Boosting and Structure Learning in Dynamic Bayesian Networks
for Audio-Visual Speaker Detection

Tanzeem Choudhury!, James M. Rehg?, Vladimir Pavlovi¢3, and Alex Pentland!

Media Laboratory 2College of Computing 3College of Engineering
Massachusetts Institute of Technology Georgia Institute of Technology Beston University
Cambridge, MA 02139 Atlanta, GA 30332 Boston, MA 02215
{tanzeem,sandy } @media.mit.edu rehg@cc.gatech.edu vladimir@bu.edu

Abstract

Bayesian networks are an attractive modeling tool for hu-
man sensing, as they combine an intuitive graphical repre-
sentation with efficient algorithms for inference and learn-
ing. Earlier work has demonstrated that boosted param-
eter learning could be used to improve the performance of
Bavesian nemwork classifiers for complex multi-modal infer-
ence problems such as speaker detection. In speaker detec-
tion, the goal is to use video and audio cues to infer when a
person s speaking to u user interfuce. In this paper we in-
rroduce a new boosted structure learning algorithm based
on AdaBoost. Given labeled data, our algorithm modifies
hoth the netvork structure and parameters so as to im-
prove classification accuracy. We compare its performance
1o both standard structure learning and boosted parameter
learning on a fixed structure. We present results for speaker
detection and for the UCI "chess™ dataset.

1. Introduction

Human-centered user-interfaces based on vision and
speech present challenging sensing problems in which mul-
tiple sources of information must be combined to infer the
user’s actions and intentions. Dynamic Bayesian network
(DBN) models are an attractive modeling choice, as they
combineg an intuitive graphical representation with efficient
algorithms for interence and learning. DBNs are a class of
graphical probabilistic models which encode dependencies
among sets of random variables evolving in time. Exam-
ples of DBNs include Kalman filters and HMMs. Previous
work has demonstrated the power of these models in fus-
ing video and audio cues with contextual information and
expert knowledge [14, 11, 2].

Speaker detection is a particularly interesting example

1051-4651/02 $17.00 © 2002 [EEE

789

of a multi-modal sensing task which can serve as a test-bed
for DBN research [16, 9]. In an open mike speech-based
interface, one needs to identify the speaker and discrim-
inate speech directed to the interface from conversations
with other users and background ncise. Both audio- and
video-based sensing can provide useful cues [4, 5].

The challenge in applying DBN modcls to speaker de-
tection is o develop effective discriminative learning algo-
rithms. Classical parameter learning algorithms for DBN’s
are unsupervised, in the sense that all nodes in the network
are treated equally. However, when DBN's are used as clas-
sifiers we would prefer a supervised approach, in which the
classification node is identified and learning is optimized
for classification performance.

In previous work, the AdaBoost algorithm [18] was used
to develop 2 DBN parameter learner that was tuned for clas-
sification accuracy [14]. In the speaker detection example,
boosting improved the performance of the DBN classifier
by 15%. In this paper we significantly extend these pre-
vious results in two ways. First, we expand the learning
task to include structure learning. Given the nodes in the
DBN model, we search over the set of possible graph struc-
tures. This allows us to compensate for possible biases or
inaccuracies in hand-specified models. We present a novel
algorithm for boosted structure learning which extends our
previous results on boosted parameter learning. Second, we
describe a variation of AdaBoost which uses a max-based
classtfier selection approach to determine the output. We
test these new algorithms on the speaker detection task and
the chess data set from the UCI repository [1].

2. DBN for Speaker Detection

The context for our work the development of an open-
mike speech interface for a Smant Kiosk [15]. The kiosk has
microphone and camera inputs and a graphical avatar for

output. We assume that a speaker will be facing the kiosk,
moving their lips, and producing speech. Visual cues can
be usetul in deciding whether the person is facing the kiosk
and whether they are moving their lips. However, they are
not capable on their own to distinguish a speaker from an
active listener, who may be facing the kisok while smiling
or nodding. Audio cues can detect the production of speech.
However, simple audio cues can not distinguish speech di-
rected lo the kiosk from speech directed at one’s neighbors.
In addition, contextual information describing the state of
the interface also has bearing on speaker detection. For in-
stance, in certain contextis the user may not be expected to
speak at all.

Figure 1 gives an example of a Bayesian network for the
speaker detection problem. Each node js a variable, The
hidden speaker node, for example, equals | whenever a
user is speaking to the kiosk and —1 otherwise. Tt influ-
ences three other hidden nodes, which describe whether the
speaker’s face is visible and frontal, and whether speech is
being produced. The six measurement nodes, drawn with
gray lines in Figure 1, encode video, audio, and contex-
tual cues. The context node measures the current state of
the user’s interaction with the kiosk. The other five mea-
surement nodes represent the output of specific video and
audio processing modules. Face detector, tor example, is
the binary output of the CMU Face Detector [17]. Efficient
inference algorithms can be used to compute a distribution
over the speaker node given the measurements [12]. The
speaker detector output is given by a likelihood ratio test on
the speaker variable (see [16] for details).

<, (Speater)
@'4@ D
G Good) Eerod G Cond

Figure 1. Static Bayesian network for speaker
detection.

The arcs between the nodes are parameterized by condi-
tional probability distributions that mode! dependencies be-
tween variables. The arc between the two binary variables
speaker and visible, for example, stores the two-by-two
conditional probability table (CPT), P(visible|speaker).
We let B, denote the total set of CPT parameters. Adding
temporal dependencies between variables in a BN results
in a dynamic Bayesian network (DBN). Figure 2 gives an
example for speaker detection. Additional arcs have been
placed between the three hidden nodes speaker, frontal, and

790

speech. Each arc denotes a dependency between variables
in two “slices” of the network at consecutive times. The
probability distribution is defined by the parameters of a
Markov model: a matrix A of transition probabilities and
an initial state distribution 7.

Time t-1

Figure 2. Dynamic Bayesian netwerk for
speaker detection,

‘We can describe the DBN meodel of Figure 2 as the tuple
(Bs,), where B; encodes the structure (i.e. the topology)
of the network and § = {Bgy, A,n} is the set of network
parameters. We can decompose B, into { B, By}, where
B. is the structure of the static network (in Figure 1) and
By, specifies the temporal arcs between time slices (in Fig-
ure 2}, In this instance, By has been specified manually.
The parameters can be learned from a training data set D by
computing

g = argm;\xP(Dlé)P(G), ¢)]
where P(6) is a prior. When all of the nodes are observed,
this computation can be done in closed-form [10].

Learning is particularly simple for the network of Fig-
ure 2. Let z denote the four hidden states and y denote
the six measurements. Let Zr = {z1,22,..., 27} be the
sequence of T hidden states and Y7 the corresponding se-
quence of measurements. Then we have:

P(Zr,Y1,0) = P(Yr|Z7,By)P(Zr|A,x) (D)

Thus the parameters By, can be determined by counting how
often particular combinations of hidden state and measure-
ment values occur. In this simplest case the parameters are
simply the counts in a histogram of the training data. We
can further expand the second term:

P(Zr|A,m) =[] P(zilztor, A)Plzo|m). (3)
t

Thus the transition matrix A can be viewed as a second his-
togram which counts the number of transitions between the

hidden state values over time. Inference is equally straight-
forward using the standard forward-backward algorithm.
See [9] for details.

3. Bayesian Network Classifiers

DBN models are an appealing framework for complex
inference problems because they are interpretable, compos-
able, and generative. Posthoc analysis of learned parame-
ters and network structure is an important source of insight
into network performance. Such insight can be difficult to
obtain in directly supervised learning approaches such as
neural networks. Second, it is fairly easy to compose large
Bayesian network models by combining subgraphs. This
makes it possible to reuse and extend modeling compo-
nents without retraining an entire model for each new prob-
lem [13]. Third, because the Bayesian network models a
joint probability distribution, sampling can be used to gen-
erate synthetic data. This is another source of insight into
network performance.

However, the straightforward approach of learning BN
models from training data and then applying them to a clas-
sification task can result in poor performance, as described
in [6]. To illustrate this point, consider a dataset of N
records D = {z1,...,en}. Let z; = {s;,y:}, where s;
is the classification node {e.g. the speaker node in Figure 1)
and y; is the set of observations for record i. Substituting
into Eqn 1 we have

9* - a.rgmﬁa.xH P(S,‘,yilg)P(G)

= arg max Z(iog P(s;ly:,0) + iog P(y;l6) + log P(8))

(4

The classification performance of the network is gov-
erned by the first term in Eqn 4, known as the conditional
log likelihood. Since the parameter estimate maximizes the
total posterior, it is not guaranteed to give an optimal esti-
mate for the conditional likelihood under the structure B,,
If the structure is incorrect, the resulting classifier may not
generalize well during testing. Unfortunately, it does not
seem (0 be possible to extend the closed form solutions for
Egn 4 to the conditional likelihood term in isolation. See [6]
for details.

One approach to this problem is to use boosting to im-
prove the classification performance. In the Adaboost algo-
rithm of Schapire et. al. [18], performance is improved by
linearly combining a sequence of weak classifiers, each of
which is trained to correct the mistakes of the previous one
on the training data. In previous work [14], we used boosted
parameter learning to improve the speaker detection perfor-
mance of the DBN classifier of Figure 2. Boosting modi-
fies the parameter estimates by changing the weights on the

791

training data according to the classifier’s performance. This
approach is attractive because it can utilize efficient param-
eter learning algorithms for DBNs and the computational
cost is a constant multiple of the cost without boosting.

Boosting has a particularly simple interpretation for dis-
crete variable networks such as Figure 2. For simplicity,
consider just the classifier node s (i.e. speaker) and the
measurements y. Boosting modifies By according to the
distribution P(y|s, Dy} where D, is the reweighted train-
ing data at iteration k of boosting. Intuitively, boosting will
increase or decrease the weighted counts in a particular bin
{s = s;,y = y;} of the histogram depending on whether
the classification given by P(s = 8|y = y;) is incorrect or
correct. We can write this as By = Histogram(Dy, B.).

Similarly, boosting will modify {A,#n} according to
P(s0|Dy) and P(s¢|si—1, Dg). We can write {A4,7} =
Histogram(Dy, Bq). Intuitively, boosting will increase
or decrease the weighted counts for a pair of state transi-
tions (A5, A) based on the classification performance for
sy = 7. This can be viewed as an error-driven duration den-
sity model for the Markov chain, and it seems to be the pri-
mary source of performance improvement in the classifier
of Figure 2.

Consider the decision boundary between (s = —1,y =
y;) and (s = 1,y = y;). Since all of the variables are
discrete, boosting can only effect the decision by changing
the sign at the boundary. Given some initial distribution
of counts between the two bins, boosting will tend to drive
the distribution towards (0.5,0.5). Until this threshold is
reached, boosting will not change the decision boundary.
As a consequence, the final classifier produced by averag-
ing the reweighted classifiers may not give significant im-
provement in the discrete case. In the next section, we intro-
duce an alternative combination scheme called max-select,
in which we select the output of the classifier which maxi-
mizes the likelihood of the test probe.

4. Learning Network Structure

The network structure in Figure 2 was manually speci-
fied using knowledge about the problem and sensors. Man-
ual design may introduce unwanted bias, and will be dif-
ficult for more complicated networks with many features.
An alternative would be to learn the network structure auto-
matically from the data [3, 8, 10]. Structure learning algo-
rithms accomplish this by searching over the space of net-
work structures to find the structure which is best-supported
by the data. This requires a scoring function for candidate
structures and an efficient search procedure, since the space
of all topologies is intractably large for even a small number
of nodes.

A Bayesian scoring function H(B;, Bg), for two candi-
date structures By-and B3, can be constructed trom the ratio

of their pesterior probabilities:

P(B|D) _ P(D|B:)P(B))
P(B,|D) ~ P(D|By)P(By)’

H(BlyB2) = (5)

where D is the dataset and the last equality follows from
Bayes Rule. If the prior over the structure is uniform, then
the scoring function will reward the structure that maxi-
mizes the likelihcod of the data.

As in the parameter learning case, it is quite possible that
the maximal structure does not result in the best-performing
classifier, since the scoring function in Eqn 5 is unsuper-
vised. We now describe a novel boosting algorithm for
structure learning which addresses this limitation. Figure 3
gives the flow chart for the algorithm. The key point is that
Egn 5 can be easily modified to operate on weighted data.
As in the discrete paramter learning case, the effect of Ad-
aboost from the standpoint of the structure learning module
is simply to increase or decrease the frequency of different
combinations of variables in the training data.

Initialize weights
over training data

Learn
Structure
Bs

Modify weights
over training data

Leamn
Parameters

A, By.n

Output classifier is
weighted avg or max

Classify
Training
Data

Figure 3. Flowchart for boosted structure
learning algorithm.

Any standard structure learning algorithm can be used
for the module in Figure 3. In this paper we use an MCMC
variant of the K2 structure leaming algorithm by Cooper
and Herskovitz [3], which is described in [7]. K2 is a greedy
search algorithm which uses a known ordering of the nodes
and maximum limit on the number of parents for any node
to constrain the search over network structure. The MCMC
variant samples from the space of node orderings and uses
K2 to compute the best structure for each sample. This ap-

792

proach retains the relative efficiency of K2 while ameliorat-
ing the constraints of node ordering.

Following the structure leaming stage in Figure 3, pa-
rameter learning is performed in the current structure B,.
Parameter learning is also based on weighted data, using the
procedure from our earlier work [14]. The result is a new
classifier, which is then used to classify the training data so
that the weights can be modified for the next iteration. The
pseudocode for boosted structure learning follows:

Training
Given: D = {(s1,41),..., (s7,y7)}, With 5, € {~1,+1},
y: € Yr a sequence of T data records;
Initialize PR(t) =1/T, t=1...T;
Fori=1...N, :

Bi = LearnStructure(D, Pj 1)

¢' = LearnParameters(D, P!, Bi);

. - : .8 r
d{a',Pb} = Reweight(D, P5 ', B, 8');
end; ’

Testing
‘Given test data Y7, evaluate N classifiers:

8 = argmax; P(s; =j | Yr, B, 6%), i=1...N;
The combined classifier output is:]

8¢ = sign(3_; &'5}); (weighted average)

& = 8F,k = argmax; Py, 3%, BE, 6%); (max-select)

Function B; = LearnStructure(D, Pp)
Local var L*, initially L* = 0;
Repeat.
I = sampled node order for the static network;
{B., L} =K2(D, Pp, I);
Accept or reject B, given L, L*, proposal dist;
Until accept;
L*=1I
Return {B., Ba};

Function § = LearnParameters(D, Pp, B,)
B4 = Histogram(D, Pp, B.);
{A, 7} = Histogram(D, Pp, Ba);
Return {B,, A, #};

Function {o*, PE} = Reweight(D, PE™!, B,, 6)

4 = argmax; P(s; = j | Y7, By, 0), fort=1...T;
E’C = Zt P{%‘P‘;—x}(é}t ?l—' St);

Return {a*, P5};

>

ot = Llog 1;5»: :
P"_l{t) exp a® [P
Hé#s
PE(t) = {Pk—l(f)exp_ak , f# P fort=1...T;
—D—Z—r— i 8¢ = 8¢.

Speaker Chess
Static BN Det | Delta | Det | Delta
Fixed Struct, AdaBoost 69% 0% | 88% | 0%
Fixed Struct, Max select | 71% 2% | 92% | 4%
Learn Struct, No boost 87% 16% | 94% 6%
Learn Struct, AdaBoost { 87% | 16% | 94% | 6%
Learn Struct, Max select | 88% 17% | 96% 8%
Dynanic BN
Fixed Struct, No boost 80% | 9%
Fixed Struct, AdaBoost | 90 % | 19%
Learn Struct, No boost 90% | 19%
Learn Struct, AdaBoost | 91 % | 20%
Learn Struct, Max select | 92 % | 21%

Table 1. Results for BN classification

5. Experimental Results

We have conducted experiments on two separale
datasets: (1) speaker detection dataset and (ii) the Chess
dataset from the UCI machine learning repository [1]. The
speaker detection dataset consists of five sequences of a user
playing a blackjack game in the Genie Casino Smart Kiosk
setup. The sequences are of varying duration (from 2000-
3000 samples) totaling to approximately 10000 frames.
Each DBN state in each frame was hand labelled. The chess
dataset has 36 attributes and two output classes.

The experimental resulis for both datasets are summa-
rized in Table 1. For both the speaker and chess datasets, we
measured classification accuracy for the static Bayesian net-
work with structure learning using no boosting, AdaBoost,
and max-selection boosting. For the speaker dataset we
also measured the classification accuracy for the dynamic
Bayesian Network with and without boosting. For each
combination we present the overall detection rate (the Det
column) as well as the improvement over the baseline clas-
sifier (the Delta column). The baseline classifier in cach
case was a static BN with fixed structure and standard pa-
rameter learning.

We can make several observations about the results in
Table 1. First, structure learning led to improved classifier
performance on both datasets. In the static speaker case,
for example, standard structure learning (row 3) yielded an
improvement of 16% over the baseline, suggesting that the
hand-designed structures we used in our earlier experiments
had significant bias. Furthermore, conventional structure
learning met or exceeded the performance of parameter
boosting with manually-specified structure. This illustrates
the importance of selecting the right structure in Bayesian
network classifier design.

We now examine some of the speaker-detection net-
works that were produced by structure learning. The static

793

speaker network (B.} shown in Figure 4 is the result of ap-
plying standard K2 to the node ordering given in the manu-
ally specified structure of Figure 1. This constraint results in
qualitatively similar parent relationships between the man-
ual and learmed models, while allowing the data to deter-
mine the details. The network in Figure 4 yielded a clas-
sification accuracy of 78% on the testing set. While this is
superior to the performance of Figure 1 (around 70%), it is
below the best structure estimates in Table 1.

Figure 4. Structure obtained by K2 using the
node ordering from Figure 1.

We can make several observations about Figure 4. First,
it is clear that the nodes visible and skin are conditionally
independent from the rest of the variables. This is a conse-
quence of the training dataset, which did not contain any
cases in which a visible face (and therefore skin pixels)
were not present. As a consequence, the visible and skin
variables did not provide any useful information for clas-
sification. The children of the speaker node (which is the
output node during classification) are quite similar in both
the learned and manual structure, as a consequence of the
ordering constraint.

An intriguing property of the learned graph is the large
number of connections between the kiesk node and other
variables in the system. This node represents the state of
the kiosk interface. In our Blackjack application, it encodes
whether it is the user’s turn to place a bet and whether or not
any of the game-playing agents are talking to the user. As
a result, it is a powerful source of information in speaker-
detection. The next structure example makes this peint even
more clear.

Figure 5 shows a second network for static speaker de-
tection. It was obtained using the MCMC K2 algorithm de-
scribed in {7]. In contrast to Figure 4, this network does not
respect the manually-specified node ordering.' This is the
best static network we obtained, with a classification rate of
87%.

A striking feature of Figure 5 is the dominant role of the
kiosk node. Tt has the most children (4) and has a causal

'Note that we have omitted the visible and skin nodes for clarity.

Frontal

y

Face Det

Figure 5. Structure produced by MCMC K2.

effect on the entire network. Sensitivity analysis reveals
that the kiosk node is the most significant piece of evidence
available to the classifier. While we guessed that this would
be a valuable cue, our hand-specified models significantly
underestimated its importance to the overall network. This
is an example of the valuable insight that structure learning
(and the graphical models formalism in general) can pro-
vide.)

Boosting the structure learning process, as described in
Section 4, yielded additional performance improvements in
both the dynamic BN case {(rows 9 and 10 in Table 1) and
in the static case when max-selection was employed (row
3). Itis curious that the gains from boosting structure learn-
ing were only a few percentage points, while the gains from
parameter boosting were quite significant (e.g. 10% in the
dynamic speaker case). We are currently working to clarify
this result. Finally, on both datasets we found that our max
selection rule led to improved performance over the stan-

dard AdaBoost algorithm.
6. Conclusion

We extend the AdaBoost algorithm for dynamic
Bayesian networks to include structure leamning. We
demonstrate modest performance improvement over both
classical structure learning and boosted parameter learning.
We believe this is the first use of boosting in structure learn-
ing. We also provide some insights into the performance of
parameter boosting and structure leaming for the speaker-
detection task. Our algorithms have been validated on a real
world speaker detection dataset and the standard “chess”
dataset from the UCI repository.

References

[t] C. L. Blake and C. J. Merz. Uci repository of machine
learning databases. Univ. of California at rvine, 1998,
hitp:/fwww.ics.uci.edu/thlearn/MLRepository html.

794

[2]

(31

[4

[5]

[6]

7

—

i8]

[9

—

(10

[

(12t

(13]

[14]

[15]

(16]

{173

[18]

M. Brand, N. Oliver, and A. Pentiand. Coupled hidden
markov models for complex action recognition. In Com-
puter Vision and Pattern Recognition, pages 994-999, 1997,
G. Cooper and E. Herskovitz. A bayesian method for the in-
duction of probabilistic networks from data. Machine Learn-
ing, pages 309-347, 1992,

R. Cutler and L. Davis. Look who's talking: Speaker detec-
tion using video and audio correlation. In Proc. IEEE Intl.
Conf. on Multimedia Expo (ICME}, New York, NY, 2000.
J. W. Fisher III, T. Darrell, W. T. Freeman, and P. Viola.
Learning joint statistical models for audio-visual fusion and
segregation. [n Proc. Advances in Neural Information Pro-
cessing Systems, Denver, CO, 2000,

N. Friedman, D. Geiger, and M. Goldszmidt, Bayesian net-
work classifiers. Machine Learning, 29:131-163, 1997.

N. Friedman and D. Koller. Being bayesian about network
structure. In Proc. 16th Conf. on Uncertainty in Al (UAI},
2000

N. Friedman, K. Murphy, and S. Russell. Learning the struc-
ture of dynamic probabilistic networks. In Proc. Conf. on
Uncertainty in AI (UAI), Madiscn, W1, 1998.

A. Garg, V. Pavlovié, and J. M. Rehg. Audio-visual speaker
detection using dynamic bayesian networks. lIn Proceed-
ings of Fourth International Conference on Automatic Face
and Gesture Recognition, pages 384-390, Grenoble, France,
March 28-30 2000.

D. Heckerman. A tutorial on learning with bayesian net-
works. Technical Report MSR-TR-95-06, Microsoft Re-
search, 1995,

S. Intille and A, Bobick. Representation and visual recogni-
tion of complex, multi-agent actions using belief networks.
In CVPR '98 Workshop on Interpretation of Visual Motion,
1998, Also see MIT Media Lab TR 454.

F. V. Jensen. An Introduction to Bavesian Networks.
Springer-Verlag, New York, NY, 1996.

D. Koller and A. Pfeffer, Object-oriented bayesian networks.
In Proc. of the 13th Conf. on Uncertainty in Af, pages 302-
313, Providence. R, Aug 1997.

V. Paviovi¢, A. Garg,]. M. Rehg, and T. Huang. Multimodal
speaker detection using error feedback dynamic bayesian
networks. In Proceedings of Conference on Computer Vision
and Pattern Recognition, volume 2, pages 3441, Hilton
Head, SC, June 13-15 2000

J. M. Rehg, M. Loughlin, and K. Waters. Vision for a smart
kiosk. In Proceedings of Conference on Computer Vision
and Pattern Recognition, pages 690-696, San Juan, Puerto
Rico, June 17-19 1997,

J. M. Rehg, K. P. Murphy. and P. W. Fieguth. Vision-based
speaker delection using bayesian networks. in Proceedings
of Conference on Computer Vision and Patters: Recognition,
volume 2, pages 110-116, Ft. Collins, CO, June 1999,

H. A. Rowley. 5. Baluja, and T. Kanade. Neural network-
based face detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(1):23-38, January 1998.

R. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions. Machine Learning,
37:297-336, 1999.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

