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Abstract

Design and development of novel human-computer in-
terfaces poses a challenging problem: actions and inten-
tions of users have to be inferred from sequences of noisy
and ambiguous multi-sensory data such as video and sound.
Temporal fusion of multiple sensors has been efficiently for-
mulated using dynamic Bayesian networks (DBNs) which
allow the power of statistical inference and learning to be
combined with contextual knowledge of the problem. Unfor-
tunately, simple learning methods can cause such appeal-
ing models to fail when the data exhibits complex behav-
ior. We formulate a learning framework for DBNs based
onerror-feedbackand statistical boosting theory. We apply
this framework to the problem of audio/visual speaker de-
tection in an interactive kiosk environment using ”off-the-
shelf” visual and audio sensors (face, skin, texture, mouth
motion, and silence detectors). Detection results obtained
in this setup demonstrate superiority of our learning frame-
work over that of the classical ML learning in DBNs.

1. Introduction

Human-centered user-interfaces based on vision and
speech present challenging sensing problems in which mul-
tiple sources of information must be combined to infer the
user’s actions and intentions. Statistical modeling tech-
niques therefore play a critical role in system design. Dy-
namic Bayesian network (DBN) models are an attractive
choice, as they combine an intuitive graphical represen-
tation with efficient algorithms for inference and learn-
ing. DBNs are a class of graphical probabilistic models
which encode dependencies among sets of random variables
evolving in time. Examples of DBNs include Kalman filters
and HMMs. Previous work has demonstrated the power of
these models in fusing video and audio cues with contextual

information and expert knowledge [1, 8, 7, 4].
Speaker detection is a particularly interesting example

of a multi-modal sensing task which can serve as a test-
bed for DBN research. Detecting when users are speaking
is an important component of an open mike speech-based
user-interface. The need to handle multiple people in the
presence of background noise means that both audio- and
video-based sensing can provide useful information. Fig-
ure 6 gives an example of a DBN model for speaker de-
tection. We are interested in network models that combine
“off-the-shelf” vision and speech sensing with contextual
cues such as the state of the interaction. Previous work
has demonstrated promising results for speaker detection
using both static Bayesian networks [11] (BNs) and, more
recently, DBNs [1].

Learning the parameters of a DBN model is a key step
in the development of an effective system. The complexity
of these models and the number of free parameters make
hand-tuning impractical. Maximum likelihood (ML) learn-
ing is the most common approach, in which model param-
eters are adjusted to achieve the best fit to a set of train-
ing data. Unfortunately there is no guarantee that a model
which fits its training data well will make a good classifier.
However, a recent learning technique known asboosting
makes it possible to improve the accuracy of a weak clas-
sifier through error-feedback and the optimal combination
of multiple classifiers [13]. Boosting algorithms develop a
series of classifiers that concentrate on the errors made by
their predecessors, thereby improving performance.

This paper describes a novel learning algorithm for
DBNs that uses boosting to improve recognitionaccuracy.
We refer to this new model as anerror feedback DBNor
EFDBN. It combines boosting with ML learning for esti-
mating the model parameters. We demonstrate the utility
of this new learning approach in the context of speaker de-
tection. Our experiments show that the EFDBN is superior
to conventional ML-based DBN models, and that both are



superior to static BNs. On a test set of five sequences we
achieve an accuracy of 90%. These promising results sug-
gest the general applicability of EFDBN to other problems
in which BN and DBN models are in use.

The rest of the paper is organized as follows. We be-
gin by introducing the problem of multi-sensor fusion for
speaker detection in Section 2, followed by a brief re-
view of the previous static and dynamic BN approaches.
Section 3 formally addresses the classical ML learning in
DBNs. In Section 5 we define our EFDBN learning frame-
work from the prospective of boosting and discuss its rela-
tion to other similar schemes. Section 6 describes the ex-
periments on speaker detection using the three frameworks
(static BN, DBN, and EFDBN.) Lastly, we provide some
final discussion of the framework and the results, followed
by the future research directions.

2. Speaker Detection

Speaker detection is an important component of open-
mike speech-based user-interface. For any interface which
relies on speech for communication, an estimate of the per-
sons state (whether he/she is or isn’t a speaker) is important
for its reliable functioning. We argue that for a person to
be an active user (speaker), he must be expected to speak,
facing the system and actually speaking. Visual cues can be
useful in deciding whether the person is facing the system
and whether he is moving his lips. However, they are not
capable on their own to distinguish an active user from an
active listener (listener may be smiling or nodding). Audio
cues, on the other hand, can detect the presence of relevant
audio in the environment. Unfortunately, simple audio cues
are not sufficient to discriminate a user in front of the sys-
tem speaking to the system from the same user speaking to
another individual. Finally, contextual information describ-
ing the “state of the world” also has bearing on when a user
is actively speaking. For instance, in certain contexts the
user may not be expected to speak at all. Hence, audio and
visual cues as well as the context need to be used jointly to
infer the active speaker.

The Smart Kiosk [10, 5] developed at Compaq’s Cam-
bridge Research Lab (CRL) provides an interface which al-
lows the user to interact with the system using spoken com-
mands. The public, multi-user nature of the kiosk appli-
cation domain makes it ideal as an experimental setup for
speaker detection task. The kiosk (see Figure 1) has a cam-
era mounted on the top that provides visual feedback. A
microphone is used to acquire speech input from the user.
This setup forms an ideal testbed for our problem.

We have analyzed the problem of speaker detection in a
specific scenario of the Genie Casino Kiosk. This version
of kiosk simulates a multiplayer blackjack game (see Fig-
ure 7 for a screen capture.) The user uses a set of spoken

Figure 1. The CRL Smart Kiosk

commands to interact with the dealer (kiosk) and play the
game.

Audio and visual information can be obtained directly
from the two kiosk sensors. We use a set of five “off-
the-shelf” visual and audio sensors: the CMU face detec-
tor [12], a Gaussian skin color detector [15], a face tex-
ture detector, a mouth motion detector, and an audio silence
detector. A detailed description of these detectors can be
found in [11]. Contextual sensor provides the state of the
environment which may help in inferring the state of the
user. Contextual information can tell whether the user is
expected to speak or not.

2.1. Bayesian Networks for speaker detection

The speaker detection problem represents a challenging
ground for testing the representational power of DBN mod-
els and more specifically the EFDBN algorithm in a com-
plex multi-sensor fusion task. Different types of sensors
need to be seamlessly integrated in model that both reflects
the expert knowledge of the domain and the sensors and
benefits from the abundance of observed data. We approach
the model building task by first tackling the expert design of
networks that fuse individual sensor groups (video and au-
dio). We then proceed with the integration of these sensor
networks with each other, with contextual information, and
over time. Finally, data-driven aspect comes into play with
data-driven parameter learning.

The graph in Figure 2 shows the vision network for this
task. This network takes the binary output of the sensors
(skin color detector, face detector and texture detector) and
outputs the query variables corresponding to visibility and
the frontal information of the user.

The silence detector and the mouth motion detector are
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Figure 2. Vision Network

used to infer whether the user is talking. The audio network
selected for this task is shown in Figure 3. It takes the input
from the sensors and outputs the probability that the audio
present in the environment corresponds to the user.

Mouth Motion Silence Detector

Audio

Figure 3. Audio network for speaker detection.

Once constructed, the audio and visual networks are
fused to obtain the integrated audio–visual network. At this
stage one would also like to incorporate any information the
environment may play in deciding the user’s state. The con-
textual information (state of the blackjack game), together
with the visual and audio subnetworks is now fused into a
single net through the virtue of the speaker node, as shown
in Figure 4. The chosen network topology represents our
knowledge that both audio, visual, as well as contextual
conditions need to be met for the decision on the presence
of the speaker to be made.
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Figure 4. Integrated audio-visual network.

The final step in designing the topology of the speaker
detection network involves its temporal aspect. Measure-
ment information from several consecutive time steps can
be fused to make a better informed decision. This expert
knowledge becomes a part of the speaker detection network
once the temporal dependency shown in Figure 5 is im-
posed. The presence of all possible arcs among the three
nodes stems from our lack of exact knowledge about these
temporal dependencies, i.e., we allow for all dependencies
to be present and later on determined by the data.
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Figure 5. Temporal dependencies between the speaker,
audio, and frontal nodes at two consecutive time instances.

Incorporating all of the above elements into a single
structure lead to the DBN shown in Figure 6. Here the nodes
shown in dotted lines are the direct observation nodes while
the ones in solid are the unobserved nodes. The speaker
node is the final speaker detection query node.
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Figure 6. Two time slices of the dynamic Bayesian net-
work for speaker detection.

It has been shown in [11] and [1] how both the speaker
detection models based on the static BN, similar to the one
in Figure 4, and the DBN in Figure 6 can be learned from
data using standard ML learning techniques and then effec-
tively utilized to fuse multi-sensory information. The DBN
framework has been show in [1] to outperform the static
one mainly due to the existence of temporal links but also
because of the presence of contextual information. A sig-
nificant improvement of 15% in speaker detection error rate
was reported. Further improvements occured when higher
order temporal dependencies were introduced through du-
ration density DBNs.

3. ML Learning in Dynamic Bayesian Net-
works

Dynamic Bayesian networks are a class of Bayesian net-
works specifically tailored to model temporal consistency



present in some data sets. In addition to describing de-
pendencies among different static variables DBNs [6] de-
scribe probabilistic dependencies among variables at differ-
ent time instances. In general, a DBN has a specific struc-
ture shown in an example in Figure 6. A set of random
variables at each time instancet is represented as a static
BN. Out of all the variables in this set temporal dependency
is imposed on some. Namely, distribution of some variable
si;t at time t depends on a variable at timet � 1, sj;t�1
through some conditional distribution Pr(si;tjsj;t�1). An
example of this structure is depicted in Figure 6. Finally,
some variables at each time slice are considered to be ob-
servable (sensor measurements) and are usually denoted by
yt. The rest of the variables can but need not be observed.
Probability distribution among all variables in a DBN can
in general be written as Pr(y1; : : : ; yT ; s1; : : : ; sT ) =

Pr (s1)Pr (y1js1)
QT

t=2 Pr (stjst�1)Pr (ytjst). Each of
the Pr terms can be either a table of probabilities of some
parametric pdf. In both cases, they yield a set of model pa-
rameters, which we denote by�. In general,� consists of
three types of parameters: transition probability parameters
A, static BN parametersB, and initial state distribution�.

Inference in DBNs is concerned with finding the distri-
butions (i.e., estimateŝst) of unobserved variablesst given
the measurementsy1; : : : ; yT . Thanks to its constrained
topology efficient algorithms such as the forward-backward
propagation [3] can be employed for this task.

ML learning in DBNs is a special case of ML learning in
general BNs. The goal is to maximize the likelihood of ob-
served variables by varying the model’s parameters. Given
the DBN pdf it is easy to formulate the ML learning as

�� = arg max
Theta

Pr (observed variablesj�): (1)

The optimization usually has a closed-form solution when
all the variables in the DBN are visible and the optimal val-
ues of three parametersA, B, and� are independent. If
some of the variables (x) are hidden, the closed-form solu-
tion is usually replaced by an iterative procedure known as
the expectation-maximization or EM:

Get initial guess of �0;
do

Infer hidden variables ŝt from measurements
y1; : : : ; yT using model �k;

��k+1 = argmaxTheta Pr (y1; : : : ; yt; ŝ1; : : : ; ŝT j�).
until ( convergence )

Because three types of parameters are present,A,B, and�,
the iterations can be formulated such that all parameters are
updated at one time or only some of them are updated while
the others are held fixed. It is important to note that in this

case the optimal values of parameters can depend on each
other.

4. Classification Error and Boosting

ML estimators have an undeniable appeal. The argu-
ments in favor of ML estimation are based on the assump-
tion that the form of the underline distribution is known,
and that only the value of the parameters characterizing the
distribution is unknown. However, maximizing the likeli-
hood does not necessarily lead to minimum classification
error, an important criterion in problems such as multi-
sensor speaker detection.

Recently, Schapire et al. [13] have proposed method
called boosting aimed at improving the performance of any
weak classifier. In particular, they have derived an algo-
rithm called Adaboost that “boosts” the classification on a
set of data points by linearly combining a number of weak
classifiers, each of which is trained to correct “mistakes” of
the previous one.

More formally, consider a binary classification problem
with data given byS = f(s1; y1); :::; (sm; ym)g. Hereyi is
a feature vector andsi is the desired label (or ground truth).
The goal of the learning algorithm is to find a hypothesis
(classifier)h : Y ! S that minimizes misclassification. In
a binary classification scenario,s 2 f+1;�1g, Adaboost
can be described as

Given: D = f(s1; y1); :::; (sm; ym)g; yi 2 Y; si 2 f�1;+1g;
Initialize distribution over data pairs P (1)

D
(i) = 1=m;

For k = 1; :::;K

� Train hypothesis hk using data D with distribution P
(k)
D .

� Choose �k = 1
2 ln

�
1��k
�k

�

where �k = Pr
i�P

(k)
D

[hk(yi) 6= si]

� Update:

PD(k + 1)(i) =
P
(k)
D

(i) exp(��ksihk(yi))

Zk

where Zk is the normalization factor.

The final hypothesis is

H(y) = sign
�PK

k=1�khk(y)
�

Adaboost has a number of appealing properties. It can
been shown that if the weights (�k) are chosen in the way
described above than the training error is bounded by

Y
k

h
2
p
�k(1� �k)

i
: (2)



Hence, if the weak hypotheses are slightly better than the
chance, the training error decreases exponentially fast. Ad-
ditional bounds on the generalization error can also be de-
rived [13]. It has also been shown empirically that Adaboost
has a good generalization property, unless the number of
hypothesis becomes too large. Extensions of Adaboost to
multilabel and soft classification problems have also been
reported.

5. Error Feedback DBNs

Consider the training dataD = f(s1; y1); :::; (sm; ym)g,
and the DBN shown in Figure 6. The modified goal of DBN
learning can now be described as: given dataD obtain DBN
model� = (A;B; �), which minimizes the probability of
classification error ins on datasetD. EFDBN algorithm for
this setting can now be formulated as follows.

Given: Df(s1; y1); :::; (sT ; yT )g;
where yt is an observation vector and st is
the corresponding label of the hidden state

Initialize P
(1)
D (i) = 1=m;

For k = 1; :::;K

� Train static BN1 with st as the root node
to obtain Bk.
Use P

(k)
D as the weight over the training samples.

� Use the DBN learning algorithm to obtain the
the transition probability matrix A for fixed Bk.
� Use the learned DBN, � = (A;Bt; �) to
decode the hidden state sequence (ŝ1; :::ŝT )
given (y1; :::; xT) as the input:
ŝt = argmaxiP (st = ijy1; x2; :::xT)

� Choose �k =
1
2 ln

�
1��k
�k

�

where �k = Pr
t�P

(k)
D

[ŝt 6= st]

� Update:
if ŝk = sk then

P
(k+1)
D (t) =

P
(k)
D

(t) exp(��k)

Zk

else

P
(k+1)
D (t) =

P
(k)
D

(t) exp(�k)

Zk

where Zk is the normalization factor.

The final HMM model is � = (A;B; �)

where B =

P
K

k=1
�kBkP

K

k=1
�k

1During training all the nodes of the BN are considered to be observ-
able. If that is not the case, EM algorithm needs to be used for learning the

The algorithm maintains a weight distribution defined
over the data. It starts by assigning equal weight to all the
samples. As the algorithm proceeds, the weight of correctly
classified samples is decreased whereas that of misclassified
ones is increased. Our observations show that the points
where the error is made are normally the points which were
classified with low confidence.

At each iteration, algorithm obtains an observation den-
sity matrixBk using the present distribution over the data
given byP (k)

D . The DBN learning algorithm gives an esti-
mate of the transition probability matrixA, for which all
the sample are considered to be equally probable. Once
DBN is trained, we use a DBN inference algorithm to de-
code the hidden state sequence. During decoding we obtain
the most likely state, at any time, for the given observation
sequence. This estimated state is compared with the true
state, the discrepancy of which corresponds to an error. The
final DBN model uses the weighted sum of individual ob-
servation probability matrices. The weight of the individual
probability matrix is a function of the expected error made
by that model. This DBN is now used for classification.
SinceBk gives the confidence in a certain state and not the
binary decision, we need to modify the way we are measur-
ing the error:

�k = E
t�P

(k)
D

[htst]; (3)

whereht = (2�Pr(ŝtjy1; :::; yT)�1) (i.e.,ht 2 [�1;+1].)
It has been shown in [13] that the bound on training error
of Eqn 2 still holds. This algorithm can be extended eas-
ily to the case whensi takes multiple values by using the
multiple class version of Adaboost [13].

Algorithms similar in flavor to ours have appeared in
recentliterature. In [2], the authors suggested the use of
corrective training for improving the performance of hid-
den Markov models (simple DBNs) in a speech recognition
framework. While improved performance compared to the
standard HMM classification was reported, certain conver-
gence issues remained at stake. The use of Adaboost to train
the hybrid HMM/neural network speech recognizer was re-
cently reported in [14]. The Adaboost was utilized to en-
hance the performance of the neural network measurement
model, hence resulting in better overall recognition perfor-
mance.

6. Experiments and Results

We conducted three experiments using a common data
set. The data set comprised of five sequences of a user play-
ing the blackjack game in the Genie Casino Kiosk setup.
The exerperimental setup is depicted in Figure 7. The se-
quences were of varying duration (from 2000 samples to
3000 samples) totaling to 12500 frames. Figure 8 shows

BN with the hidden nodes.



some of the recorded frames from the video sequence. Each
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Figure 7. Data collection set-up for Genie Casino kiosk.

sequence included audio and video tracks recorder through
a camcorder along with frequency encoded contextual in-
formation (see Figure 7.) The visual and audio sensors were
then applied to audio and video streams. Because some of
the sensors provide continuous estimates of their respec-
tive functions, decision thresholds were determined for each
sensor that yield binary sensor states (e.g., silence v.s. no si-
lence.) These discretized states were then used as input for
the DBN model. Examples of individual sensor decisions
(e.g., frontal v.s. non frontal, silence v.s. non silence, etc.)
are shown in Figure 9. Abundance of noise and ambiguity
in these sensory outputs clearly justifies the need for intelli-
gent yet data-driven sensor fusion.

Figure 8. Three frames from a test video sequence.

6.1. Experiment Using Static BN

The first experiment was done using the static BN of Fig-
ure 4 to form the baseline for comparison with the dynamic
model. In this experiment all samples of each sequence was
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Figure 9. Figure (a) shows the ground truth for the
speaker state. 1 means that there is a speaker and 0 means
an absence. x axis gives the frame no. in the sequence. (b)
gives the contextual information. 1 means, its users turn
to play where as 0 means the computer is going to play.
(c),(d),(e),(f) are the output of texture, face, mouth motion
and silence detector respectively.

considered to be independent of any other sample. Part of
the whole data set was considered as the training data and
rest was retained for testing. During the training phase, out-
put of the sensors along with the hand label values for the
hidden nodes (speaker, frontal and audio) were presented to
the network.

During testing only the sensor outputs were presented
and inference was done to obtain the values for the hidden
nodes. Mismatch inany of the three(speaker, frontal, au-
dio) is considered to be an error. Cross validation was done
by choosing different training and test data. An average
accuracy of65% is obtained (see Figure 10 for results on
individual sequences.) The accuracy obtained is low. The

Figure 10. A comparison between the results obtained
using static BN, DBN, EFDBN



sensor data (as shown in Figure 9) is noisy and it is hard
to infer the speaker without making substantial errors. Fig-
ure 11(a) shows the ground truth sequence for the state of
the speaker and (b) shows the decoded sequence using static
BN. On the other hand, temporal consistency in the query
state (speaker ground truth) indicates that a model should
be built that exploits this fact.

6.2. Experiment Using DBN

Second experiment was conducted using the DBN
model. At sequence level data was considered independent
(e.g. seq1 is independent of seq2.) The learning algorithm
described in Section 3 was employed to learn the dynamic
transitional probabilities among frontal, speaker, and audio
states. During testing phase a temporal sequence of sen-
sor values was presented to the model and Viterbi decoding
(c.f. [9]) was used to find the most likely sequence of the
speaker states. Overall, we obtained the accuracy of the
speaker detection (after cross validation) of about80%, an
improvement of15% over the static BN model. An indica-
tive of this can be seen in actual decoded sequences. For
instance, decoded sequence using the DBN model in Fig-
ure 11 is obviously closer to the ground truth than the one
decoded using the static model. The improved performance
by the use of DBN stems from the inherent temporal corre-
lation present between the features.

6.3. Experiment using EFDBN

Our final experiment employed the newly designed
EFDBN framework. The learning algorithm described
in Section 5 was used. For a training sequence, we used
EFDBN to estimate the parameters which minimized the
classification error. A leave-one-out crossvalidation re-
sulted in the overall accuracy of90:39%. Figure 10 sum-
marizes classification results on individual sequences. We
see that for all the sequences, an improvement of5 � 10%
over the best DBN result is obtained.

One additional issue deserves our comment: “Unless a
classifier performs well on the training data, it cannot be ex-
pected to do a great job on the test data”. During DBN train-
ing, we found theaccuracy of classification on the training
set of about82%. This implies that one should not expect
anything better than82% on the test data (provided training
data is a representative of the test data). Fortunately, this
is where boosting comes into play. It takes a weak classi-
fier (which showed poor performance on the training data)
and enhances its performance. In our case, by doing boost-
ing, we were able to improve the performance on the train-
ing data to as much as93%. As expected, we also found a
greatly improved performance on the test data.

The DBN model learned using the EFDBN framework

was also applied to the prediction of hidden states. An over-
all accuracy of88% was obtained. This indicates, together
with the previously noted results, that EFDBN significantly
improves the performance of simple DBN classifiers.

7. Discussions and Conclusions

We have presented a general purpose error-feedback
learning framework for DBNs. The results obtained for the
difficult problem of speaker detection where a number of
noisy sensory outputs need to be fused indicate the utility of
this algorithm. Significant improvements in classification
accuracy over a simple DBN model were achieved with-
out sacrificing of complexity of the learning algorithm. We
have also demonstrated a general purpose approach to solv-
ing man-machine interaction tasks in which DBNs are used
to fuse the outputs of simple audio and visual sensors while
exploiting their temporal correlation.

In future work, we will focus on extending the boosting
to encompass the transition parameters. Our initial experi-
ments indicate that convex combination of transition matri-
ces obtained in a manner similar to the one used for obser-
vation matrixB does not yield significant improvements in
performance. We will also like to point that the bound on
the error (given in Eqn 2) may no longer hold because of
the temporal dependence between the data2 . Our current
research focuses on obtaining the bounds for this case.
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