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ABSTRACT

Probabilistic graphical models have been developed in the past for the task of protein clas-
sification. In many cases, classifications obtained from the Gene Ontology have been used
to validate these models. In this work we directly incorporate the structure of the Gene
Ontology into the graphical representation for protein classification. We present a method
in which each protein is represented by a replicate of the Gene Ontology structure, effec-
tively modeling each protein in its own “annotation space”. Proteins are also connected
amongst themselves according to different measures of functional similarity, after which be-
lief propagation is run to make predictions at all ontology terms. Results indicate that such
direct utilization of the Gene Ontology improves predictive ability, outperforming traditional
models that do not take advantage of dependencies among functional terms.



1 Introduction

Due to the advent of high-throughput sequencing techniques, the complete sequences of
several genomes are now known. However, biological function is still unknown for a large
proportion of sequenced proteins. Moreover, a given protein may have more than one func-
tion, so many proteins that are known to be in some class may have as yet undiscovered
functionalities.

Recently, belief networks have been utilized to infer protein functions over sets of partially
annotated proteins [4, 5, 6, 12]. In these studies, protein-protein interaction data are used
to define a Markov Random Field (MRF) topology over the full set of proteins. In these
graphical models, a node represents each protein, and an interaction between two proteins
is represented by an edge between the two nodes. Using partial knowledge of functional
annotations of a subset of proteins, probabilistic inference on these models is used to elucidate
other proteins’ unknown functions.

Current graphical formulations consider only one protein functional category at a time,
implying independence in annotations across multiple levels of protein description. However,
functional categories are known to exhibit dependencies in a cellular context. In this work,
we present a probabilistic graphical model framework that considers multiple functional
categories (terms) in the Gene Ontology [2] simultaneously, making predictive use of the
definitive and probabilistic relationships among the terms. This is possible due to the well-
defined structure of the Gene Ontology1, a structured vocabulary of terms describing gene
products. In our model, each protein is represented by its own ontology structure. In
this fashion information from annotated proteins is passed within the ontology structure as
well as between neighboring proteins, leading to improved functional prediction on a set of
functional terms. Furthermore, the use of negative as well as positive annotations available
in Gene Ontology gives our model a unique advantage over the previous studies.

2 Methods

The Gene Ontology (GO) defines a set of terms to which any given protein may be annotated.
GO representation entails a directed acyclic graph (DAG); in this graph the parent-child re-
lationship among terms implies that the child is either a special case of the parent term
(the IS-A relationship) or describes a process or component that is part of the parent pro-
cess/component (the PART-OF relationship). In either case, there is a clear directional
dependency. Specifically, a protein positively annotated to a child term is, by definition, also
positively annotated to the parent term(s), but not vice-versa. As a logical consequence, a
protein that is negatively annotated to a parent term is also negatively annotated to the child
term(s). A negative annotation indicates that a protein has been experimentally verified not
to be involved in a particular function.

1Gene Ontology contains three types of terms: biological process, molecular function, and cellular component.
For clarity of explanation, we will refer only to function, although any of the three types might apply.
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The annotations of any single protein, both positive and negative, can be graphically
represented by the entire GO graph. Thus a protein can be viewed in the annotation space
defined by GO. For unannotated proteins dependencies among different terms are unknown,
but can be elucidated from similar dependencies on annotated proteins. In our model,
therefore, each protein is represented by its own GO DAG ontology structure (or by a
subontology of GO) and probabilistic dependencies among different molecular function terms,
leading to a Bayesian Network representation [18] of GO functional dependencies. Figure 1(a)
shows a simple example of using a DAG to encode a subontology in GO.
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Figure 1: (a) An ontology structure for a single protein. This hypothetical protein has
been positively annotated to GO term 9102 and, therefore by definition, is also positively
annotated to GO term 42364, the parent of 9102. The darker shading at term 9231 indicates
that this protein has been negatively annotated to that term. The protein is unknown at the
two unshaded terms. (b) A (simple) complete chain graph model with three proteins. Each
protein is modeled by an ontology of size three, with different types of evidence present at
each protein.

A common set of methods for inferring protein functions relies on the notion of similarity
among proteins. Namely, similar proteins are more likely to share common functional aspects
(terms in the GO notation) compared to the proteins with less similarity. The notion of
similarity may utilize primary and post-primary sequence homology [13, 14, 19, 23], similarity
in short signaling motifs, amino acid composition and expression data [15, 3, 16] implying
subcellular localization, and protein-protein interactions [7, 22], among others [20].

Similar to [4, 5, 6, 12] we encode the ability of our model to transfer function among
similar proteins using a probabilistic graphical representation of a Markov Random Field
(MRF) [8]; proteins are pairwise linked if they are considered to be similar rather than
dissimilar. The notion of similarity, however, is associative, not directional as is the case with
GO. Thus our complete model has two kinds of links: directed and undirected. Consequently,
we define a chain graph model [11], a hybrid between a Bayesian Network and a MRF. This
is illustrated in Figure 1(b).

If two proteins meet the criterion for similarity and are therefore linked by an undirected
edge, then they are pairwise linked at each term of GO. Linking between proteins across all
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terms of GO enables the information about functional similarity to be potentially reinforced
from multiple levels as well as multiple proteins.

3 Algorithm

The main steps of our algorithm are outlined below:

Learning

1. Estimate parameters of Ontology Bayesian Network.

2. Estimate structure and parameters of Markov Random Field based
on protein similarity measure(s).

Prediction

1. Infer posterior beliefs of terms of target proteins, given a set of known
annotations of evidence proteins, using belief propagation in the chain
graph.

2. Predict ontology term annotations of target proteins.

3.1 Learning

Within each protein’s GO DAG structure, we need to define the conditional probability
distribution of all children given their parents,

P (x(i)
c |a(x(i)

c ), θGO
c,i ),

where x(i)
c denotes the positive or negative annotation of protein i to a particular term c

in the GO2. For some values of variables x(i)
c , the conditional probabilities are constrained

by definition of GO: for example, if a child term has one parent, then due to the IS-A and
PART-OF relationships, the probability that the child term is negative , given that the parent
term is negative, is one. If there are more parents than one, then any parent being negative
immediately implies that the child is negative. Thus, the only conditional probabilities that
need to be estimated are the probabilities of a protein being being positively vs. negatively
annotated given that all parents are positive.

This is done by defining an augmented binomial Bayesian network over GO, with beta
priors at each term and estimating the free conditional binomial distribution parameters θc,i

of GO DAG terms from training data. Without loss of modeling generality, we assume that

2The positive + (negative -) annotation specifies that the protein in question has(does not have) the function
specified by a particular term. For most terms of most proteins, the status is neither + nor -, but unknown,
and only a small fraction of proteins have negative annotations.
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the entire GO structure, along with the resulting conditional distributions, is identical at each
protein in the set, θc,i = θc, ∀i. While estimating contextually different GO parameters for
subsets of proteins would be desirable, in practice the lack of training data usually prevents
one from obtaining sufficiently accurate parameter estimates.

In the case of the MRF for a set of proteins I = {1, ..., N}, we need to estimate both the
structure GMRF and the potential functions, or pairwise compatibilities among interacting
proteins terms,

ψ(x
(c)
i , x

(c)
j |θMRF

c,i,j ),

i, j ∈ I, c ∈ GO. These potentials must capture the associative relationship defined by some
notion of similarity between proteins i and j. For simplicity, we will assume that we have
in hand a similarity measure si,j,c ∈ [0, 1] at term c between two proteins. We then define
pairwise potentials between corresponding terms of two proteins as:

ψ(+,+) = ψ(−,−) = si,j,c ψ(+,−) = ψ(−,+) = 1 − si,j,c.

Defining potentials in this way, it is easy to see that the existence of an edge between two
proteins with similarity less than 0.5, where one of the proteins is positive(negative) for
some term, decreases the posterior probability that the other protein is positive(negative)
for the same term. However, knowing that a protein is dissimilar to another protein does
not suggest anything about annotation. For example, two dissimilar proteins may or may
not be involved in the same biological process.

In practice, most protein pairs across a set of proteins with diverse functions are char-
acterized by low similarity s. From computational as well as modeling perspective it is
important to eliminate edges in graph GMRF indicating the low similarity. In our model no
edge is created between two proteins with similarity s < 0.5.

Without loss of model’s generality, we assume that a single measure of similarity s be-
tween two proteins determines compatibility across all different functional terms c, θMRF

i,j,c =
θMRF

i,j . While term-dependent compatibilities are favorable, obtaining such measures for a
large set of proteins is currently infeasible.

Therefore, given a measure of similarity s between pairs of proteins we are able to de-
termine both the structure GMRF and the parameters θMRF

i,j of the MRF. The combined
GO+MRF model now defines a joint Gibbs distribution of functional term annotations over
a set of proteins in the chain graph:

P

(

{

x
(c)
i

}

c∈GO,i∈I

)

=
1

Z

∏

c∈GO

∏

(i,j)∈GMRF

ψ(x
(c)
i , x

(c)
j |θMRF

i,j )
∏

i∈I

P (x
(c)
i |Pa(x

(c)
i ), θGO

c ). (1)

3.2 Inference

Given the model estimated in the learning phase, one can subsequently use it to elucidate
functions of unannotated or partially annotated target proteins (annotated to a subset of
GO terms). In view of the chain graph defined in Equation 1, functional prediction entails



– 5 –

inference of state of the model’s nonevidential variables

P

(

x
(c)
i |

{

x
(k)
l

}

k,l∈evidence

)

, ∀(c, i) ∈ target.

Exact inference in this model is, however, not tractable. Nevertheless, an approximate
estimate of the target terms’ annotation can be obtained using generalized belief propagation
in chain graphs [24]. A message passing schedule must be implemented in order to accomplish
this. We suggest two schedules, which we will refer to as “down-up” and “down”, that have
empirically shown good convergence properties. In the down-up schedule, messages are
initiated from the annotated term nodes, sent to all of their neighbors, then to the neighbors
of their neighbors, and so on, until all nodes have sent messages out (the “down”). Then
the order is reversed (the “up”). In the down schedule, the up iteration is skipped, and only
successive downs are executed. Prediction of a proteins most likely function for each term
can then be achieved by comparing thus obtained beliefs to a fix, preselected threshold.

4 Experiments and Results

Sequence and annotation data were obtained from the Saccharomyces Genome Database [21].
We further restrict this set to the set of sequenced proteins (ORFs) whose protein-protein
interaction data is available through the GRID project [1]; there were 4,897 such proteins.
The ontology structure was obtained from the Gene Ontology database.

To construct the MRF submodel, we tested two different measures of similarity. The first
measure utilized the primary sequence homology, determined through PSI-BLAST scores.
While it is estimated that only 40-60% of certain aspects of all proteins’ functions can be
transfered using simple homology [10], we selected it as a baseline measure for testing the
model’s predictive ability. As the second measure we selected the protein-protein interactions
available through GRID [1].

Leave-one-out cross-validation was used to test performance of the method; in this case,
the annotations of an entire protein were left out and predictions made at all terms. These
predictions were then compared against the actual annotations.

Results are presented of application of the method to several subontologies of the entire
GO. Because only a small fraction of proteins are negatively annotated to some term subon-
tologies were chosen to contain terms to which there exist negative annotations. The three
ontology structures to which the method was applied are shown in Figure 2. The leaves in
these subontologies are leaves in the entire GO structure (highly specific terms). This implies
that relatively few proteins, between ten and several hundred, are annotated to these terms.
We consider the subsets of proteins involved in the three subontologies as three different sets
on which different models are evaluated. For instance, the first subset consists of several
tens of proteins involved in functions of GO in Figure 2(a).

As a baseline test, we also implemented a model without GO, containing independent
MRF for each term in the three subontologies. For each model, we calculated four measure
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(a) Subontology 1 (b) Subontology 2 (c) Subontology 3

Figure 2: The structure of three GO subontologies to which the method was applied.

of performance: recall, false positive rate, accuracy, and precision:

recall = TP
TP+FN

, fpr = FP
TN+FP

, accuracy = TP+TN
TP+TN+FP+FN

, precision = TP
TP+FP

where TP is the number of true positive predictions, TN the number of true negative pre-
dictions, FP the number of false positive predictions, FN the number of false negative pre-
dictions. Optimal prediction decisions are based on 0.8 decision threshold, similar to [12].

A typical run of the model with the ontology, with 4,897 proteins and five ontology nodes
per protein, required approximately 275 iterations of message-passing, which took about two
hours on a 2.80 GHz CPU. The corresponding runs on networks defined by separate terms
for the MRF model took a total of approximately 40 minutes.

Results for each of the three subontologies and the various types of models are shown
in Table 1. Overall, one concludes that for the homology-based models, the model with
the ontology always outperforms the simple model without the ontology in terms of positive
predictions. Interestingly, the two models perform equally well on negative predictions.
Therefore, the model with the ontology has higher recall, precision, and accuracy for all
three ontology structures, and equivalent false positive rate to that of the simple model.

In order to better understand the performance of the model, neighborhoods of evidence
(i.e. annotated proteins) was calculated for the homology-based model. This neighborhood
is constructed in the following manner: for every pair of annotated proteins the shortest path
between them was calculated based on the similarity measure. Every such shortest path is
included in the neighborhood of evidence; there is generally a great deal of overlap among
the shortest paths, so the total number of nodes in the neighborhood is visually tractable.
While this distance measure should not be expected to correlate perfectly with what occurs
in this type of belief network, the resulting neighborhood graphs have proven to be quite
elucidating. The graphs illustrating this property are shown in Figure 3 The false positives
in the case of subontology of Figure 2(a) occur because each of the two negatively annotated
proteins is directly connected to two positively annotated proteins, but the negative proteins
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Table 1: Performance measures for the various types of models. The three basic model types
are homology-based network, PPI-based network and combined homology-PPI. For each of
these basic types, there are two subtypes, MRF without ontology and MRF+GO. REC
stands for recall, FPR stands for false positive rate, PREC represents precision, and ACC
is accuracy. Subscripts a, b, and c correspond to subsets of proteins derived from terms in
the three different ontologies of Figure 2. Subscript t indicates results combined for a given
model type over the three different ontologies, yielding overall estimates of performance for
each model type.

Sequence Homology PPI Sequence Homology + PPI

MRF MRF+GO MRF MRF+GO MRF MRF+GO

RECa 0.436 1.00 0.957 1.00 0.974 1.00

FPRa 1.00 1.00 1.00 1.00 1.00 1.00

PRECa 0.944 0.975 0.957 0.959 0.974 0.975

ACCa 0.425 0.975 0.918 0.959 0.95 0.975

RECb 0.714 1.00 0.714 1.00 0.857 1.00

FPRb 0.250 0.250 1.00 1.00 1.00 1.00

PRECb 0.909 0.933 0.714 0.778 0.750 0.778

ACCb 0.722 0.944 0.556 0.778 0.667 0.778

RECc 0.870 1.00 0.896 1.00 0.990 1.00

FPRc 0.00 0.00 0.75 1.00 0.00 0.00

PRECc 1.00 1.00 0.975 0.970 1.00 1.00

ACCc 0.874 1.00 0.877 0.970 0.990 1.00

RECt 0.827 1.00 0.896 1.00 0.984 1.00

FPRt 0.167 0.167 0.833 1.00 0.294 0.294

PRECt 0.992 0.993 0.964 0.962 0.989 0.989

ACCt 0.828 0.994 0.869 0.962 0.974 0.989
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(a) Subontology 1 (b) Subontology 2

(c) Subontology 3 (d) PPI

Figure 3: A neighborhood of evidence for the annotated proteins corresponding to the three
different ontologies and homology-based similarity together with a neighborhood obtained
using the PPI similarity. The ontology structure is omitted for visual clarity, each protein is
represented by a single node. Proteins with any negative annotations are shaded dark grey,
proteins with positive annotations are light grey, and unannotated proteins are clear. For
the PPI network the positively annotated proteins often cluster, but the negative ones do
not.
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are not connected to each other. Hence no pathway for information exists between negative
proteins as depicted in Figure 3(a). The second subontology of Figure 2(b) has recall 100%
and false positive rate 25% due to a single negatively annotated protein. Finally, for the
ontology of Figure 2(c), all predictions were correct, i.e. recall, precision and accuracy were
all 100%, and the false positive rate was 0%. Viewing 3(c), one can see that the positively
annotated proteins tend to cluster, as do the negatively annotated proteins. This is an ideal
situation in terms of prediction. Furthermore, since this is the largest ontology, with the
most general root term out of the three ontologies, it has the highest number of annotated
proteins and total predictions, both measuring in the hundreds.

In most cases, the model with the ontology makes a true positive prediction where the
model without the ontology makes a false negative prediction because there is a term with
only one protein annotated to it. In the simpler model, this results in that protein being
isolated from evidence. However, in the model with the ontology, the protein is often con-
nected to proteins annotated to other terms, and belief propagates from those terms to that
protein’s GO DAG structure, down to the term in question, leading to a more accurate
prediction.

In the case of the PPI-based models, the model with the ontology again ubiquitously
outperforms the simple model in terms of positive predictions, again attaining 100% recall
for all three ontology structures. However, the more complex model also exhibits a 100%
false positive rate, i.e. all annotated negative predictions were predicted positive possibly
due to high clustering of positive proteins and isolation of the negative ones, as illustrated
in Figure 3(d). This fact is not surprising, since knowing that two proteins interact should
tell us something about the functions they perform, not the functions they do not perform.

Finally, considering the model that accounts for both homology and PPI, again recall
is always 100% for the complex model and lower for the simple model. The two types of
models performed equally well (or equally poorly, depending on the ontology) on negative
predictions. For the simple models of all three ontologies, using similarity and PPI in con-
junction improved recall over using either type of potential function alone. However, such
an improvement over the similarity-based model with the ontology incorporated was not
possible, as recall was already 100%.

Similar conclusions carry over for different setting of the decision threshold (ROC anal-
ysis). Our experimental results, using homology-based similarity, yield area-under-curve
(AOC) estimates at 0.192, 0.256 for MRF and MRF+GO of Figure 2(a), 0.679, 0.804 for
MRF and MRF+GO of Figure 2(b) and 1.000, 1.000 for MRF and MRF+GO of Figure 2(c).
Again, inclusion of ontology seems to be a crucial aspect for improving functional predictions.

It is important to note that negative annotations at present are very rare in the data.
For this reason, the estimates of the false-positive rate may not be reliable, and may be
improved as these data sets become richer in negative annotations.



– 10 –

����������

�

���

���

���

���

�

� ��� ��� ��� ��� �
�	�


	
�

�
�

(a) Set 1, MRF

���������

�

���

���

���

���

�

� ��� ��� ��� ��� �
�	�


	
�

�
�
� (b) Set 1, MRF+GO

���������

�

���

���

���

���

�

� ��� ��� ��� ��� �
�	�


	
�

�
�
�
�

(c) Set 2, MRF
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(d) Set 2, MRF+GO
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(e) Set 3, MRF
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(f) Set 3, MRF+GO

Figure 4: ROC graphs for models evaluated on three subsets of proteins corresponding to
terms involved in the three ontologies in Figure 2. Evaluated on the three datasets are both
MRF and MRF+GO models, constructed using homology-based similarity.
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5 Conclusions

Incorporation of ontology structure, along with the dependencies among its functional terms,
improves performance over a more naive model that considers each term separately. Further-
more, defining potential functions based on similarity allows for correct positive and negative
predictions, whereas using protein-protein interaction data does not yield correct negative
predictions.

Only dependencies directly implied by the Gene Ontology structure were exploited in
this study. It is possible that other dependencies exist among terms, and if so, that their
incorporation could also improve results. Additional improvement in predictive performance
could also be achieved by combining different types of protein correlative evidence, such as
sequence similarity, PPI data, phylogeny, etc. Finally, our current approach relies on models
of GO whose parameters are identical over the set of proteins in question. Similar assumption
is made for MRF models that are not term specific. Relaxing the two assumptions may lead
to more realistic models. However, accurately estimating parameters of such models may be
infeasible given current sizes of functionally annotated datasets.

At present, computational issues preclude an application of the model to the entire Gene
Ontology, which contains over 17,000 terms, with a substantial number of proteins. Instead,
one could apply the model to high level, general terms in the ontology, resulting in candidate
root terms for the next round of application, and so on, until the most specific predictions
possible are made.
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