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Abstract information and expert knowledge [1, 8, 7, 4].

Speaker detection is a particularly interesting example
Design and development of novel human-computer in-of a multi-modal sensing task which can serve as a test-
terfaces poses a challenging problem: actions and inten-bed for DBN research. Detecting when users are speaking
tions of users have to be inferred from sequences of noisyis an important component of an open mikesgh-based
and ambiguous multi-sensory data such as video and soundyser-interface. The need to handleltiple people in the
Temporal fusion of multiple sensors has been efficiently for-presence of background noise means that both audio- and
mulated using dynamic Bayesian networks (DBNs) whichvideo-based sensing can provide useful information. Fig-
allow the power of statistical inference and learning to be yre 6 gives an example of a DBN model for speaker de-
combined with contextual knowledge of the problem. Unfor- tection. We are interested in network models that combine
tunately, simple learning methods can cause such appeal“off-the-shelf” vision and speech sensing with contextual
ing models to fail when the data exhibits complex behav- cues such as the state of the interaction. Previous work
ior. We formulate a learning framework for DBNs based has demonstrated promising results for speaker detection
onerror-feedbacland statistical boosting theory. We apply using both static Bayesian networks [11] (BNs) and, more
this framework to the problem of audio/visual speaker de- recently, DBNs [1].
tection in an interactive kiosk environment using "off-the- Learning the parameters of a DBN model is a key step
shelf” visual and audio sensors (face, skin, texture, mouth j, the development of an effective system. The complexity
motion, and silence detectors). Detection results obtainedgf these models and the number of free parameters make
in this setup demonstrate superiority of our learning frame- hand-tuning impractical. Maximum likelihood (ML) learn-
work over that of the classical ML learning in DBNSs. ing is the most common approach, in which model param-
eters are adjusted to achieve the best fit to a set of train-
ing data. Unfortunately there is no guarantee that a model
1. Introduction which fits its training data well will make a good classifier.
However, a recent learning technique knownba®sting
Human-centered user-interfaces based on vision andmakes it possible to improve the accuracy of a weak clas-
speech present challenging sensing problems in which mul-sifier through error-feedback and the optimal combination
tiple sources of information must be combined to infer the of multiple classifiers [13]. Boosting algorithms develop a
user’s actions and intentions. Statistical modeling tech- series of classifiers that concentrate on the errors made by
niques therefore play a critical role in system design. Dy- their predecessors, thereby improving performance.
namic Bayesian network (DBN) models are an attractive  This paper describes a novel learning algorithm for
choice, as they combine an intuitive graphical represen-DBNs that uses boosting to improve recognitamcuracy.
tation with efficient algorithms for inference and learn- We refer to this new model as amror feedback DBNor
ing. DBNSs are a class of graphical probabilistic models EFDBN. It combines boosting with ML learning for esti-
which encode dependencies among sets of random variablemating the model parameters. We demonstrate the utility
evolving in time. Examples of DBNs include Kalman filters of this new learning approach in the context of speaker de-
and HMMs. Previous work has demonstrated the power oftection. Our experiments show that the EFDBN is superior
these models in fusing video and audio cues with contextualto conventional ML-based DBN models, and that both are



superior to static BNs. On a test set of five sequences we
achieve an accuracy of 90%. These promising results sug-
gest the general applicability of EFDBN to other problems
in which BN and DBN models are in use.

The rest of the paper is organized as follows. We be-
gin by introducing the problem of multi-sensor fusion for
speaker detection in Section 2, followed by a brief re-
view of the previous static and dynamic BN approaches.
Section 3 formally addresses the classical ML learning in
DBNs. In Section 5 we define our EFDBN learning frame-
work from the prospective of boosting and discuss its rela-
tion to other similar schemes. Section 6 describes the ex-
periments on speaker detection using the three frameworks
(static BN, DBN, and EFDBN.) Lastly, we provide some
final discussion of the framework and the results, followed
by the future research directions.

Figure 1. The CRL Smart Kiosk
2. Speaker Detection

Speaker detection is an important component of Open_commands to interact with the dealer (kiosk) and play the

mike speech-based user-interface. For any interface whic ame. . . : . .

relies on speech for communication, an estimate of the per- Audio and V|.sual information can be obtamed.dlre“ctly
sons state (whether he/she is or isn't a speaker) is importanErom the"tvx{o kiosk SENSOrs. we L.ISG a set of five “off-
for its reliable functioning. We argue that for a person to he-shelf” visual and audio sensors: the CMU face detec-

be an active user (speaker), he must be expected to speal%?r [32]{ at Gau55|art1hsk|nt'colgr td ettector ([115]’ a ;gce'lt ex-
facing the system and actually speaking. Visual cues can pe /re detector, a mouth motion detector, and an audio silence

useful in deciding whether the person is facing the system?etegtqr' 1Alde(t:alletd (1te5fr|pt|0n of the;ge dtitectto rts cafmthbe
and whether he is moving his lips. However, they are not ound in [11]. Contextual sensor provides the state of the

capable on their own to distinguish an active user from an environment Whlch may hglp in inferring the state of th?
active listener (listener may be smiling or nodding). Audio user. Contextual information can tell whether the user is
cues, on the other hand, can detect the presence of relevar’ﬁXpECtEd to speak or not.
audio in the environment. Unfortunately, simple audio cues . )
are not sufficient to discriminate a user in front of the sys- 2-1. Bayesian Networks for speaker detection
tem speaking to the system from the same user speaking to
another individual. Finally, contextual information describ- The speaker detection problem represents a challenging
ing the “state of the world” also has bearing on when a userground for testing the representational power of DBN mod-
is actively speaking. For instance, in certain contexts theels and more specifically the EFDBN algorithm in a com-
user may not be expected to speak at all. Hence, audio anghlex multi-sensor fusion task. Different types of sensors
visual cues as well as the context need to be used jointly toneed to be seamlessly integrated in model that both reflects
infer the active speaker. the expert knowledge of the domain and the sensors and
The Smart Kiosk [10, 5] developed at Compag’s Cam- benefits from the abundance of observed data. We approach
bridge Research Lab (CRL) provides an interface which al- the model building task by first tackling the expert design of
lows the user to interact with the system using spoken com-networks that fuse individual sensor groups (video and au-
mands. The public, multi-user nature of the kiosk appli- dio). We then proceed with the integration of these sensor
cation domain makes it ideal as an experimental setup fornetworks with each other, with contextual information, and
speaker detection task. The kiosk (see Figure 1) has a camever time. Finally, data-driven aspect comes into play with
era mounted on the top that provides visual feedback. A data-driven parameter learning.
microphone is used to acquireegch hput from the user. The graph in Figure 2 shows the vision network for this
This setup forms an ideal testbed for our problem. task. This network takes the binary output of the sensors
We have analyzed the problem of speaker detection in a(skin color detector, face detector and texture detector) and
specific scenario of the Genie Casino Kiosk. This version outputs the query variables corresponding to visibility and
of kiosk simulates a multiplayer blackjack game (see Fig- the frontal information of the user.
ure 7 for a screen capture.) The user uses a set of spoken The silence detector and the mouth motion detector are
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Figure 2. Vision Network

Figure 5. Temporal dependencies between the speaker,

used to infer whether the user is talking. The audio network audio, and frontal nodes at two consecutive time instances.

selected for this task is shown in Figure 3. It takes the input
from the sensors and outputs the probability that the audio

present in the environment corresponds to the user. . ) i
Incorporating all of the above elements into a single

structure lead to the DBN shown in Figure 6. Here the nodes
» shown in dotted lines are the direct observation nodes while
the ones in solid are the unobserved nodes. The speaker
node is the final speaker detection query node.

¢ Mouth Motion " Silence Detector

Figure 3. Audio network for speaker detection.

Once constructed, the audio and visual networks are
fused to obtain the integrated audio—visual network. At this
stage one would also like to incorporate any information the
environment may play in deciding the user’s state. The con-
textual information (state of the blackjack game), together
with the visual and audio subnetworks is now fused into a \ i o o
single net through the virtue of the speaker node, as shown Observations
in Figure 4. The chosen network topology represents our t1 t
knowledge that both audio, visual, as well as contextual
conditions need to be met for the decision on the presence

of the speaker to be made. Figure 6. Two time slices of the dynamic Bayesian net-
work for speaker detection.

Observation

It has been shown in [11] and [1] how both the speaker
detection models based on the static BN, similar to the one
in Figure 4, and the DBN in Figure 6 can be learned from
data using standard ML learning techniques and then effec-
tively utilized to fuse multi-sensory information. The DBN
framework has been show in [1] to outperform the static
one mainly due to the existence of temporal links but also
because of the presence of contextual information. A sig-
i . o nificant improvement of 15% in speaker detection error rate
The final step in designing the topology of the speaker a5 reported. Further improvements occured when higher

detection network involves its temporal aspect. Measure- g qer temporal dependencies were introduced through du-
ment information from several consecutive time steps can iion density DBNS.

be fused to make a better informed decision. This expert

knowledge becomes a part of the speaker detection networ . . . .

once the temporal dependency shown in Figure 5 is im-lé' ML Learning in Dynamic Bayesian Net-
posed. The presence of all possible arcs among the three  WOrKS

nodes stems from our lack of exact knowledge about these

temporal dependencies, i.e., we allow for all dependencies Dynamic Bayesian networks are a class of Bayesian net-
to be present and later on determined by the data. works specifically tailored to model temporal consistency

Contextud
Information
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Figure 4. Integrated audio-visual network.



present in some data sets.

In addition to describing de-case the optimal values of parameters can depend on each

pendencies among different static variables DBNs [6] de- other.

scribe probabilistic dependencies among variables at differ-

ent time instances. In general, a DBN has a specific struc-4 classification Error and Boosting

ture shown in an example in Figure 6. A set of random
variables at each time instantés represented as a static
BN. Out of all the variables in this set temporal dependency
is imposed on some. Namely, distribution of some variable
s;+ at timet depends on a variable at time- 1, s; ;4
through some conditional distribution ®s$; ;[s; —1). An
example of this structure is depicted in Figure 6. Finally,
some variables at each time slice are considered to be o
servable (sensor measurements) and are usually denoted

y¢. The rest of the variables can but need not be observed:

Probability distribution among all variables in a DBN can
in general be written as Pfy1,...,yr,s1,...,57)
Pr (s1)Pr (y1]s1) [T/—y Pr (st|si—1)Pr (ve|s:). Each of
the Pr terms can be either a table of probabilities of some
parametric pdf. In both cases, they yield a set of model pa-
rameters, which we denote I&. In general© consists of

A, static BN parameterB, and initial state distribution.

Inference in DBNs is concerned with finding the distri-
butions (i.e., estimate§) of unobserved variables given
the measurementg,,...,yr. Thanks to its constrained
topology efficient algorithms such as the forward-backwar
propagation [3] can be employed for this task.

ML learning in DBNs is a special case of ML learning in
general BNs. The goal is to maximize the likelihood of ob-

ML estimators have an undeniable appeal. The argu-

ments in favor of ML estimation are based on the assump-
tion that the form of the underline distribution is known,
and that only the value of the parameters characterizing the
distribution is unknown. However, maximizing the likeli-
bhood does not ecessarily lead to minimum classification

ror, an important criterion in problems such as multi-
ensor speaker detection.
Recently, Schapire et al. [13] haveogposed method

called boosting aimed at improving the performance of any
weak classifier. In particular, they have derived an algo-
rithm called Adaboost that “boosts” the classification on a
set of data points by linearly combining a number of weak
classifiers, each of which is trained to correct “mistakes” of

three types of parameters: transition probability parame’[ersthe PrevIous one.

More formally, consider a binary classification problem

with data given byS = {(s1,41), ..., (Sm, ym ) }. Herey; is

a feature vector ang is the desired label (or ground truth).

The goal of the learning algorithm is to find a hypothesis
d (classifier)h : Y — S that minimizes misclassification. In

a binary classification scenarie,c {41, —1}, Adaboost

can be described as

served variables by varying the model's parameters. Given
the DBN pdf it is easy to formulate the ML learning as

©* = arg max Pr (observed variablé®). (1)

Theta
The optimization usually has a closed-form solution when
all the variables in the DBN are visible and the optimal val-
ues of three parameter$, B, andr are independent. If
some of the variables:§ are hidden, the closed-form solu-
tion is usually replaced by an iterative procedure known as
the expectation-maximization or EM:

Get initial guess of Og;
do
Infer hidden variables s; from measurements
Y1, - ..,y using model O;

GiVen: D= {(Slayl)a ceey (Smaym)}a Yi S yasi S {_1a+1}1
Initialize distribution over data pairs Pl()l)(i) =1/m;
Fork=1,... K

« Train hypothesis h;, using data D with distribution P{).
e Choose o, = 1 1n (%)

where ¢, = PriNPg)[hk(yi) + 5]
¢ Update:

Pp(k+ 1)(i) = P00 Conttulv)

where Z; is the normalization factor.

The final hypothesis is
H(y) = sign (IS, axhu(v))

O 4 = argmaxyhera Pr (y1,. .., ¥t, 51, .-, 57(9).

until ( convergence )

Because three types of parameters are prederit, andr,

Adaboost has a number of appealing properties. It can
been shown that if the weighta ) are chosen in the way
described above than the training error is bounded by

the iterations can be formulated such that all parameters are

updated at one time or only some of them are updated while

the others are held fixed. It is important to note that in this

H [2 er(l— ek)} . (2)

k




Hence, if the weak hypotheses are slightly better than the The algorithm maintains a weight distribution defined
chance, the training error decreases exponentially fast. Ad-over the data. It starts by assigning equal weight to all the
ditional bounds on the generalization error can also be de-samples. As the algorithm proceeds, the weight of correctly

rived [13]. It has also been shown empirically that Adaboost

classified samples is decreased whereas that of misclassified

has a good generalization property, unless the number ofones is increased. Our observations show that the points
hypothesis becomes too large. Extensions of Adaboost towhere the error is made are normally the points which were
multilabel and soft classification problems have also beenclassified with low confidence.

reported.
5. Error Feedback DBNs

Consider the training dat® = {(s1,¥1), .., (Sm, Ym) }
and the DBN shown in Figure 6. The modified goal of DBN
learning can now be described as: given databtain DBN
model® = (A, B, ), which minimizes the probability of
classification error ir on dataseD. EFDBN algorithm for
this setting can now be formulated as follows.

Given: D{(s1,y1), ..., (s7,y7) };
where y; is an observation vector and s; is
the corresponding label of the hidden state

Initialize Pl()l)(i) =1/m;
Fork=1,... K

o Train static BN* with s, as the root node
to obtain By.
Use Pl(f) as the weight over the training samples.
¢ Use the DBN learning algorithm to obtain the
the transition probability matrix A for fixed By,.
e Use the learned DBN, © = (4, B;, 7) to
decode the hidden state sequence (1, ...57)
given (yi, ..., zr) as the input:

§¢ = argmax; P(s; = ily1, xa, ...x7)

e Choose ay, = 1 In %
where ¢, = Pr,_ o [s¢ # st
D
¢ Update:
if S = Sg then
(k) eX —
PYHD(1) = Lo iowlzan)
else
p(k+1)(t) _ P () explon)

D Z
where 7, is the normalization factor.

The final HMM model is A = (A4, B, w)

ag By

K
where B = Eﬁ}i
Zk:l Yk

1During training all the nodes of the BN are considered to be observ-

At each iteration, algorithm obtains an observation den-
sity matrix By, using the present distribution over the data
given byPL(f). The DBN learning algorithm gives an esti-
mate of the transition probability matri®, for which all
the sample are considered to be equally probable. Once
DBN is trained, we use a DBN inference algorithm to de-
code the hidden state sequence. During decoding we obtain
the most likely state, at any time, for the given observation
sequence. This estimated state is compared with the true
state, the discrepancy of which corresponds to an error. The
final DBN model uses the weighted sum of individual ob-
servation probability matrices. The weight of the individual
probability matrix is a function of the expected error made
by that model. This DBN is now used for classification.
SinceB;, gives the confidence in a certain state and not the
binary decision, we need to modify the way we are measur-
ing the error:

& = B, _pwl 3)

whereh; = (2% Pr(s¢|y1, ..., yr)—1) (i.e.,hy € [-1,+1].)

It has been shown in [13] that the bound on training error
of Egn 2 still holds. This algorithm can be extended eas-
ily to the case when; takes multiple values by using the
multiple class version of Adaboost [13].

Algorithms similar in flavor to ours have appeared in
recentliterature. In [2], the authors suggested the use of
corrective training for improving the performance of hid-
den Markov models (simple DBNS) in a speechogtition
framework. While improved performance compared to the
standard HMM classification was reported, certain conver-
gence issues remained at stake. The use of Adaboost to train
the hybrid HMM/neural network sgech reognizer was re-
cently reported in [14]. The Adaboost was utilized to en-
hance the performance of the neural network measurement
model, hence resulting in better overall recognition perfor-
mance.

htst]a

6. Experiments and Results

We conducted three experiments using a common data
set. The data set comprised of five sequences of a user play-
ing the blackjack game in the Genie Casino Kiosk setup.
The exerperimental setup is depicted in Figure 7. The se-
guences were of varying duration (from 2000 samples to
3000 samples) totaling to 12500 frames. Figure 8 shows

able. Ifthat is not the case, EM algorithm needs to be used for learning theBN with the hidden nodes.



some of the recorded frames from the video sequence. Each |
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Figure 9. Figure (a) shows the ground truth for the
speaker state. 1 means that there is a speaker and 0 means
an absence. x axis gives the frame no. in the sequence. (b)
gives the contextual information. 1 means, its users turn
to play where as 0 means the computer is going to play.
(c),(d),(e),(f) are the output of texture, face, mouth motion
and silence detector respectively.
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Figure 7. Data collection set-up for Genie Casino kiosk. considered to be independent of any other sample. Part of
the whole data set was considered as the training data and

sequence included audio and video tracks recorder througtest was retained for testing. During the training phase, out-
a camcorder along with frequency encoded contextual in-pPut of the sensors along with the hand label values for the
formation (see Figure 7.) The visual and audio sensors werghidden nodes (speaker, frontal and audio) were presented to
then applied to audio and video streams. Because some othe network.
the sensors provide continuous estimates of their respec- During testing only the sensor outputs were presented
tive functions, decision thresholds were determined for eachand inference was done to obtain the values for the hidden
sensor that yield binary sensor states (e.g., silence v.s. no sinodes. Mismatch imny of the thredspeaker, frontal, au-
lence.) These discretized states were then used as input fadio) is considered to be an error. Cross validation was done
the DBN model. Examples of individual sensor decisions by choosing different training and test data. An average
(e.g., frontal v.s. non frontal, silence v.s. non silence, etc.) accuracy of65% is obtained (see Figure 10 for results on
are shown in Figure 9. Abundance of noise and ambiguity individual sequences.) The accuracy obtained is low. The
in these sensory outputs clearly justifies the need for intelli-
gent yet data-driven sensor fusion.

h Accuracy
.
=

Figure 8. Three frames from a test video sequence. il
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6.1. Experiment Using Static BN

The first experiment was done using the static BN of Fig- ~ Figure 10. A comparison between the results obtained
ure 4 to form the baseline for comparison with the dynamic  using static BN, DBN, EFDBN
model. In this experiment all samples of each sequence was



sensor data (as shown in Figure 9) is noisy and it is hardwas also applied to the prediction of hidden states. An over-
to infer the speaker without making substantial errors. Fig- all accuracy o88% was obtained. This indicates, together
ure 11(a) shows the ground truth sequence for the state ofvith the previously noted results, that EFDBN significantly
the speaker and (b) shows the decoded sequence using statimproves the performance of simple DBN classifiers.

BN. On the other hand, temporal consistency in the query

state (speaker ground truth) indicates that a model shouldy Discussions and Conclusions
be built that exploits this fact.

We have presented a general purpose error-feedback
learning framework for DBNs. The results obtained for the
] ) difficult problem of speaker detection where a number of

Second experiment was conducted using the DBN pisy sensory outputs need to be fused indicate the utility of
model. At sequence level data was considered independentis aigorithm. Significant improvements in classification
(e.9. seql is independent of seq2.) The learning algorithmyccyracy over a simple DBN model were achieved with-
described in Section 3 was employed to learn the dynamicqt sacrificing of complexity of the learning algorithm. We
transitional probabillities among frontal, speaker, and audioh5ve also demonstrated a general purpose approach to solv-
states. During testing phase a temporal sequence of Senyg man-machine interaction tasks in which DBNs are used

sor values was presented to the model and Viterbi decodingy, fyse the outputs of simple audio and visual sensors while
(c.f. [9]) was used to find the most likely sequence of the exploiting their temporal correlation.

speaker states. Overall, we obtained the accuracy of the
speaker detection (after cross validation) of at®il#, an 5 encompass the transition parameters. Our initial experi-
improvement ofi 5% over the static BN model. Anindica-  yents indicate that convex combination of transition matri-
tive of this can be seen in actual decoded sequences. Fogeg gptained in a manner similar to the one used for obser-
instance, decoded sequence using the DBN model in Figation matrix3 does not yield significant improvements in
ure 11 is obviously closer to the ground truth than the one performance. We will also like to point that the bound on
decoded using the static model. The improved performanceyne error (given in Eqn 2) may no longer holddause of
by'the use of DBN stems from the inherent temporal corre- o temporal dependence between the%dat®ur current
lation present between the features. research focuses on obtaining the bounds for this case.

6.2. Experiment Using DBN

In future work, we will focus on extending the boosting
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