearn the hypoth-
esis by weighing the incorrectly classified samples (i.e. the
samples from one of the error regions), the new hypothe-
sis will be different and an improved performance will be
observed.

3 Generalization Performance

Now we show that the Bayesian network shown in Fig-
ure 1 (a) can also be represented as a decision trce shown
in Figure 3 (a). This representation of BN {with binary ran-
dom variables as its nodes) forms a complete binary tree of
depth d = n where n is the number of classifiers combined
and the number of leaves is 2". This representation allows
one to use the generalization bound presented in [5] for de-
cision trees to bound the performance of new classifier in
terms of the VC-dimension of the base classifiers. The the-
orem is repeated here for reference.

Theorem 2 [5] For a fixed & > 0, there is a constant ¢
that satisfies the following. Let D be a distribution on X x
{=1,1}. Consider the class of decision trees of depth up
to d, with decision functions in U. With probability at least
1 — & over the training set § (of size ), every decision tree
T that is consistent with § has

FolT(z) # 4] < Ps[T(z) # y1+c(

NosVCdim(U) log? mlogd) /3
m

(O]
where Noy¢ is the effective number of leaves of T and
VCdim(U) is the YVC dimension of the base classifter U.

For the Bayesian network of classifiers with n base hy-
pothesis, this reduces to

n iTrL 2m 1/3
PD[T(E)#UISPs[T(ﬁE)#y]-#—C(Q YCdim(U) log “’3")

m

18y



as (Negs < 27) However, the number of effective leafs
is going to be much smaller than 27, as such the bound is
much smatler than what it appears at first glance. In a partic-
ular case when the base hypothesis is the linear perceptron,
the VC dimension of the linear classifier is going to depend
on the dimension of the feature vector.

(m)

(hy‘/wﬂ)
LY

olC

y=-1}" “(hga D) tha=-} " (=D (hz=1}

Figure 3. (a) Decision Tree representation of BN shown
in Figure 1 (a), (b) Pruned decision tree

An optimal classifier will try to maximize the classifi-
cation performance while minimizing the complexity. We
show that one way to achieve this is by directly construct-
ing the decision tree in an intelligent way (instead of the
BN.) The algorithm for constructing the decision tree can
be outlined as - Let hq, hg, -.., Ay, be the set of m classi-
fiers. We want to make a decision tree which has these clas-
sifiers as its nodes and the value of the leaf node represents
the output. Let S = {(z1,71),--., (n,yiv)} be the set of
training samples. The first step is to evaluate each ¢lassi-
fier on the training sample. For each classifier two differ-
ent errors are measured- ey = P(y; = —1hm(xi) = 1)
and e™, = P(y; = Uhp(xi) = —1). The classifiers
are ordered based on their performance on the training data
(ie. errors ey, ™). The classifier with the lowest error
is picked to form the root node of the decision tree. If e¥
is the lowest, then kg forms the top node of the decision
tree. The output of the decision tree is ‘-1’ whenever hy
says ‘—1" else the output is based on the decision made by
the right sub-child of the root node. This suggests that the
left child of the top node is a leaf with value ‘—1'. The
right node points to a decision tree made of the classifiers.
To obtain the classifier that forms the root node of the right
subtree, the algorithm is repeated. If this time ef; is the
smailest then the right sub-child of the decision tree is also
a leaf with value ‘1", However this time the sample set is
S’ = {(x:,y:)} for all %> such that hy(x;) = 1. This pro-
cess is repeated until all the classifiers are incorporated in
the decision tree. We refer to the decision tree obtained in
this way as the pruned decision tree. An example of such
a pruned decision tree with two base classifiers (h1, hy) is
shown in Figure 3 (b).

Corollary 1 The classification error (under absolute loss
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cost function) for the output of the decision tree shown in
Figure 3 (b), where the leaf node represents the output of
the individual clussifier, is less than or equal to the mini-
mum of the classification error of hy and hy. This holds
provided the output of the classifiers is independent of each
other given the data and a perfect error free classifier exists.

This comes as an extension to the theorem 1 and is obvi-
ous from the algorithm (the way this pruned decision tree 15
constructed). Now the number of effective leafs is less than
or equal to n + 1 where n is the no. of classifiers combined.
The depth of the tree remains to be n. Hence the Equation 8
reduces to

. 2 1/8
PoiT(z) # y] < Ps[T(e) # gl+c ((n+ DV Cdim(U) log mkogn)

m

®
This improvement is achieved at the cost of reducing the
performance on the training data (i.e. first term on the right
side of the Equation 9.) It should be noted that this may not
be the optimal tree, however, the results obtained using this
method are quite promising.

4 Experiments and Results

We investigated the performance of the Bayesian Net-
work of classifiers and the pruned decision tree by a se-
ries of experiments. First set of experiments was done on
ten standard datasets from UCI ML repository and DELVE
database. We targeted the binary classification problem. For
this round of experiments, we choose linear perceptron as
the base classifier and compared the performance of vari-
ous classification techniques. In any technique for ensem-
ble of classifiers, a big question is how to generate multiple
classifiers. A number of techniques have been presented
in [3]. The two techniques adopted by us are Adabeost and
the sampling of the traning examples. The learning algo-
rithms were trained on part of th:e data and tested on the re-
maining data. Six fold crossvalidation was done for all the
test cases. i. ., we divided the training examples into six
groups. Five were used for training and the remaining one
for testing. This process was repeated six times by varying
the training and test sequences. All the resuits presented
are on the test data, To learn the multiple classifiers using
Adaboost, the classifier was learned on the training data. A
weight vector was defined over the training samples. This
learned classifier was used to classify the training samples
(on which it was trained). The weight of the samples which
were in error was increased where as that of others were
decreased. The second classifier was trained on the same
training samples with this new weight vector. This process
was continued a number of times (here six.) To compare
the performance with the adaboost, these classifiers were
combined as suggested by Adaboost ( [9]). using Bayesian
network of classifier and pruned decision tree.



Table 1. Results on standard datasets. Each entry is -% correct classification (% error standard deviation), with Six classifiers,
generated and combined using Adaboost, BNC-Ada:- generated using Adaboost and combined using Bayesian network of classifiers,
Prune-Ada:- generated using Adaboost and combined using Pruned decision tree approach, BNC-samp:- generated by sampling the
training examples and combined using Bayesian network of classifiers, Prune-samp:- generated by sampling the training examples

and combined using Pruned decision tree approach

Dataset perceptron Adaboost BNC-ada Prune-ada BNC-samp | Prune-samp
Breast Cancer | 80.23 {4.02) | 86.39 (3.55) | 86.78 (3.82) | 89.07 (3.39) | 87.40 (2.11) [ 88.21 (2.28)
Credit 52.33(4.72) | 55.95(3.18) | 60.64 (3.67) [ 64.08 (3.65) [ 57.69(2.32) | 58.40(2.30)
.Heart 60.22 (7.68) | 69.80 (5.48) | 70.35(6.23) | 71.13(6.08) | 66.14 (4.31) | 61.19(3.50)
lonosphere 84.46 (3.52) | 83.88 (2.65) | 85.46(3.02) | 86.03 (3.41) | 85.92(3.95) | 84.97 (3.28)
Liver 53.08 (6.35) | 64.57 (5.09) | 66.57 (4.35) | 66.28 (4.97) | 63.74(2.74) | 59.88 (3.19)
Monk 56.47 (4.65) | 59.83 (2.60) | 64.03 (2.82) | 64.87 (2.84) | 63.37(2.73} | 63.03(2.76)
Pima 60.91 (4.60) | 62.37(3.53) [ 63.62(2.90) | 62.84(2.78) | 65.58 (3.12) | 64.86 (2.72)
Tic-tac-tog 56.13(5.90) | 62.09 (4.40) | 66.49 (3.30) | 68.17{2.23) | 65.41 (3.12) | 62.36 (2.72)
Ring norm 65.66(5.72) | 72.25(2.73) | 72.97 (2.78) | 72.50(2.36) | 72.54 (2.85) | 72.46 (2.60)
Two norm 9579 (0.52) | 96.69 (0.42) | 96.76 (040) | 96.80(0.36) | 96.83 (0.12) | 96.77 (0.59)

When generating multiple classifiers by sampling the
training exarmples, the training samples were divided into
six overlapping sets. A classifier was trained on each train-
ing set and were finally combined using both Bayesian net-
work and the pruned decision tree. These combined clas-
sifiers were then tested on the remaining data {(the one that
was left out in the beginning).

Table 1 gives the classification results on the test data
(left out data). It also gives the etror standard deviation for
each case and compares the performance between difterent
algonithms. The improved performance, over both the sin-
gle classifier and the Adaboost, demonstrates the power of
these approaches. We see that at times the pruned decision
tree performs even hetter than the Bayesian network of clas-
sifier. This can be attributed to its lower generalization error
and hence more immunity towards overfitting. The second
round of experiments was conducted on the reai world prob-
lem of speaker delection.

4.1 Improving Multimodal Speaker Detection

Speaker detection [7, 4] is a fundamental problem expe-
rienced in any human-centered computer system. Detecting
when a user is speaking to a computer (or any compuler-
ized appliance) has been classically achieved using audio
sensors—microphones or microphone arrays. Recently a
number of other sensors has become widely available, such
as video cameras and ultrasound proximity detectors. With
the growing number of sensors the challenge becomes in
devising optimal techniques for fusion of the sensors’ out-
puts. For instance, microphones and cameras can be used
together to infer if a user is speaking to a computer. Visual
cues are useful in deciding whether the person is facing the
system and whether he is moving his lips. However, to dis-
tinguish an active user from an active listener, audio cues
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are also needed. Audio cues are not sufficient by them-
selves (o discriminate a user speaking to the system from
the same user speaking to another individual. This makes
the problem of speaker detection multimodal in nature and
the information from both audio, visual cues must be pro-
cessed jointly to infer the users state.

@ crirary

Secerdary
sabiant

sueest

Microphang

(a)

Figure 4. The Smart Kiosk (a} and Experimental setup
for data collection (b).

The Smart Kiosk [2] developed at Compaq's Cambridge
Research Lab (CRL) provides an interface which allows the
user to interact with the system using spoken commands.
The public, multi-user nature of the kiosk application do-
main makes it ideal as an experimental setup for speaker
detection task. To detect the speaker we (see Figure 4) used
a set of five “off-the-shelf” visual and audio sensors that
process data acquired by a video camera and a microphone:
a face detector {8], a Gaussian skin color detector, a face
texture detector, a mouth motion detector, and an audio si-
lence detector. Face detector uses a neural network module



to detect the frontal face in the image. Skin color detector
and texture detector are used to identify any skin color ob-
ject present as a face or non-face. Mouth-motion detector,
measures the movement of the lips and the audio detector,
measures the energy in the audio signal present in the envi-
ronment. All sensors output binary decisions.

T
7<—"/FTHY | {\“Kﬂ
Skin Desector Tearare Detsctor . Moulh Moison Siknce Dacctor

Face Detector
Figure 5. Bayesian Network for speaker detection.

The output of the five sensors is noisy and often am-
biguous. Hence, one is required to the seamlessly integrate
the sensors in order to achieve good detection performance.
We have adopted a Bayesian network framework to solve
this problem. Figure 5 depicts the Bayesian Network that
reflects our expert knowledge of the domain and the sen-
sors. The nodes “visible” and “frontal” represent the vi-
sual information extracted from the vision sensors. “Audio”
node represents the information extracted from both vision
{mouth motion detector) and the audio sensor (silence de-
tector). These nodes are then integrated along with the ap-
plication’s contextual information to decipher the state of
the user in the “speaker” node.

For testing the system, we collected five sequences of
sensory data, of varying duration, totaling to 12500 frames.
Figure 6 gives some video frames from a typical test se-
quence used. Each frame was hand labeled to provide the
ground truth. The data was divided into training and test-
ing sets. The parameters of the network in Figure 5 were
leamed from the training data. This network was then
used to decode the labels for the training data. Multiple
rounds of crossvalidation produced the correct classification
in 84.76% of the frames.

Figure 6. Three frames from a test video sequence.

These, relatively poor results, motivated us to use the
Bayesian mixture of classifiers in order to improve the
detector’s performance. Using the approach of Bayesian
network of classifiers which combined four different base
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classifiers (here bayesian network) we achieved an im-
proved performance of 89.6% correct classification. Mul-
tiple rounds of crossvalidation were done to check for over-
fiting, The standard deviation of the error was less than
2%. Table 2 shows complete resuits for this experiment.
Results clearly indicate significant improvement in perfor-
mance of the Bayesian mixture of classifiers over that of a
single expert-designed network.

Table 2. Result on speaker detection dataset.

Dataset Single Bayesian | Bayesian network
Network of Classifiers
Speaker data | 15.24 [% error] 10.4 {% error]

5 Conclusion and Discussion

In this paper we have argued that Bayesian network
of classifiers provides a way to combine the output of
the multiple experts. This method learns the correlation
present between the classifiers and utilizes it to achieve bet-
ter classification performance. We gave an algorithm to ob-
tain pruned decision tree and results obtained on standard
datasets demonstrated that a significant improvement in per-
formance can be achieved while maintaining a lower bound
generalization error.

The results on both the real world application and the
standard datasets demonstrated the generalization perfor-
mance of the classifier.
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