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Abstract

The surge of interest in multimodal interfaces has
prompted the need for novel estimation and classi-
fication techniques for data from different but cou-
pled modalities. Unimodal techniques ported to mul-
timodal domain have only exhibited limited success.
We propose a new framework for feature tracking
and classification based on multimodal knowledge-
constrained hidden Markov models (HMMs). Typical
role of HMMs as statistical classifiers is enhanced by
their new role as multimodal feature trackers (predic-

tors). Moreover, by fusing the multimodal formulation
with higher level knowledge we allow the influence of
such knowledge to be reflected in feature tracking and
classification.

Introduction

The surge of interest in multimodal interfaces has
prompted the need for more sophisticated techniques
for estimation and classification of data represented in
different but coupled modalities. Numerous approaches
employing loosely coupled unimodal techniques have
been ported into the multimodal domain with lim-
ited success. For instance, various multimodal in-
terfaces such as (Fukumoto, Suenaga, & Mase 1994;
Cohen et al. 1997) rely on high level joint interpreta-
tion of different modalities. This approach, unfortu-
nately, discards some low-level dependencies that may
exist among different modes. Another drawback of
classical tracking/classification approaches stems from
the lack of coupling between feature tracking and fea-
ture classification.

In this work, we propose a novel framework for
multimodal object tracking and classification based
on multimodal knowledge-constrained hidden Markov
models. Hidden Markov models are a commonly
used statistical tool in the field of speech recogni-
tion (Rabiner & Juang 1993). They have been recently
brought into domains of gesture recognition (Schlenzig,
Hunter, & Jain 1994), bimodal lip reading (Adjoudani
& Benoit 1995), and bimodal gesture/speech recogni-
tion (Pavlovié, Berry, & Huang 1997) and source sepa-
ration (Brand 1997). In this framework, we extend the
role of multimodal HMMs from statistical classifiers to
feature trackers and classifiers. Moreover, by fusing
the multimodal formulation with higher level knowl-
edge we allow the influence of such knowledge to be
reflected both in feature tracking and classification.
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Multimodal Hidden Markov Models

Hidden Markov model (HMM) is a doubly stochastic
process, a probabilistic network with hidden and ob-
servable states. Each HMM can be defined as a triplet
(A, b, ), where A represents the (hidden) state transi-
tion matrix, b describes the probabilities of the obser-
vation states, and 7 is the initial hidden state distribu-
tion. Three types of tasks are usually associated with
a system modeled as a HMM: observation classifica-
tion, hidden state inference, and learning of model pa-
rameters. Efficient algorithms exist for all three tasks:
Viterbi decoding, forward/backward probability prop-
agation, and EM iterative learning (Rabiner & Juang
1993).

Multimodal hidden Markov models (MHMMS) can
be defined as a simple extension of the classical uni-
modal HMMs, similar to (Brand 1997). Instead of
having a single set of hidden and observable states de-
scribing one type of process, MHMMs have M such
mutually coupled sets (M modes). Formally, a MHMM
is a triplet (A,b,7) where A = [ag|picx, art =
Pz =1 |z, = k), b = [bileex, bp = Py, =
Y |z, =k), and 7 = [mp]ecx, mx = Py = k). Here,
k = [kika... k], ki = 1,...,N;, denotes a vector
of indices in the space X’ of all M-dimensional indices.
Analogous to HMMs, A now describes the joint proba-
bility distribution of M multimodal states conditioned
on their M multimodal predecessors.

Given the above definition of a MHMM, the prob-
lems of inference and learning may seem difficult
to tackle. However, every MHMM can be read-
ily transformed into an equivalent HMM using the
state grouping technique often employed in the do-
main of Bayesian networks. An M-modal state in
(N1, Na,...,Ny) dimensional X space can be repre-
sented as a unimodal state in a one dimensional set of
N1 X Ny x -+ - Ny different states. Classification, infer-
ence and learning techniques of unimodal HMMs can
then be readily applied to MHMMs.

Tracking

HMMs are often employed as classifiers of temporal
sequences of features in conjunction with some clas-
sical feature trackers such as Kalman filters. This
approach, however, decouples feature prediction from
feature classification. A more closely coupled predic-
tion and classification may be beneficial to each other.
HMMs represent a useful framework for such unifica-
tion.

Consider a unimodal (or for that matter a multi-
modal) HMM as defined in the previous section. Given
a set of observations y, = [y1---y]', it can be shown



that the expected value of an observation at time ¢+ 1,
Elys41 | y,], can obtained as
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where we use of (z111) = ., () P(x441 | 2¢) and
at(zt) = P(at,y,) denotes the forward probability, a

product of the efficient forward probability propaga-
tion procedure (Rabiner & Juang 1993). Similar ex-
pression can be derived for the variance of y441.

The above estimates of y;y1 and its variance elimi-
nate the need for an additional Kalman-type predictor.
Moreover, this prediction approach can be utilized in
the framework of multimodal HMMs, thus effectively
producing a multimodal estimate of the future obser-
vations in each of the coupled modes. This can greatly
increase robustness of the prediction process. In addi-
tion, a higher level knowledge, such as grammars de-
fined over sets of MHMMSs, can be brought into play
using this prediction approach.

Higher-Level Knowledge Constraints

Complex natural processes such as speech and object
motion can rarely be accurately and efficiently de-
scribed using a single model. It is more plausible to
view such processes as being produced by a set of mod-
els governed by some higher level knowledge.

Consider a set of HMMs X = {H;,...,Hw} and
a probabilistic grammar describing temporal depen-
dencies of the individual HMMs H; in the set. One
way to model this grammar would be to view it as
a Markov model (Ag,ng) defined over the space H,
where Ag = [agijlwxw, agi; = P(H; | H;), and
P(H; | H;) denotes the probability of model H; fol-
lowed by H;. me denotes initial model probabilities.

An easy way to integrate this grammar into the
HMM framework arises when one observes that set H
with grammar (Ag, 7g) can be viewed as one complex
HMM. Therefore, all classification and prediction tools
of general HMMs can be readily applied to knowledge-
constrained HMMs. This, in turn, introduces higher
level knowledge constraints to prediction and classi-
fication. Furthermore, straightforward extensions of
this approach can be applied to multimodal HMMs
yielding knowledge-constrained multimodal classifica-
tion and tracking.

Of course, complex HMMs or MHMMSs designed in
this fashion are defined over very high dimensional
state spaces. However, by constraining the individ-
ual model topologies to sparse structures (such as left-
to-right HMMs) and employing sparse grammars, the
complexity of complex HMMs and MHMMs becomes
tractable.

Experimental Results

Our preliminary experiments were aimed at testing
the feasibility of the proposed framework. As the
testbed application we chose a joint audio-visual in-
terpretation of speech and unencumbered hand ges-
tures acquired through a video camera for interac-
tion with an immersive virtual environment (Pavlovié,
Berry, & Huang 1997). In the original setup, gestures
and speech were independently recognized using uni-
modal HMMs and then jointly interpreted on the word

level. Gesture tracking and parameter prediction from
the video stream originally employed a second-order
Kalman predictor.

Using the obtained unimodal models from the origi-
nal setup, the known intra- and inter-modal grammars,
we have constructed a joint MHMM of the audio/video
process. This model was then used to perform multi-
modal gesture feature tracking and multimodal ges-
ture/speech classification. An example of gesture pa-
rameter prediction on a sequence of test data is de-
picted in Figure 1. Gesture and speech recognition was
also tested on a short sequence of data. The results
were again encouraging and are depicted in Figure 2.

Conclusions and Future Work

Recent gain in popularity of multimodal interfaces
has prompted the need for new techniques for esti-
mation and classification of multimodal data. Clas-
sical approaches employing loosely coupled unimodal
techniques have shown limited success, possibly due
to the loss of low-level dependencies among modes.
Moreover, the lack of tight coupling between feature
tracking and classification in the classical approaches
further degrades their performance. In this work, we
propose a novel probabilistic network framework for
multimodal prediction and classification enhanced by
high-level knowledge. Preliminary results indicate the
feasibility of this approach. Our current experiments
are aimed at testing the robustness of tracking and
classification for multimodal data corrupted by differ-
ent noise levels as well as the influence of the modali-
ties’ coupling on the system performance. Future plans
include extensions of this approach to mixed-state (dis-
crete/continuous) HMM trackers/classifiers.
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Figure 1: One step prediction of hand velocity using multimodal knowledge-constrained HMM. Dashed lines indicate
standard deviation bounds on the predicted value.
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Figure 2: Recognition of spoken words and gestural actions. The figure shows results of temporal segmentation of
hand gestures and speech using independent (top two graphs) and joint (bottom two graphs) inference. Depicted
features for video and audio streams are the hand angle and a cepstral coefficient, respectively. Top line depicts
correct sequence transcription. Note that joint interpretation eliminates a spurious “stop” in speech and correctly
classifies “move up” in gestures. (Initial miss-labeling in the video stream is due to click noise.)



