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Abstract

We present a novel mixed-state dynamic Bayesian net-
work (DBN) framework for modeling and classifying time-
series data such as object trajectories. A hidden Markov
model (HMM) of discrete actions is coupled with a linear
dynamical system (LDS) model of continuous trajectory mo-
tion. This combination allows us to model both the discrete
and continuous causes of trajectories such as human ges-
tures. The model is derived using a rich theoretical corpus
from the Bayesian network literature. This allows us to use
an approximate structured variational inference technique
to solve the otherwise intractable inference of action and
system states. Using the same DBN framework we show
how to learn the mixed-state model parameters from data.
Experiments show that with high statistical confidence the
mixed-state DBNs perform favorably when compared to de-
coupled HMM/LDS models on the task of recognizing hu-
man gestures made with a computer mouse.

1. Introduction

Analysis and classification of temporal sequences has
been a focus of research for many decades. Many tech-
niques have been developed in fields such as signal pro-
cessing, computer vision and finance, that deal with anal-
ysis and classification of different time-series. For instance,
Kalman state estimation [11] is the basis for estimation in
continuous state linear dynamic systems (LDS) while hid-
den Markov models (HMMs) [14] excel at classification
of discrete-state sequences. Recently, a new statistical ap-
proach from the perspective ofBayesian networkswas pro-
posed for temporal series modeling[16, 5]. It was shown
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that estimation in LDSs and inference in HMMs can be
viewed as special case of Bayesian inference in a general
time-series model known as adynamic Bayesian network
(DBN). Besides allowing one to view seemingly different
models (e.g. LDSs and HMMs) as special cases of DBNs,
the framework also enables one to apply a corpus of ex-
act and approximate statistical inference and learning tech-
niques from the BN literature to time-series modeling. This
has resulted in new approaches to inference and in novel
complex temporal models such as factorial HMMs [8], cou-
pled HMMs [2, 13], switching-state space models [7], mix-
tures of DBNs [13], etc.

We consider an instance of a complex DBN that arises as
a combination of discrete-state HMMs and continuous-state
LDSs. We call such DBNsmixed-state DBNs. Namely, a
mixed-state DBN is a HMM coupled with a LDS (see Fig-
ure 1). The output of a HMM is thedriving input to a lin-
ear system. What motivates one to consider such a com-
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Figure 1. Block diagram of a physical system (LDS)
driven by an input generated from a hidden Markov model
(HMM). The system has an equivalent representation as a
mixed state dynamic Bayesian network.

bination of systems? Several examples may easily come
to mind. Suppose we observe an autonomous moving tar-
get. The target motion is governed by Newtonian physics as
well as the input force (thrust) imposed upon it by its (hu-
man) operator. Assume we have some knowledge of what
sequences of actions the operator may take in time. In other
words, we know that there are dependencies between lev-
els of control thrust at successive time instances. So, it is
plausible to model the thrust controlled by an operator as



a HMM where the hidden states correspond to a number
possible actions the operator may take and the observables
model the thrust value at those action instances. Knowl-
edge of object motion under Newtonian laws of physics is
embedded in the LDS model. Another example of a physi-
cal system that can be modeled as a mixed DBN is the hu-
man hand/arm motion during gestural communication. The
physical arm motion can be described using different kine-
matic and dynamic models of simple or articulated struc-
tures while the language concepts that influence the arm
motion can be modeled using HMMs.

In both of the above examples, the aim of modeling the
systems in the mixed DBN framework is to be able toinfer
what the underlying action that drives the physical system
is. This can help us distinguish among different motion pat-
terns of hand gestures observed by a computerized interac-
tive kiosk or a target observed by a radar. Moreover, the ac-
tions need not only be inferred – they can also be predicted.
Consequently, the motion of the human hand or the target
can be predicted based on thepredicted actionand used for
tracking of the physical system. Finally, the DBN frame-
work provides us with a well-defined basis forlearningthe
model parameters from data.

1.1. Previous Work

Models similar to mixed-state DBN have been consid-
ered in the past, although from a different perspective. The
mixed-state DBN can be most directly related to different
models ofmaneuveringtargets [1]. However, the major-
ity of maneuvering target models have their origins in the
classical LDS theory and are focused on the estimation of
the physical system states (and not the actions). They also
sometimes employ approximations to exact inference that
are not well justified or without strict error bounds.

2. Mixed-State Dynamic Bayesian Network

Consider a coupled system described by the block dia-
gram in Figure 1. The system can be described using the
following set of state-space equations:

xt+1 = Axt +But+1 + vt+1; (1)

yt = Cxt + wt; (2)

x0 = Bu0 + v0; (3)

for the physical system, and

Pr(st+1jst) = st+1
0 � st; (4)

ut = Dst + rt; (5)

Pr(s0) = �0; (6)

for the driving actions. The meaning of the variables is as
follows: xt 2 <N denotes the hidden state of the LDS,ut

is an input to this system,vt is the state noise process. Sim-
ilarly, yt 2 <M is the observed measurement andwt is the
measurement noise. ParametersA, B andC are the typ-
ical LDS parameters: the state transition matrix, the input
matrix and the observation matrix, respectively. The ac-
tion generator is modeled by a HMM. State variables of this
model are written asst. They belong to the set ofS discrete
symbolsfe0; : : : ; eS�1g, whereei is the unit vector of di-
mensionS with a non-zero element in thei-th position. The
HMM is defined with the state transition matrix� whose el-
ements are�(i; j) = Pr(st+1 = eijst = ej), observation
matrix D, and an initial state distribution�0. The HMM
observation noise process is denoted byrt. Note thatthe
input to the LDS ,u, is the output of the action HMM.

The mixed state space representation is equivalently de-
picted by the dependency graph in Figure 2 and can be writ-
ten as thejoint distributionP :
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Figure 2. Bayesian network representation (dependency
graph) of the mixed-state DBN.s denote instances of the
discrete valued action states driving the continuous valued
physical system statesx and observationsy.

P (Y ;X ;U ;S) = Pr(s0)
T�1Y
t=1

Pr(stjst�1)
T�1Y
t=0

Pr(utjst)

Pr(x0ju0)
T�1Y
t=1

Pr(xtjxt�1; ut)
T�1Y
t=0

Pr(ytjxt); (7)

whereY ;X ;U , andS denote the sequences (with length
T ) of observations and hidden state variables. For instance,
Y = fy0; : : : ; yT�1g. Termsvt andwt in the physical sys-
tem formulation are used to denote random noise. We can
write an equivalent representation of the physical system
in the probability space assuming that the following condi-
tional pdfs are defined:

Pr(xt+1jxt; ut+1) = Px(xt+1 �Axt �But+1) (8)

Pr(ytjxt) = Py(yt � Cxt); (9)

wherePx andPy are known, parametric or non-parametric,
pdfs. Similarly, the observation pdf of the HMM can be



written:

Pr(utjst) = Pu(ut �Dst): (10)

Throughout the rest of this paper we assume without loss
of generality that the state noisev of the physical system
is zero w.p.1 because the HMM observation noisert can
account for it. The observation noise processes of both the
physical system and the HMM are modeled as i.i.d. zero-
mean Gaussian:

wt � N (0; R);

rt � N (0; Q):

Also, assumeB to be identity,B = I . Input variableut
can be eliminated from Equations 1 and 5 as an auxiliary
variable. Given the above assumptions, the joint pdf of the
mixed-state DBN of duration T (or, equivalently, its Hamil-
tonian1) can be written as in Equation 11.

2.1. Hidden State Inference

The goal of inference in mixed-state DBNs is to estimate
the posterior probability of the hidden states of the system
(st andxt) given some known sequence of observationsY
and the known model parameters. Namely, we need to find
the posterior

P (X ;SjY) = Pr(X ;SjY):

In fact, it suffices to find thesufficient statistics[3]
of the posterior. Given the form ofP it is easy to
show that these statistics areh[xtst]i, h[xtst][xtst]0i, and
h[xtst][xt�1st�1]0i. The operatorh�i denotes condi-
tional expectation with respect to the posterior distribution,
e.g.hxti =

P
S

R
X xtP (X ;SjY).

If there were no action dynamics, the inference would
be straightforward – we could inferX from Y using LDS
inference (RTS smoothing [15]). However, the presence of
action dynamics embedded in matrix� makes exact infer-
ence more complicated. To see that, assume that the initial
distribution ofx0 at t = 0 is Gaussian, att = 1 the pdf of
the physical system statex1 becomes a mixture ofS Gaus-
sian pdfs since we need to marginalize overS possible but
unknown input levels. At timet we will have a mixture of
St Gaussians, which is clearly intractable for even moder-
ate sequence lengths. So, it is more plausible to look for an
approximate, yet tractable, solution to the inference prob-
lem.

1HamiltonianH(x) of a distributionP (x) is defined as any positive

function such thatP (x) =
exp(�H(x))P
 
exp(�H( ))

.

2.2. Approximate Inference Using Structured Vari-
ational Inference

Structured variational inference techniques [10] consider
a parameterized distribution which is in some sense close to
the desired conditional distribution, but is easier to com-
pute. Namely, for a given set of observationsY , a distri-
butionQ(X ;Sj�;Y) with an additional set ofvariational
parameters� is defined such that Kullback–Leibler diver-
gence betweenQ(X ;Sj�;Y) andP (X ;SjY) is minimized
with respect to�:

�� = argmin
�

P
S

Z
X

Q(X ;Sj�;Y) log
P (X ;SjY)

Q(X ;Sj�;Y)
:

(12)
The dependency structure ofQ is chosen such that it closely
resembles the dependency structure of the original dis-
tribution P . However, unlikeP the dependency struc-
ture of Q must allow a computationally efficient infer-
ence. In our case we decouple the HMM and LDS as
indicated in Figure 3. The two subgraphs of the orig-
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Figure 3. Factorization of the original mixed-state DBN.
Factorization reduces the coupled network into a decoupled
pair of a HMM (Qs) and a LDS (Qx).

inal network are a HMMQS with variational parame-
ters fq0; : : : ; qT�1g 2 <S and a LDSQX with vari-
ational parametersfu0; : : : ; uT�1g 2 <N . More pre-
cisely, the Hamiltonian of the approximating network is
defined in Equation 13. The subgraphs aredecoupled,
thus allowing for independent inference,Q(X ;Sj�;Y) =
QX(Xj�;Y)QS(Sj�). This is also reflected in the suffi-
cient statistics of the posterior defined by the approximating
network. They arehsti, hstst�10i for the HMM subgraph,
andhxti, hxtxt0i, andhxtxt�10i for the LDS.

The optimal values of the variational parameters� =
fq0; : : : ; qT�1; u0; : : : ; uT�1g can be obtained by setting
the derivative of the KL-divergence w.r.t.� to zero. Alter-
natively, one can employ the theorem of Ghahramani [6] to
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arrive at the following optimal variational parameters:

u�t = D hsti (14)

q�t (i) = ed
0

iQ
�1(hxti�Ahxt�1i� 1

2
di) (15)

wheredi denotes thei-th column ofD andhx�1i
4
= 0. To

obtain the expectation termshsti = Pr(stjq0; : : : ; qT�1)
we use the inference in the HMM [14] with out-
put “probabilities” qt. Similarly, to obtain hxti =
E[xtju0; : : : ; uT�1; y0; : : : ; yT�1] we perform LDS infer-
ence (Rauch-Tung-Streiber smoothing [15]) with inputsut.
Sinceut in subgraphQX depends onhsti from subgraph
QS andqt depends onhxti, Equations 14 and 15 together
with the inference solutions form a set offixed-point equa-
tions. Solution of this fixed-point set yields a tractable
approximation to the intractable original posterior. Error
bounds of the approximation are easy to derive and can be
found in [13].

The variational inference algorithm for mixed-state
DBNs can now be summarized as:

error = 1;
Initialize hxi;
while (error > maxError) f

Find qt from hxti using Equation 15;
Estimate hsti from qt using HMM inference;
Find ut from hsti using Equation 14;
Estimate hxti from yt and ut using LDS

inference;
Update approximation error;

g

From Equation 14 and the factorization of the network

defined in Equation 13 it is evident thatut can be viewed
as the estimated input of the LDS, based on the estimates
of the hidden states of the HMM subgraph. The input at
time t is estimated to be a linear combination of all possi-
ble inputsdi weighted by their corresponding probabilities
hst(i)i, D hsti =

PN�1
i=0 di hst(i)i.

The meaning ofqt is not immediately obvious. Based
on Equation 13,qt can be viewed as the probabilities of
some fictional discrete-valued inputs presented to the HMM
subgraph. These probabilities are related to the estimates of
the statesxt of the LDS through Equation 15. To better un-
derstand the meaning of this dependency consider the plot
in Figure 4 ofqt versusd = di for a fixed value of the differ-
encehxti�A hxt�1i and unit varianceQ. Clearly, the func-
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Figure 4. Variational parameterqt as a function of
input level d. Shown is a set of six different input lev-
els d0 throughd5. The function attains maximum for in-
put level d4 which is closest to the global maximum at
d� = hxti �A hxt�1i.

tion assumes a maximum value ford = hxti �A hxt�1i. If
we have a set of discrete values ofd corresponding toN
possible LDS input levelsdi, qt(i) would be maximized for
di closest to the estimated differencehxti � A hxt�1i =
huti. Thus, those states of the HMM are favored which are



produce inputs “closer” to the ones estimated from the LDS
dynamics.

3. Maximum Likelihood Learning of Mixed-
State DBNs

Learning in mixed-state DBNs can be formulated as the
problem of ML learning in general Bayesian networks. It
was shown in [10] that structured variational inference can
be viewed as theexpectationstep of a generalized EM al-
gorithm [9, 12]. The maximization step then yields

�� = argmax
�

P
S

Z
X

Q(X ;SjY ; ��) logP (X ;S;Y);

where� is the set of parameters of pdfP . In our case, the
parameters arefA;C;D;Q;R;�; �0g.

Given the sufficient statistics obtained in the inference
phase, it is easy to show that the followingparameter up-
date equationsresult from the Maximization step:
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All the variable statistics are evaluated before updating any
parameters. Notice that the above equations represent a
generalization of the parameter update equations of zero-
input LDS models [5].

4. Analysis and Recognition of Hand Gestures
Acquired by a Computer Mouse

To demonstrate feasibility of the mixed-state DBN
framework we consider the task of classifying a set of
symbols drawn using a computer mouse. We defined
four classes of symbols: arrow, erase, circle, and wiggle
(see Figure 5.) The task in question was to model each of

Arrow Erase

Circle Wiggle

Figure 5. Examples of four symbols produced by com-
puter mouse motion.

the four symbols with a combination of LDS and HMM.
The LDS part modeled the Newtonian dynamics of the
mouse motion. Namely, we assumed that the mouse motion
can be modeled as a planar motion of a point-mass particle
with piece-wise constant acceleration:

d position(t)

dt
= velocity(t)

d velocity(t)

dt
= u(t) + noise(t):

This leads to a discrete-time LDS with knownA, B and
C and unknownQ andR (cf [1]). On the other hand the
HMM models the driving force (action) that causes the mo-
tion. The mixed-state DBN model is contrasted with two
decoupled model

� Decoupled adapted LDS and HMM. Namely, the LDS
is adapted to “best” model the dynamics of the mouse
motion of each symbol when the driving forceut is as-
sumed to be quasi-constant with additive white noise,
ut = ut�1 + nu;t. The HMM is consequently em-
ployed to model the quasi-constant driving forcehuti
inferred by the LDS.

� Decoupled fixed LDS and HMM. In this case, the LDS
is assumed to be fixed for all four symbols. In partic-
ular, we estimated the driving force using numerical
gradient approximation:ut = grad(grad(xt)), where
grad(xt) = xt+1�xt�1

2��T . Again, an HMM is used to
model the estimated driving force.

All three model classes are depicted in Figure 6.
For each of the three models the same action state spaces

are assumed. The number of action states is proportional
to the number of strokes necessary to produce each symbol.
Thus, the action model of the arrow symbol had eight states
(two times four strokes), erase has six states, circle four
states, and wiggle six. Furthermore, each symbol’s state
transitions are limited to left-to-right: from current state the
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Figure 6. Three ways of modeling mouse acquired sym-
bols. From top to bottom: completely coupled LDS and
HMM (mixed-state HMM), decoupled adapted LDS and
HMM, and decoupled fixed LDS and HMM.

action can only transition back to itself or to only one other
not-yet-visited state. In the two decoupled symbol mod-
els, we model the observationsut of the action models as
variable mean Gaussian processes with identical variances
at every action state2. Model parameters are learned from
data using the ML learning framework.

The data set consists of 136 examples of each symbol (a
total of 4 � 136 examples). Symbols were acquired from
normalized3 mouse movements sampled at�T = 100ms

intervals. To test the models’ performance we used rota-
tion error counting (cross-validation) method with four ro-
tational sets [4]. For each test sample and each symbol
model the likelihood of the sample was appropriately ob-
tained. For instance, in the case of symbols modeled by
mixed-state DBNs, variational inference with a relative er-
ror threshold of10�3 was used to estimate the lower bound
on likelihood. One example of mixed-state DBN-based de-
coding of the “arrow” symbol is shown in Figure 7. For
the fixed LDS and gradient-based LDS/HMM models, like-
lihood was obtained using the standard HMM and LDS in-
ference.

Classification test were performed on two sets of data:
noise-free and noisy. Classification of noisy symbols is of
particular interest since it introduces variability that may
pose a challenge to decoupled classification models. The
noisy data set was constructed by adding i.i.d. zero mean
Gaussian noise with standard deviation of 0.01 to noise-
free examples (see Figure 8). Models of the four sym-
bols trained on noise-free samples were now tested on the
noisy data. Classification results are summarized in Table 1

2Even though it is a usual practice to allow the variance to vary from
action state to action state, for sake of compatibility with the fixed vari-
ance mixed-state HMM we decided to keep the other HMMs’ observation
variances fixed.

3Symbol were scaled to[0; 1] � [0; 1] unit area and directionally
aligned.
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Figure 7. Estimates of action states for “arrow” sym-
bol. Top graph depicts the symbol and the estimated driv-
ing force. Bottom graph shows estimates of action states
obtained using variational inference. Colors in both graphs
indicate action states.

and Figure 9. Table 1 and Figure 9 in this case indi-
cate that with 95% confidence completely coupled mixed-
state HMM models had significantly better performance
that both fixed and adapted decoupled LDS/HMM classi-
fiers (with the exception of mixed-state and fixed LDS “cir-
cle” models). Of course, the tradeoff is as always in in-
creased computational complexity of the mixed-state mod-
els. We note, however, that on the average the iterative
scheme of the mixed-state models required only about 5 to
10 iterations to converge.

5. Summary and Conclusions

We formulated a novelmixed-state dynamic Bayesian
network(DBN) framework for modeling of time-series that
fusesthe typical models of driving actions (HMMs) with
continuous state models of physical systems (LDSs). The
model was developed under the auspices of the DBN the-
ory allowing us to employ a well-founded set of statistical
estimation and learning techniques. In particular, we em-
ployed an approximate iterative solution to otherwise in-
tractable inference of action and system states. Using the



Figure 8. Samples of four mouse acquired symbols cor-
rupted by additive zero mean white noise with standard de-
viation of 0.01.

Model Arrow Erase Circle Wiggle
mixed-state HMM 4.36 4.36 0.18 0.18

(0.89) (0.89) (0.26) (0.26)
gradient fixed 9.45 14.55 14.73 8.18
LDS/HMM (1.25) (1.51) (1.51) (1.18)

decoupled adapted24.91 25.09 0.55 35.64
LDS/HMM (1.84) (1.85) (0.36) (2.04)

Table 1. Error estimates [%] and error estimate variances
([%]) for noisy mouse symbol classification.

same DBN framework, we derived the ML learning equa-
tions for model parameter updates. The proposed model
was tested on a mouse drawn symbol classification task.
With high statistical confidence the model performed fa-
vorably when compared to several classical decoupled ac-
tion/physical system models.
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