
Audio–Visual Speaker Detection using Dynamic Bayesian Networks

Submission no. 182

Abstract

The development of human-computer interfaces poses
a challenging problem: actions and intentions of different
users have to be inferred from sequences of noisy and am-
biguous sensory data. Temporal fusion of multiple sensors
can be efficiently formulated using dynamic Bayesian net-
works (DBNs). DBN framework allows the power of sta-
tistical inference and learning to be combined with contex-
tual knowledge of the problem. We demonstrate the use of
DBNs in tackling the problem of audio/visualspeaker detec-
tion. ”Off-the-shelf” visual and audio sensors (face, skin,
texture, mouth motion, and silence detectors) are optimally
fused along with contextual information in a DBN architec-
ture that infers instances when an individual is speaking.
Results obtained in the setup of an actual human-machine
interaction system (Genie Casino Kiosk) demonstrate su-
periority of our approach over that of static, context-free
fusion architecture.

1. Introduction

Advanced human–computer interfaces increasingly rely
on sources of multiple yet often unreliable information.
Ambiguity and noise embedded in such sources make the
use of statistical inference crucial for interface applications.
We address the application of dynamic Bayesian network
(DBN)models [3] to the task of detecting whether a user is
speaking to the computer.

DBNs are a class graphical probabilistic models, de-
rived from the better known Bayesian networks (c.f. [8, 7]).
Bayesian networks have been successfully employed in a
wide range of expert system and decision support applica-
tions. One example is the Lumi`ere project [6] at Microsoft,
which used Bayesian networks to model user goals in Win-
dows applications. DBNs graphically encode dependencies
among sets of random variables who evolve in time. They
elegantly combine the benefits of both data- and expert-
driven models. On one hand, the structure of dependencies
among variables can be a priori determined by an expert de-
signer who has the knowledge of the task domain. On the
other, the strength of those influences can be learned from
large sets of data. Some applications of DBNs can be found
in [1].

In this paper we demonstrate the use of DBNs in fusing
multiple visual and audio sensors, contextual information,
temporal constraints and one’s expert knowledge in solv-
ing the challenging speaker detection problem. We improve
the static network architecture of [12] through a network,
shown in Figure 6, which dynamically combines the outputs

of five simple “off-the-shelf” algorithms to detect the pres-
ence of a speaker. The structure of the network encodes the
context of the sensing task and knowledge about the opera-
tion of the sensors. The conditional probabilities along the
arcs of the network relate the sensor outputs to the task vari-
ables. These probabilities are learned automatically from
training data. We have analyzed this problem in a an inter-
active scenario of a Genie Casino Kiosk [11, 2] which plays
a multi-agent blackjack game with a human user.

This paper makes a contribution by demonstrating the
representational strength of DBNs in fusing temporal data
coming from different weak sensors with the expert knowl-
edge of the task domain and contextual state of the environ-
ment. We present a network architecture of Figure 6 which
infers the state of the speaker who actively interacts with
the Genie Casino game. Our evaluation of the learned DBN
model indicates its superiority over previous static BN mod-
els [12].

2. Speaker Detection Problem

Speaker detection is a fundamental problem in any
human-centered computer system. We argue that for a per-
son to be an active user (speaker), he must be expected to
speak, facing the system and actually speaking. Visual cues
can be useful in deciding whether the person is facing the
system and whether he is moving his lips. However, they are
not capable on their own to distinguish an active user from
an active listener (listener may be smiling or nodding). Au-
dio cues, on the other hand, can detect the presence of rele-
vant audio in the environment. Unfortunately, simple audio
cues are not sufficient to discriminate a user in front of the
system speaking to the system from the same user speaking
to another individual. Finally, contextual information de-
scribing the “state of the world” also has bearing on when
a user is actively speaking. For instance, in certain contexts
the user may not be expected to speak at all. Hence, audio
and visual cues as well as the context need to be used jointly
to infer the active speaker.

The Smart Kiosk [11, 2] developed at Compaq’s Cam-
bridge Research Lab (CRL) provides an interface which al-
lows the user to interact with the system using spoken com-
mands. The public, multi-user nature of the kiosk appli-
cation domain makes it ideal as an experimental setup for
speaker detection task. The kiosk (see Figure 1(a)) has a
camera mounted on the top that provides visual feedback.
A microphone is used to acquire speech input from the user.
This setup forms an ideal testbed for our problem.

We have analyzed the problem of speaker detection in
a specific scenario of the Genie Casino Kiosk. This ver-
sion of kiosk simulates a multiplayer blackjack game (see
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Figure 1. The Smart Kiosk (a) and Experimental setup
for data collection (b).

Figure 1(b).) The user uses a set of spoken commands to
interact with the dealer (kiosk) and play the game.

2.1. Sensors

Audio and visual information can be obtained directly
from the two kiosk sensors. We use a set of five “off-
the-shelf” visual and audio sensors: the CMU face detec-
tor [13], a Gaussian skin color detector [15], a face texture
detector, a mouth motion detector, and an audio silence de-
tector. These components have the advantage of either be-
ing easy to implement or easy to obtain, but they have not
been explicitly tuned to the problem of speaker detection. A
more detailed description of skin, texture, face and mouth
motion detectors can be found in [12].

Contextual sensor is, as it will become clear later, of ut-
most importance. It provides the state of the environment
which may help in inferring the state of the user. Contextual
information can tell whether the user is expected to speak or
not. For example, when a computer has asked the user for
some information, the likelihood of the user speaking in-
creases. On the contrary, when the computer is answering
some simple query made by the user the likelihood of an
active speaker decreases. In our setup we select a simplified
state of the game as the contextual information. Namely,
two game states are encoded: the user’s turn (to interact)
and its complement. Onsets of contextual states are marked
with beeps of specific frequencies. To avoid possible dis-
traction the frequency encoded contextual signal is directly
sent to the camcorder without being played on the speakers
(see Figure 1(b).)

3. Dynamic Bayesian Networks for Speaker
Detection

Dynamic Bayesian networks are a class of Bayesian Net-
works specifically tailored to model temporal consistency
present in some data sets. Bayesian networks (BN) (c.f. [8,
7]) are a convenientgraphical wayof describing dependen-
cies among random variables. Variables are represented as

nodes in directed acyclic graphs whose arc “weights” cor-
respond to conditional probability distributions (tables or
functions) among dependent variables. See [8, 7] for a thor-
ough coverage of this subject.

There are two computational tasks that must be per-
formed in order to use BNs as classifiers. After the network
topology (dependency among variables) has been specified,
the first task is to obtain the local conditional probability ta-
bles (CPTs) for each variable conditioned on its parent(s).
Once the CPTs have been specified (either through learning
or from expert knowledge), the remaining task is inference,
i.e., computing the probabilityof one set of nodes (the query
nodes) given another set of nodes (the evidence nodes). In
our speaker detection the evidence nodes are the discretized
outputs of the sensors and the query node is the probabil-
ity of a detected speaker. See [7] for more details on the
standard BN algorithms.

In addition to describing dependencies among different
static variables DBNs [3] describe probabilistic dependen-
cies among variables at different time instances. In gen-
eral, a DBN has a specific structure shown in an example
in Figure 6. A set of random variables ateach time in-
stancet is represented as a static BN. Out of all the vari-
ables in this set temporal dependency is imposed on some.
Namely, distribution of some variablexi;t at time t de-
pends on a variable at timet� 1, xj;t�1 through some con-
ditional distribution Pr(xi;tjxj;t�1). An example of this
structure is depicted in Figure 6. Probability distribution
among all variables in a DBN can in general be written as
Pr (x1; : : : ; xT ) = Pr (x1)

QT

t=2 Pr (xtjxt�1). It is worth
noting that some specific stochastic time-series models now
classified as DBNs have been known for many years. For
instance, linear dynamic systems and hidden Markov mod-
els [9] are indeed special cases of DBNs with continuous
and discrete variables, respectively.

A major benefit of the DBNs is that their well-
constrained network structure allows for simplified infer-
ence. Sometimes complex inference in general BNs reduces
to a two-step generalizedforward-backwardmessage pass-
ing procedure in DBNs [4]. An example of this technique
is well known from HMM literature. In linear dynamic sys-
tems, for instance, these procedures are better known under
their Kalman filtering and smoothing names. While the in-
ference in DBNs may reduce to these simple techniques, the
BN origin of the model still allows for a plethora of other
BN-only inference techniques to be adapted to DBNs. In
particular, in DBN structures more complex than an LDS or
HMM other inference techniques may be necessary that do
not exist in the simple models. More details can be found
in [5, 1].

Besides the more constrained structure, another crucial
assumption that justifies special treatment of DBNs lies in
the fact that entries (parameters) of conditional distributions
associated with the network are (almost always) assumed
not to vary over time, e.g., Pr(xi;tjxj;t�1) depends only on
i; j and not ont; t�1. This allows for a very compact repre-
sentation of DBNs. Together with the simplified inference,
compact representation allows for efficient EM learning al-
gorithms to be applied. Sufficient statistics required by EM
learning need only be computed within one and across two
consecutive time slices. An example of this is Baum-Welch
learning algorithm in HMMs [9]. As in the case of infer-
ence, learning in complex DBN structures can benefit from
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their BN-origins [5, 1].
Our speaker detection problem represents a challenging

ground for testing the representational power of DBN mod-
els in a complex multi-sensor fusion task. Different types of
sensors need to be seamlessly integrated in model that both
reflects the expert knowledge of the domain and the sensors
and benefits from the abundance of observed data. We ap-
proach the model building task by first tackling the expert
design of networks that fuse individual sensor groups (video
and audio). We then proceed with the integration of these
sensor networks with each other, with contextual informa-
tion, and over time. Finally, data-driven aspect comes into
play with data-driven parameter learning.

3.1. Visual Network

Vision network models the dependence between the var-
ious observations made by the vision sensors. We want to
use the various vision sensors to infer when the user is fac-
ing the kiosk and when he is near but not facing it directly.
To accomplish that a small BN which takes the binary out-
put of these sensors as its input and outputs the query vari-
ables corresponding to visibility and the frontal information
of the user is designed. This network structure is also known
as a polytree and is depicted in the graph shown in Figure 2.
The “visible” and “frontal” are not directly observed but
are instead inferred from sensory data. Our expert knowl-
edge leads us to the topology of the network. The user be-
ing “frontal” clearly depends on whether he is “visible”. If
the user is “visible” parts of his skin and face will appear
in the image. On the other hand, the face detection sen-
sor only detects frontal faces. Hence, it is plausible to con-
nect it to the “frontal” node. Probability distributiondefined

Visible Frontal

Face DetectorTexture DetectorSkin Detector

Figure 2. Vision Network

by the visual network is now Pr(V; F; SK; TX;FD) =
Pr (V )Pr (F jV )Pr (SKjV )Pr (TXjV; F )Pr (FDjF ),
where V; F; SK; TX;FD correspond to the “visual”,
“frontal”, “skin”, “texture”, and “face detector” nodes, re-
spectively. If one were simply to use the visual net-
work as the speaker detector, the posterior distribution of
interest would be Pr(F jSK; TX; VD). This posterior
can be efficiently obtained using a number of BN infer-
ence techniques (e.g., junction tree potentials). The opti-
mal Bayesian decision that the the speaker was present is
then made if Pr(F = truejSK; TX; V D) > Pr(F =
falsejSK; TX; V D).

3.2. Audio Network

The other components of sensory data available provide
what we call the audio information. Namely, the silence
detector and the mouth motion detector are used to infer
whether the user is talking. Silence detector is used to de-
tect audio signals present in the environment. To discrimi-
nate between the audio signal who originates in some back-

ground source (which may be noise) and the one coming as
a result of the user speaking, we use a vision sensor (mouth
motion detector) to supplement the audio signal. The re-
sulting audio network is shown in Figure 3. Binary “audio”
query node captures the information about the user talk-
ing. This network demonstrates the fusion of the audio and
the visual information at a very low level. Although the
mouth motion detector is a vision sensor, it is more closely
related to the silence detector than to other vision sensors.
Probability distributiondefined by the audio network is sim-

Mouth Motion Silence Detector

Audio

Figure 3. Audio network for speaker detection.

ply Pr (A;MM;SL) = Pr (A)Pr (SLjA)Pr (MM jA),
whereA;MM;SL denote “audio”, “mouth motion”’, and
“silence” nodes. If this network alone were to be used
as the speaker detector, optimal decision could be made
by comparing Pr (A = truejMM;SL) to Pr (A =
falsejMM;SL).

3.3. Integrated Audio–Visual Network

Once constructed, the audio and visual networks are
fused to obtain the integrated audio–visual network. At this
stage one would also like to incorporate any information the
environment may play in deciding the user’s state. The con-
textual information (state of the blackjack game), together
with the visual and audio subnetworks is now fused into a
single net through the virtue of the speaker node, as shown
in Figure 4. The chosen network topology represents our
knowledge that both audio, visual, as well as contextual
conditions need to be met for the decision on the presence
of the speaker to be made: along the course of the game
when the user is expected to speak he should be facing the
kiosk and talking. To infer whether a user is speaking, one

Visible Frontal

Face DetectorTexture DetectorSkin Detector

Speaker

Audio
Contextual
Information

Silence DetectorMouth Motion

Figure 4. Integrated audio-visual network.

needs to find the posterior Pr(SjSK; TX;FD;MM;CT ).
Again, this posterior can be easily obtained using a number
of BN inference techniques.

3.4. Dynamic Network

The final step in designing the topology of the spekear
detection network involves its temporal aspect. The charac-
ter of the observation processes involved justifies the use of
temporal dependencies. As it will be shown in the exper-
imental section, noise and ambiguity of individual sensors
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at different time instances may lead to incorrect inference
about the speaker. Fortunately, decisions about the speaker
(as well as the frontal and audio states) does not change
rapidly over time. In fact, if it is know with certain proba-
bility that the speaker is presentbeforeandaftersome timet
a better informed decision can be expected to be made about
the speaker at the timet. Equivalently, measurement infor-
mation from several consecutive time steps can be fused to
make a better informed decision. This expert knowledge
becomes a part of the speaker detection network once the
temporal dependency shown in Figure 5 is imposed. The

Speaker

Audio Audio

FrontalFrontal

Speaker
(t-1)

(t-1)

(t-1)

(t)

(t)

(t)

Figure 5. Temporal dependencies between the speaker,
audio, and frontal nodes at two consecutive time instances.

presence of all possible arcs among the three nodes stems
from our lack of exact knowledge about these temporal de-
pendencies, i.e., we allow for all dependencies to be present
and later on determined by the data. Formal techniques for
this networkstructure learningcan be found in [1].

Incorporating all of the elements above elements into a
single structure lead to the DBN shown in Figure 6. Here
the nodes shown in dotted lines are the direct observation
nodes while the ones in solid are the unobserved nodes.
The speaker node is the final speaker detection query node.
Inference in this network now corresponds to finding the
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Figure 6. Two time slices of the dynamic Bayesian net-
work for speaker detection.

distribution of the speaker variableSt at each time in-
stance conditioned on a sequence of measurements from
the sensors,MT

1 = fSK1; TX1; FD1;MM1; CT1; : : : ;
SKT ; TXT ; FDT ;MMT ; CTTg. Optimal detection of the
speaker at timet can now be made by comparing Pr(St =
truejMT

1 ) to Pr (St = falsejMT
1 ). These posteriors are

obtained directly from the forward-backward inference al-
gorithm. One may also be interested in predicting the like-
lihood of the speaker from all the previous observation,
Pr (St+1 = truejMt

1).

3.5. Learning

Given the topology of the DBN discussed in the previ-
ous sections learning of network parameters can formulated
as the maximum likelihood parameter problem. A straight-
forward application of the EM algorithm for DBNs can it-
eratively lead to (locally) optimal CPTs that agree with the
data.

To further simplify the learning procedure we isolated
the learning of the “observation” portions of the DBN from
the dynamic, transition CPTs. Namely, we first learned the
“observation” network CPTs assuming no temporal depen-
dencies, and then employ the fixed “observation” networks
to learn the transition probabilities. While obviously sub-
optimal this procedure has been shown in practice to yield
good parameter estimates that do not differ significantly
from the optimal ones.

At this stage we draw the attention to a fact that in DBNs,
the probability of staying in a certain state over consecutive
time instances decays exponentially. In the speaker detec-
tion problem, this may not be a prefered model. Namely,
in the constrained environment of a blackjack game dura-
tions of certain states tend to be fairly well defined. For
instance, duration of words in the small vocabulary of the
dealer agent effectively defines the duration of contextual
states. These states, in turn, have significant bearing on
when a user is the speaker. Thus, we also exploreddura-
tion densityDBN (DDDBN) models where state (speaker,
frontal, audio) durations were explicitly modeled. Infer-
ence in these models becomes untractable as the length of
the duration model increases. We adopted the techniques
suggested in [10] for doing learning and inferencing in the
DDDBN.

4. Experiments and Results

We conducted three experiments were conducted using
a common data set. The data set comprised of five se-
quences of one user playing the blackjack game in the Ge-
nie Casino setup. The sequences were of varying dura-
tion (from 2000 samples to 3000 samples) totaling to 12500
frames. Figure 7 shows some of the recorded frames from
the video sequence. Each sequence included audio and

Figure 7. Three frames from a test video sequence.

video tracks recorder through a camcorder along with fre-
quency encoded contextual information (see Figure 1(b).)
The visual and audio sensors were then applied to audio
and video streams. Because some of the sensors provide
continuous estimates of their respective functions (e.g., si-
lence sensor’s internal output is the short-term energy of the
audio signal), decision thresholds were determined for each
sensor that yield binary sensor states (e.g., silence v.s. no
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silence.) These discretized states were the used as input for
the DBN model. Examples of individual sensor decisions
(e.g., frontal v.s. non frontal, silence v.s. non silence, etc.)
are shown in Figure 8. Abundance of noise and ambiguity
in these sensory outputs clearly justifies the need for intelli-
gent yet data-driven sensor fusion.
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Figure 8. Figure (a) shows the ground truth for the
speaker state. 1 means that there is a speaker and 0 means
an absence. x axis gives the frame no. in the sequence. (b)
gives the contextual information. 1 means, its users turn
to play where as 0 means the computer is going to play.
(c),(d),(e),(f) are the output of texture, face, mouth motion
and silence detector respectively.

4.1. Experiment Using Static BN

The first experiment was done using the static BN Fig-
ure 4 to form the baseline for comparison with the dynamic
model. In this experiment all samples of each sequence was
considered to be independent of any other sample. Part of
the whole data set was considered as the training data and
rest was retained for testing. During the training phase, out-
put of the sensors along with the hand label values for the
hidden nodes (speaker, frontal and audio) node were pre-
sented to the network. The network does learn CPTs that
are to be expected. The actual CPT values show that the
presence of the speaker (S=1) must be expressed through
the presence of a talking (A=1) frontal face (F=1) in the ap-
propriate context of the game (C=1). On the other hand,
the existence of the frontal face alone does not necessarily
mean that the speaker is present (S=0,F=1).

During testing only the sensor outputs were presented
and inference was done to obtain the values for the hidden
nodes. Mismatch in any of the three (speaker, frontal, au-
dio) is considered to be an error. Cross validation was done
by choosing different and training and test data. An average
accuracy of65% is obtained (see Figure 9 for results on in-
dividual sequences.) The accuracy is low even though the
learned network parameter do seem intuitive, as explained
above. Figure 8 depicts a typical output of the sensors along
with the ground truth for the speaker state. The sensor data
is noisy and it is hard to infer the speaker without mak-
ing substantial errors. Figure 10(a) shows the ground truth
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Figure 9. A comparison between the results obtained us-
ing static BN, DBN, DDDBN

sequence for the state of the speaker and (b) shows the de-
coded sequence using static BN. On the other hand, tem-
poral consistency in the query state (speaker ground truth)
indicates that a model should be built that exploits this fact.
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Figure 10. Figure (a) shows the true state sequence.
(b),(c),(d) are the decoded state sequences by static BN,
DBN, DDDBN respectively. (state 1 - no speaker, no
frontal, no audio; state 2 - no speaker, no frontal, audio;
state 3 - no speaker, frontal, no audio; state 8 - speaker,
frontal, audio)

4.2. Experiment Using DBN

Second experiment was conducted using the DBN
model. At sequence level data was considered independent
(e.g. seq1 is independent of seq2.) The learning algorithm
described in Section 3.5 was employed to learn the dynamic
transitional probabilities among frontal, speaker, and audio
states. During testing phase a temporal sequence of sen-
sor values was presented to the model and Viterbi decoding
(c.f. [9]) was used to find the most likely sequence of the
speaker states. Overall, we obtained the accuracy of the
speaker detection (after cross validation) of about80%, an
improvement of15% over the static BN model. An indica-
tive of this can be seen in actual decoded sequences. For
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instance, decoded sequence using the DBN model in Fig-
ure 10 is obviously closer to the ground truth than the one
decoded using the static model.

It is clear why the DBN model performed better than
the static one. Inherent temporal correlation of features was
indeed exploited by the DBN. This can be confirmed by
expecting the learned CPT of temporal transitions among
S, A, and F nodes.

4.3. Experiment Using DDDBN

We finally tested the representational power of the
DDDBN approach. Duration densities for state durations
of one up to twenty were learned from the labeled data.
Figure 11 shows the learned CPTs. The four states for
these graphs are plotted are: (a) no speaker, no frontal,
no audio, (b) no speaker, no frontal, audio, (c) no speaker,
frontal, no audio, and (d) speaker, frontal, audio. It is ev-
ident from these graphs that some of the duration distribu-
tions clearly differ from exponential distribution imposed
by the DBN model. Our speaker detection accuracy indeed
gets improved when this model is used. An average accu-
racy of83% is obtained. Figure 10 (d) shows an example
of the decoded state sequence using the DDDBN model.
Nonetheless, improved performance of the DDDBN model
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Figure 11. Duration density plots for states of the
DDDBN model. Shown are: (a) no speaker, no frontal,
no audio, (b) no speaker, no frontal, audio, (c) no speaker,
frontal, no audio, and (d) speaker, frontal, audio states.

is severely hampered by its complexity. The complexity
of inference in DDDBNs increases exponentially with the
duration of the states (compared to a DBN). In practice,
this prevents one from using DDDBN models and favors
the simpler yet almost as powerful DBNs.

5. Conclusions

We have demonstrated a general purpose approach to
solving man-machine interaction tasks in which DBNs are
used to fuse the outputs of simple audio and visual sen-
sors while exploiting their temporal correlation. DBNs pro-
vide an intuitive graphical framework for expressing expert
domain knowledge and temporal consistency of processes
coupled with efficient algorithms for learning and inference.
They can represent complex models of stochastic processes,
but their learning rules are simple closed-form expressions
given a fully-labeled data set.

Simpler static multisensor fusion models based on BNs
have been introduced before (e.g. [12]). By using DBNs
to impose models of temporal consistency already present
in the task we have shown that significant improvements in

performance can be made over that of the static models. Our
speaker detection experiments using the network of Figure 6
demonstrated classification rates of 85%. The advantage of
the principled and well-defined DBN framework will be-
come even more obvious as the complexity of tasks scales
upward. Data- and expert-driven DBNs will provide a vi-
able alternative to often encountered complex and ad-hoc
algorithms whose design is exclusively determined by the
knowledge of an expert user.

In future work we will further validate our network de-
signs on a large subject population under realistic condi-
tions of background clutter. We will also investigate im-
provements on our sensor models. Finally, we plan to step
beyond a single decision maker and engage the power of a
pool of expert models [14] to better infer complex variable
dependencies.

References

[1] X. Boyen, N. Firedman, and D. Koller, “Discovering the hid-
den structure of complex dynamic systems,” inProc. Uncer-
tainty in Artificial Intelligence, pp. 91–100, 1999.

[2] A. D. Christian and B. L. Avery, “Digital smart kiosk
project,” inACMSGICHI, (Los Angeles, CA), 1998.

[3] T. Dean and K. Kanazawa, “A model for reasoning about per-
sistance and causation,”Computational Intelligence, vol. 5,
no. 3, 1989.

[4] B. Frey,Graphical Models for Machine Learning and Digi-
tal Communication. MIT Press, 1998.

[5] Z. Ghahramani, “Learning dynamic Bayesian networks,” in
Adaptive processing of temporal information(C. L. Giles
and M. Gori, eds.), Lecture notes in artificial intelligence,
Springer-Verlag, 1997.

[6] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rom-
melse, “The Lumière project: Bayesian user modeling for
inferring the goals and needs of software users,” inProc. of
the 14th Conf. on Uncertainty in AI, pp. 256–265, 1998.

[7] F. V. Jensen, An introduction to Bayesian Networks.
Springer-Verlag, 1995.

[8] J. Pearl,Probabilistic reasoning in intelligent systems. San
Mateo, CA: Morgan Kaufmann, 1998.

[9] L. R. Rabiner and B. Juang,Fundamentals of Speech Recog-
nition. Englewood Cliffs, New Jersey, USA: Prentice Hall,
1993.

[10] P. Ramesh and J. G. Wilpon, “Modeling state durations in
hidden Markov models for automatic speech recognition,”
in Proc. IEEE Int’l Conference on Acoustics, Speech, and
Signal Processing, 1992.

[11] J. M. Rehg, M. Loughlin, and K. Waters, “Vision for a smart
kiosk,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, (St. Juan, PR), 1997.

[12] J. M. Rehg, K. P. Murphy, and P. W. Feiguth, “Vision-
based speaker detection using bayesian networks,” inProc.
IEEE Conf. on Computer Vision and Pattern Recognition,
(Ft. Collins, CO),1999.

[13] H. Rowley, S. Baluja, and T. Kanade, “Neural network-based
face detection,” inProc. IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 203–208, 1996.

[14] R. E. Schapire, “A biref introduction to boosting,” inProc.
Int’l Joint Conference on Artificial Intelligence, (Stockholm,
Sweden), 1999.

[15] J. Yang and A. Waibel, “A real-time face tracker,” inProc.
of 3rd Workshop on Appl. of Comp. Vision, (Sarasota, FL),
pp. 142–147, 1996.

6


