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ABSTRACT

Motivation: Probabilistic graphical models have been developed in

the past for the task of protein classification. In many cases, classifica-

tionsobtained fromtheGeneOntologyhavebeenused tovalidate these

models. In this work we directly incorporate the structure of the Gene

Ontology into the graphical representation for protein classification.We

present a method in which each protein is represented by a replicate of

the Gene Ontology structure, effectively modeling each protein in its

own ‘annotation space’. Proteins are also connected to one another

according to different measures of functional similarity, after which

belief propagation is run to make predictions at all ontology terms.

Results:Theproposedmethodwasevaluatedonaset of 4879proteins

from the Saccharomyces Genome Database whose interactions were

also recorded in theGRID project. Results indicate that direct utilization

of the Gene Ontology improves predictive ability, outperforming

traditional models that do not take advantage of dependencies

among functional terms. Average increase in accuracy (precision) of

positive and negative term predictions of 27.8% (2.0%) over three

different similarity measures and three subontologies was observed.

Availability:C/C++/Perl implementation is available fromauthorsupon

request.

Contact: vladimir@cs.rutgers.edu

1 INTRODUCTION

Owing to the advent of high-throughput sequencing techniques, the

complete sequences of several genomes are now known. However,

biological function is still unknown for a large proportion of

sequenced proteins. Moreover, a given protein may have more

than one function, so many proteins that are known to be in

some class may have as yet undiscovered functionalities.

Recently, belief networks have been utilized to infer protein

functions over sets of partially annotated proteins (Deng et al.,
2002, 2003, 2004; Letovski and Kasif, 2003). In these studies,

protein–protein interaction data are used to define a Markov

Random Field (MRF) topology over the full set of proteins. In

these graphical models, a node represents each protein, and an

interaction between two proteins is represented by an edge between

the two nodes. Using partial knowledge of functional annotations of

a subset of proteins, probabilistic inference on these models is used

to elucidate other proteins’ unknown functions.

Current graphical formulations consider only one protein func-

tional category at a time, implying independence in annotations

across multiple levels of protein description. However, functional

categories are known to exhibit dependencies in a cellular context.

In this work, we present a probabilistic graphical model framework

that considers multiple functional categories (terms) in the Gene

Ontology (GO) (Ashburner et al., 2000) simultaneously, making

predictive use of the definitive and probabilistic relationships

among the terms. This is possible owing to the well-defined

structure of the Gene Ontology1, a structured vocabulary of

terms describing gene products. In our model, each protein is rep-

resented by its own ontology structure. Using this representation,

information from annotated proteins is passed within the ontology

structure as well as between neighboring proteins, leading to

improved functional prediction on a set of functional terms. Fur-

thermore, the use of negative as well as positive annotations to terms

in the Gene Ontology gives our model a unique advantage over the

previous studies.

2 METHODS

The Gene Ontology (GO) defines a set of terms to which any given protein

may be annotated. GO representation entails a directed acyclic graph (DAG);

in this graph the parent–child relationship among terms implies that the

child term is either a special case of the parent term (the IS–A relationship)

or describes a process or component that is part of the parent process/

component (the PART-OF relationship). In either case, there is a clear

directional dependency. Specifically, a protein positively annotated to a

child term is, by definition, also positively annotated to the parent

term(s), but not vice versa. As a logical consequence, a protein that is

negatively annotated to a parent term is also negatively annotated to the

child term(s). A negative annotation indicates that a protein has been

experimentally verified not to be involved in a particular function.

The annotations of any single protein, both positive and negative, can be

graphically represented by the entire GO graph. Thus a protein can be viewed

in the annotation space defined by GO. For unannotated proteins, depen-

dencies among different terms are unknown, but can be elucidated from

similar dependencies within annotated proteins. In our model, therefore,

each protein is represented by its own GO DAG ontology structure (or

by a subontology of GO) and probabilistic dependencies among different

functional terms, leading to a Bayesian Network representation (Pearl, 1988)

of GO functional dependencies. Figure 1a shows a simple example of using a

DAG to encode a subontology in GO.

�To whom correspondence should be addressed.

1Gene Ontology contains three types of terms: biological process, molecular

function and cellular component. For clarity of explanation, we will refer

only to function although any of the three types might apply.
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A common set of methods for inferring protein functions relies on the

notion of similarity among proteins. Namely, similar proteins are more likely

to share common functional aspects (terms in the GO notation) than proteins

with less similarity. The notion of similarity may utilize primary and post-

primary sequence homology (Liu and Rost, 2001, 2003; Pruess et al., 2003;

Whisstock and Lesk, 2003), similarity in short signaling motifs, amino acid

composition and expression data (Nakai and Horton, 1999; Drawid and

Gerstein, 2000; Nair et al., 2003) implying subcellular localization,

and protein–protein interactions (Galperin and Koonin, 2000; Valencia

and Pazos, 2002), among others (Rost, 2003).

Similar to Deng et al. (2002, 2003, 2004) and Letovsky and Kasif (2003),

we encode the ability of our model to transfer function among similar

proteins using a probabilistic graphical representation of a Markov

random field (MRF) (Geman and Geman, 1984); proteins are pairwise

linked if they are considered to be similar rather than dissimilar. The

notion of similarity, however, is associative, not directional as is the case

with GO. Thus our complete model has two kinds of links: directed and

undirected. Consequently, we define a chain graph model (Lauritzen, 1996),

a hybrid between a Bayesian Network and a MRF. This is illustrated in

Figure 1b.

If two proteins meet the criterion for similarity and are therefore linked

by an undirected edge, then they are pairwise linked at each term of GO.

Establishing links between proteins across all terms of GO enables the

information about functional similarity to be potentially reinforced from

multiple levels as well as multiple proteins.

3 ALGORITHM

3.1 Overview

In the proposed model, each protein is represented by a replicate of

the GO (or a subontology of GO). Owing to the IS–A and PART–OF

relationships between parent and child terms in GO, the relation-

ships are directional, and are best modeled by directed edges with

conditional probabilities of being in the child class given whether or

not the protein is in the parent class(es). Thus, in isolation, each

protein is modeled as a Bayesian Network (BN). Each protein’s BN

is then embedded in a larger network, including the BNs of other

proteins. In this network similar proteins are linked by undirected

edges representing the associative relationship implied by

similarity. These undirected links are established pairwise at

every term of GO between similar proteins.

Once the directed and undirected links of this network have been

defined, as in Figure 1a and b, information is passed along the

undirected links from annotated proteins to their neighbors, then

to the neighbors’ neighbors, and so forth, according to a function

defined by protein similarity (the more similar two proteins are, the

more this function influences them to have the same annotations). At

the same time, information is passed within each protein’s BN along

the directed links, according to the conditional probabilistic rela-

tionships among different terms. This process continues until a state

of convergence is reached (defined in Section 3.3). At convergence,

the posterior probabilities of membership in the classes defined by

GO are calculated at the target proteins and predictions are made

based on those probabilities.

These main steps of our algorithm are outlined below:

Learning

1. Estimate parameters of Ontology Bayesian Network.

a. Impose IS–A and PART–OF constraints.

b. Estimate remaining parameters using GO data.

2. Estimate structure and parameters of Markov Random Field

based on protein similarity measure(s).

a. Estimate structure using a threshold on normalized

pairwise similarity measure(s).

b. Estimate parameters using normalized pairwise similarity

scores.

Prediction

1. Infer posterior beliefs of terms of target proteins, given a set

of known annotations of evidence proteins, using belief

propagation in the chain graph.

2. Predict ontology term annotations of target proteins.
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Fig. 1. (a) An ontology structure for a single protein. This hypothetical protein has been positively annotated to GO term 9102 and, therefore by definition, is also

positively annotated to GO term 42364, the parent of 9102. The darker shading at term 9231 indicates that this protein has been negatively annotated to that term.

The protein is unknown at the two unshaded terms. (b) A (simple) complete chain graph model with three proteins. Each protein is modeled by an ontology of size

five, with different types of evidence present at each protein. Also shown are examples of the model functionsP,c andf, defined in Equation (1), corresponding

to some model elements.
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3.2 Learning

The learning of structure and parameters of the GO network and the

MRF is achieved in two separate steps. In the GO phase a known

GO structure is augmented with probabilistic parameters. The MRF

modeling requires that both the structure and the parameters be

estimated.

3.2.1 Ontology network learning Within each protein’s GO

DAG structure, we need to define the conditional probability

distribution of all child terms given their parent terms,

P
�
x
ðcÞ
i jPa

�
x
ðcÞ
i

�
‚�GO

i‚c

�
‚

where x
ðcÞ
i denotes the positive or negative annotation of protein i to

a particular term c in the GO2 and �GO
i‚c are the distribution parame-

ters. In our case, the distributions are modeled as the conditional

probability tables and �GO
i‚c represent the entries in those tables.

For some values of variables x
ðcÞ
i , the conditional probabilities are

constrained by definition of GO: e.g. if a child term has one parent,

then owing to the IS–A and PART–OF relationships, the probability

that the child term is negative, given that the parent term is negativ,

is one. If there are more parents than one, then any parent being

negative immediately implies that the child is negative,

P
�
x
ðcÞ
i ¼ �jPaðx

ðcÞ
i

�
¼ ð . . . ‚� ‚ . . .ÞÞ ¼ 1‚

PðxðcÞi ¼ þjPaðx
ðcÞ
i Þ ¼ ð . . . ‚� ‚ . . .ÞÞ ¼ 0:

Thus, the only conditional probabilities that need to be estimated are

the probabilities of a protein being positively versus negatively

annotated given that all parents are positive.

This is done by defining a binomial Bayesian network over GO,

with Beta priors at each term, and estimating the free conditional

binomial distribution parameters �GO
i‚c of GO DAG terms from train-

ing data. The priors are selected to express our indifference about

the values of all relative frequencies (Neapolitan, 2004). Hence, the

conditional probabilities in GO are estimated as
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�
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Here #(K) is the count of instances in the training data where con-

dition K is satisfied and b(c) is the Beta-prior pseudocount

bðcÞ ¼ 2�dðcÞ� j �
GO
i‚c j þ1‚

where d(c) denotes the depth of term c in GO and j �GO
i‚c j is the

number of parameters in �GO
i‚c at the same term. For instance, all

terms in Figure 1a have j �GO
i‚c j ¼ 1.

Without loss of modeling generality, we assume that the entire

GO structure, along with the resulting conditional distributions, is

identical at each protein in the set, �GO
i‚c ¼ �GO

c ‚8i. While estimating

contextually different GO parameters for subsets of proteins would

be desirable, in practice the lack of training data usually prevents

one from obtaining sufficiently accurate parameter estimates.

3.2.2 MRF Learning In the case of the MRF for a set of proteins

I ¼ f1‚ . . . ‚Ng, we need to estimate both the structure GMRF, i.e.

the set of undirected edges among proteins, and the potential func-

tions, or pairwise compatibilities among interacting proteins terms,

c
�
x
ðcÞ
i ‚ x

ðcÞ
j j �MRF

i‚ j‚c Þ‚

i‚ j 2 I ‚c 2 GO. These potentials must capture the associative

relationship defined by some notion of similarity between proteins

i and j. For simplicity, we will assume that we have in hand a

similarity measure si‚ j‚ c 2 ½0‚1� at term c between two proteins.

We then define pairwise potentials between corresponding terms

of two proteins as:

cðþ ‚ þÞ¼ cð� ‚ �Þ¼ si‚ j‚ c cðþ ‚ �Þ¼cð� ‚ þÞ¼ 1� si‚ j‚ c:

Defining potentials in this way, it is easy to see that the existence of

an edge between two proteins with similarity <0.5, where one of the

proteins is positive (negative) for some term, decreases the posterior

probability that the other protein is positive (negative) for the same

term. However, knowing that a protein is dissimilar to another

protein does not suggest anything about annotation. For example,

two dissimilar proteins may or may not be involved in the same

biological process. Therefore, from a modeling perspective, it is not

sensible to introduce edges between proteins with similarity <0.5.

Furthermore, in practice, most protein pairs across a set of pro-

teins with diverse functions are characterized by low similarity

si‚ j‚ c. Thus it is also not reasonable from a computational perspec-

tive to introduce edges for such pairs. For these reasons, in our

model, no edge is created between two proteins with similarity

si‚ j‚ c < 0:5.

Without loss of modeling generality, we assume that a single

measure of similarity s between two proteins determines com-

patibility across all different functional terms c, i.e. that

�MRF
i‚ j‚c ¼ �MRF

i‚j ‚8c. While term-dependent compatibilities may in

fact lead to better performance, obtaining such measures reliably

for a large set of proteins is currently infeasible.

Therefore, given a measure of similarity s between pairs of pro-

teins, we are able to determine both the structure GMRF and the

parameters �MRF
i‚ j of the MRF: we create undirected edges between

two proteins at all GO terms if and only if their similarity is >0.5,

and the parameters are defined by that similarity, as defined by the c

function.

The combined GO + MRF model now defines a joint Gibbs

distribution of functional term annotations over a set of proteins

in the chain graph:

P
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where Z is the normalizing constant.

The evidential fðxðcÞi Þ functions are defined to concur with

whether and how a protein is annotated. If a protein is positively

annotated, then

fðþÞ ¼ 1‚fð�Þ ¼ 0‚ ð2Þ

2The positive + (negative�) annotation specifies that the protein in question

performs (does not perform) the function specified by a particular term. For

most terms of most proteins, the status is neither + nor �, but unknown, and

only a small fraction of proteins have negative annotations.
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whereas if a protein is negatively annotated (meaning that it has

been experimentally verified to not be involved in a given process),

the 0 and 1 are transposed. Finally, if a protein is unannotated at a

given term, the f function is set to a constant value of 0.5, indicating

no bias toward being positive or negative.

3.3 Prediction

Given the model estimated in the learning phase, one can subse-

quently use it to elucidate functions of unannotated or partially

annotated target proteins (annotated to a subset of GO terms). In

view of the chain graph defined in Equation (1), functional predic-

tion entails inference of state of the model’s nonevidential variables

P
�
x
ðcÞ
i j

�
x
ðkÞ
l

�
ðk‚ lÞ2evidence

�
‚ 8ðc‚ iÞ 2 target:

Exact inference in this model is, however, not tractable. Never-

theless, an approximate estimate of the target terms’ annotations can

be obtained using generalized belief propagation in chain graphs

(Yedidia et al., 2002). In this method the posterior probabilities are

estimated by iteratively passing probabilistic messages among

nodes in the chain graph. For instance, messages between different

proteins connected at term c are updated as

mij
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x
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j

�
 

X
x
ðcÞ
i

�
fi

�
x
ðcÞ
i

�
cij

�
x
ðcÞ
i ‚x

ðcÞ
j

�

·
Y

k2Nði‚ cÞ\fjg
mki

�
x
ðcÞ
i

��
‚

ð3Þ

where mij represents the message from node i to node j about node j
being in state x

ðcÞ
j , f and c are the evidence and potential functions,

respectively. N(i, c) represents the set of neighbors of node x
ðcÞ
i ,

both across related terms in the ontology and similar proteins of

the same term c. For example, for the term 9102 of protein i + 1

in Figure 1b the neighborhood would consist of nodes

Nðiþ 1‚9102Þ ¼
�
x
ð42364Þ
iþ1 ‚x

ð9102Þ
i ‚x

ð9102Þ
iþ2

�
.

At convergence, the posterior probability is estimated as the

belief

bi
�
x
ðcÞ
i

�
� fi

�
x
ðcÞ
i

� Y
k2Nði‚ cÞ

mki

�
x
ðcÞ
i

�
: ð4Þ

Convergence is defined to be a state at which all normalized

messages change by <10�4 between successive iterations. Thus

the belief is the normalized product of the local evidence f and

the messages coming in from neighbors3.

A message passing schedule must be implemented in order to

accurately estimate the posterior probability. We suggest two sched-

ules, which we will refer to as ‘down-up’ and ‘down’, that have

empirically shown good convergence properties. In the down-up

schedule, messages are initiated from the annotated term nodes, sent

to all of their neighbors, then to the neighbors of their neighbors, and

so on, until all nodes have been sent messages out (the ‘down’).

Then the order is reversed (the ‘up’). In the down schedule, the up

iteration is skipped, and only successive downs are executed.

Prediction of whether or not a protein performs the function

corresponding to each term can then be achieved by comparing

thus obtained beliefs to a fixed, preselected threshold.

4 EXPERIMENTS AND RESULTS

Sequence and annotation data were obtained from the

Saccharomyces Genome Database (http://www.yeastgenome.org).

We further restrict this set to the set of sequenced proteins (ORFs)

whose protein–protein interaction data are available through the

GRID project (Breikreutz et al., 2003); there were 4897 such pro-

teins. The ontology structure was obtained from the Gene Ontology

database.

To construct the MRF submodel, we tested two different mea-

sures of similarity. The first measure utilized the primary sequence

homology, determined through BLAST scores. Instead of using the

raw score, we defined s in this model in terms of the p-value returned

by BLAST. We Blasted each sequence against the entire database,

and defined s for a pair of proteins to be (1 – p), where p is the

pairwise p-value. While it is estimated that only 40–60% of certain

aspects of all proteins’ functions can be transferred using simple

homology (Koonin, 2001), we selected it as a baseline measure for

testing the model’s predictive ability.

As the second measure we selected the protein–protein interac-

tions available through GRID (Breikreutz, 2003). An edge was

created between two nodes (terms) if and only if their corresponding

proteins interact, and potentials were defined in a term-specific way:

cðþ ‚ þÞ ¼ Pðþ ‚ þj interactionÞ
cð� ‚ �Þ ¼ Pð� ‚± �j interactionÞ
cðþ ‚ �Þ ¼ Pðþ ‚ �j interactionÞ
cð� ‚ þÞ ¼ Pð� ‚ þj interactionÞ:

For example, for a given term, the potential between two interacting

proteins for being positive at both proteins is defined as the pro-

bability that two proteins are positive for that term given that there

is an interaction. This probability is estimated similar to the way the

conditional probabilities within each protein’s GO DAG structure

are estimated: a beta prior distribution is assumed and the corre-

sponding pseudo-counts are updated based on the data.

A third model-type was implemented in which both similarity and

PPI data were used to define the network. An edge was created if

either the similarity-based criterion was met or there was an inter-

action (or both), and an independence assumption was made: pair-

wise potential was defined as the product of the similarity-based

potential and the PPI-based potential.

Leave-one-out cross-validation was used to test performance of

the method; in this case, the annotations of an entire protein were

left out and predictions made at all terms. These predictions were

then compared against the actual annotations. The ontology struc-

ture is assumed for all proteins in the network, including annotated

proteins, the one whose annotations are left out, and all other unan-

notated proteins. This structure applies to all proteins because by

definition of the Gene Ontology, it represents a set of terms to which

any given protein may be annotated, whether the protein actually

has already been annotated or not. In other words, the structure

represents a set of functions which any given protein may perform,

even if a protein’s functionality is as yet unknown.

Results are presented of application of the method to several

subontologies of the entire GO. Because only a small fraction of

3For a singly-connected graph, the belief has been shown to be exactly equal

to the posterior probability.
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proteins are negatively annotated to some term, subontologies were

chosen to contain terms to which there exist negative annotations.

The three ontology structures to which the method was applied are

shown in Figure 2. The leaves in these subontologies are leaves in

the entire GO structure (highly specific terms). This implies that

relatively few proteins, between 10 and several hundred, are

annotated to these terms. We consider the subsets of proteins

involved in the three subontologies as three different sets on

which different models are evaluated. Specifically, there were

26 proteins positively or negatively annotated to one or more

terms in Subontology 1 (Fig. 2a), 8 proteins annotated to terms

in Subontology 2 (Fig. 2b) and 292 proteins annotated to terms

in Subontology 3 (Fig. 2c). In each case, the annotated proteins

comprised a subset of the 4897 proteins under consideration, and all

4897 proteins were in the network. Most proteins in the network

were unannotated in these subontologies and served as intermediate

points through which information was passed.

The annotated proteins for each of these networks can be iden-

tified by the terms in the subontologies. Subontology 1 contains the

following terms: ‘water-soluble vitamin biosynthesis’ is the root

term, and its children are ‘biotin biosynthesis’, ‘pyridine nucleotide

biosynthesis’, ‘riboflavin biosynthesis’ and ‘thiamin biosynthesis’.

The root term of Subontology 2 is ‘secretion’, its child is ‘protein

secretion’, and the three low-level terms are ‘cytokine secretion’,

‘immunoglobulin secretion’ and ‘regulation of protein secretion’.

For Subontology 3, the root term is ‘transporter activity’, term 1 is

‘amine transporter activity’, term 2 is ‘organic acid transporter

activity’, term 3 is ‘carboxylic acid transporter activity’, term

4 is ‘amino acid transporter activity’, term 5 is ‘dicarboxylic

acid transporter activity’, term 6 is ‘monocarboxylic acid trans-

porter activity’, term 7 is ‘amino acid-polyamine transporter activ-

ity’, term 8 is ‘acetate transporter activity’ and term 9 is ‘allantoate

transporter activity’.

As a baseline test, we also implemented a model without GO,

containing an independent MRF for each term in the three subon-

tologies. For each model, we calculated four measures of perfor-

mance: recall, false positive rate, accuracy and precision:

recall¼ TP

TPþFN
‚ fpr¼ FP

TNþFP
‚

accuracy¼ TPþTN

TPþTNþFPþFN
‚ precision¼ TP

TPþFP
‚

ð5Þ

where TP is the number of true positive predictions, TN the number

of true negative predictions, FP the number of false positive

predictions, and FN the number of false negative predictions. Pre-

diction decisions are based on 0.8 decision threshold, similar to

Letovsky and Kasif (2003).

A typical run of the model with the ontology, with 4897 proteins

and five ontology nodes per protein, required �275 iterations of

message-passing, which took about 2 h on a 2.80 GHz CPU. The

corresponding runs on networks defined by separate terms for the

MRF model took a total of �40 min.

Results for each of the three subontologies and the various types

of models are shown in Table 1. Overall, one concludes that for the

homology-based models, the model with the ontology always out-

performs the simple model without the ontology in terms of positive

predictions. We observed an average relative increase in accuracy of

58.2% over the three different subontologies (a, b and c in Fig. 2).

Interestingly, the two models perform equally well on negative

predictions. This is reflected in the average increase in precision

of 2.0%. Therefore, the model with the ontology has higher recall,

precision and accuracy for all three ontology structures, and

equivalent false positive rate to that of the simple model.

In order to better understand the performance of the model,

neighborhoods of evidence (i.e. annotated proteins) were calculated

for the homology-based model. This neighborhood is constructed

in the following manner: for every pair of annotated proteins the

shortest path between them was calculated based on the similarity

measure. Every such shortest path is included in the neighborhood

of evidence; there is generally a great deal of overlap among the

shortest paths, so the total number of nodes in the neighborhood is

visually tractable. While the similarity-based distance measure

should not be expected to correlate perfectly with what occurs in

this type of belief network, the resulting neighborhood graphs have

proven to be quite elucidating. The graphs illustrating this property

are shown in Figure 3. The false positives in the case of the sub-

ontology of Figure 2a occur because each of the two negatively

annotated proteins is directly connected to two positively annotated

proteins, but the negative proteins are not connected to each other.

Hence no pathway for information exists between negative proteins,

as depicted in Figure 3a. The second subontology of Figure 2b has

recall 100% and false positive rate 25% due to a single negatively

annotated protein (negatively annotated to four terms). Finally, for

the ontology of Figure 2c, all predictions were correct, i.e. recall,

(a) (b) (c)

Fig. 2. The structure of three GO subontologies to which the method was applied. (a) Subontology 1. (b) Subontology 2. (c) Subontology 3.
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precision and accuracy were all 100%, and the false positive rate

was 0%. Viewing Figure 3c, one can see that the positively anno-

tated proteins tend to cluster, as do the negatively annotated pro-

teins. This is an ideal situation in terms of prediction. Furthermore,

since this is the largest ontology, with the most general root term out

of the three ontologies, it has the highest number of annotated

proteins and total predictions, both measuring in the hundreds.

In most cases, the model with the ontology makes a true positive

prediction where the model without the ontology makes a false

negative prediction because there is a term with only one protein

annotated to it. In the simpler model, this results in that protein

being isolated from evidence. However, in the model with the

ontology, the protein is often connected to proteins annotated to

other terms, and belief propagates from those terms to that protein’s

GO DAG structure, down to the term in question, leading to a more

accurate prediction.

In the case of the PPI-based model, the model with the ontology

again ubiquitously outperforms the simple model in terms of posi-

tive predictions, again attaining 100% recall for all three ontology

structures. However, the more complex model also exhibits a 100%

false positive rate, i.e. all negative annotations were predicted posi-

tive, possibly due to high clustering of positive proteins and isola-

tion of the negative ones, as illustrated in Figure 3d. This fact is not

surprising, since knowing that two proteins interact should tell us

something about the functions they perform, not the functions they

do not perform. As a result, PPI-based models are not generally

expected to yield high accuracy when predicting GO functions. In

particular, PPI is not expected to be a good predictor of negative

annotations. In our case, overall accuracy was generally high for the

PPI-based models because there were very few negative annotations

in the data. Overall, the inclusion of ontology resulted in relative

increases in accuracy (precision) of 18.3% (2.9%) over the tradi-

tional methods.

Finally, considering the model that accounts for both homology

and PPI, again recall is always 100% for the complex model and

lower for the simple model. The two types of models performed

equally well (or equally poorly, depending on the ontology) on

negative predictions. For the simple models of all three ontologies,

using similarity and PPI in conjunction improved recall over using

either type of potential function alone. However, such an improve-

ment over the similarity-based model with the ontology incorpo-

rated was not possible, as recall was already 100%. This resulted in

relative increases in accuracy (precision) of 6.8% (1.3%).

Similar conclusions carry over for different settings of the deci-

sion threshold (ROC analysis). Our experimental results, using

homology-based similarity, yield area-under-curve (AUC) esti-

mates at 0.192, 0.256 for MRF and MRF+GO of Figure 2a,

0.679, 0.804 for MRF and MRF+GO of Figure 2b and 1.000,

1.000 for MRF and MRF+GO of Figure 2c. For the models corre-

sponding to Figure 2c, although AUC was equivalent (with a perfect

score of 1.000 in both cases), there was substantially more separa-

tion between beliefs at positive versus negative terms for the

MRF+GO model than for the simple MRF model, indicating that

the MRF+GO model more strongly separated the positives from the

negatives. Again, inclusion of ontology seems to be a crucial aspect

for improving functional predictions.

It is important to note that negative annotations at present are very

rare in the data. For this reason, the estimates of the false-positive

rate may not be reliable, and may be improved as these datasets

become richer in negative annotations.

5 CONCLUSIONS

In this work, we presented a method that integrates the GO structure

into a protein classification framework based on similarity-induced

function transfer. Incorporation of the ontology structure, along

with the dependencies among its functional terms, improves per-

formance over traditional model that considers each term sepa-

rately. In this context we also showed that particular choices of

similarity functions can lead to improved positive as well as nega-

tive predictions at ontology terms.

Only dependencies directly implied by the GO structure were

exploited in this study. It is possible that other dependencies

exist among terms, and if so, that their incorporation could also

Table 1. Performance measures for the various types of models

Sequence homology PPI Sequence homology + PPI

MRF MRF + GO MRF MRF + GO MRF MRF + GO

RECa 0.436 1.00 0.957 1.00 0.974 1.00

FPRa 1.00 1.00 1.00 1.00 1.00 1.00

PRECa 0.944 0.975 0.957 0.959 0.974 0.975

ACCa 0.425 0.975 0.918 0.959 0.95 0.975

RECb 0.714 1.00 0.714 1.00 0.857 1.00

FPRb 0.250 0.250 1.00 1.00 1.00 1.00

PRECb 0.909 0.933 0.714 0.778 0.750 0.778

ACCb 0.722 0.944 0.556 0.778 0.667 0.778

RECc 0.870 1.00 0.896 1.00 0.990 1.00

FPRc 0.00 0.00 0.75 1.00 0.00 0.00

PRECc 1.00 1.00 0.975 0.970 1.00 1.00

ACCc 0.874 1.00 0.877 0.970 0.990 1.00

The three basic model types are homology-based network, PPI-based network and combined homology-PPI.

For each of these basic types, there are two subtypes, MRF without ontology and MRF + GO. REC stands for recall, FPR stands for false positive rate, PREC represents precision, and

ACC is accuracy. Subscripts a, b, and c correspond to subsets of proteins derived from terms in the three different ontologies of Figure 2.
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improve results. Additional improvement in predictive performance

could also be achieved by combining different types of protein

correlative evidence, such as sequence similarity, PPI data, phy-

logeny, etc. Finally, our current approach relies on models of GO

whose parameters are identical over the set of proteins in question.

A similar assumption is made for MRF models that are not term

specific. Relaxing these two assumptions may lead to more realistic

models. However, accurately estimating parameters of such models

may be infeasible given current sizes of functionally annotated

datasets.

At present, computational issues preclude an application of the

model to the entire Gene Ontology, which contains over 19 000

(a) (b)

(c) (d)

Fig. 3. A neighborhood of evidence for the annotated proteins corresponding to the three different ontologies and homology-based similarity together with a

neighborhood obtained using the PPI similarity. The ontology structure is omitted for visual clarity, each protein is represented by a single node. Proteins with any

negative annotations are shaded dark grey proteins with positive annotations are light grey and unannotated proteins are clear. For the PPI network the positively

annotated proteins often cluster, but the negative ones do not. (a) Subontology 1. (b) Subontology 2. (c) Subontology 3. (d) PPI.
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terms, with a substantial number of proteins. Instead, one could

apply the model to high level, general terms in the ontology, result-

ing in candidate root terms for the next round of application, and so

on, until the most specific predictions possible are made.
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