Parallel Processing Letters

© World Scientific Publishing Company

OPTIMAL AND NEAR-OPTIMAL SOLUTIONS
FOR HARD COMPILATION PROBLEMS

ULRICH KREMER

Department of Computer Science, Rutgers University
Piscataway, New Jersey 08855, U.S.A.

ABSTRACT

An optimizing compiler typically uses multiple program representations at
different levels of program and performance abstractions in order to be able
to perform transformations that — at least in the majority of cases — will lead
to an overall improvement in program performance. The complexities of the
program and performance abstractions used to formulate compiler optimiza-
tion problems have to match the complexities of the high-level programming
model and of the underlying target system.

Scalable parallel systems typically have multi-level memory hierarchies
and are able to exploit coarse—grain and fine—grain parallelism. Most likely,
future systems will have even deeper memory hierarchies and more granular-
ities of parallelism. As a result, future compiler optimizations will have to
use more and more complex, multi-level computation and performance mod-
els in order to keep up with the complexities of their future target systems.
Most of the optimization problems encountered in highly optimizing compilers
are already NP-hard, and there is little hope that most newly encountered
optimization formulations will not be at least NP—hard as well.

To face this “complexity crisis”, new methods are needed to evaluate the
benefits of a compiler optimization formulation. A crucial step in this eval-
uation process is to compute the optimal solution of the formulation. Using
ad-hoc methods to compute optimal solutions to NP—complete problems may
be prohibitively expensive. Recent improvements in mixed integer and 0-1
integer programming suggest that this technology may provide the key to
efficient, optimal and near—optimal solutions to NP—complete compiler opti-
mization problems. In fact, early results indicate that integer programming
formulations may be efficient enough to be included in not only evaluation
prototypes, but in production programming environments or even production
compilers. This paper discusses the potential benefits of integer programming
as a tool to deal with NP—complete compiler optimization formulations in
compilers and programming environments.

Keywords: compilers, programming environments, hard optimization prob-
lems, 0-1 integer programming

1 Introduction

For high-—performance scalar and parallel architectures, there is a gap between hard-
ware and system features, and the ability of compilers and programming environ-
ments to take advantage of these features. As a result, effort and money spent in



developing new system and hardware features may be wasted since the compiler
i1s the main interface between the programmer and the underlying system archi-
tecture. In order to close this gap, new and more complex intermediate program
representations and performance models are needed to identify when an optimizing
transformation is legal and profitable.

In order to capture the complexity of the target system and to make the right
tradeoff decisions, compiler optimization problems that have been considered in iso-
lation in the past will have to be combined into a single problem formulation. The
resulting compiler optimization problems will most likely be NP—complete. For ex-
ample, instead of solving register allocation and instruction scheduling in sequence,
a combined formulation of the problem avoids the “phase ordering problem” and
allows the generation of better code. Another example is compiling for distributed—
memory parallel architectures. There are tradeoff decisions between coarse—grain
parallelism, fine-grain parallelism, and data locality. Different coarse—grain data
and computation mappings may result in different degrees of data locality and
instruction—level parallelism that can be exploited for each node processor.

In addition to combining different optimizations, whole program analysis may be
required to provide sufficient opportunities for compiler optimizations. Therefore,
interprocedural analysis and optimizations will play an important role in future
compilers and programming environments.

Following the trend in architecture and system design, future systems will be
more complex and therefore will pose even more challenges to compiler and pro-
gramming environment designers. However, some hardware or system feature can
make compilation simpler if they increase the performance predictability of the en-
tire system. For instance, it is easier to predict the performance of a small fully
set associative cache than that of a 4-way set associative cache since cache con-
flict misses are eliminated. If past and current trends in architecture design can
be used as an indicator for future developments, the “unpredictable” features will
most likely dominate the “predictable” features in future systems.

2 NP-Complete Compilation Problems

For the purpose of this discussion, a compilation problem consists of an intermediate
program representation over which an optimization problem has been formulated.
A classical example for an optimization problem is register allocation. The program
representation is the interference graph and the optimization problem is to find a
minimal coloring of the interference graph [1,2].

There are two orthogonal approaches to deal with NP—complete compilation
problems. The model can be simplified, resulting in a simpler problem formula-
tion that can be solved more efficiently, or heuristics can be used for the original,
complex model with its corresponding NP—complete problem formulation. In other
words, you can approximate the model itself by lowering its complexity, or you can
approximate the optimal solution for the original model. Most approaches discussed
in the literature use heuristics to determine potentially suboptimal solutions.

A compiler and programming environment designer confronted with a poten-



tially NP-complete problem needs to know whether the chosen program repre-
sentation is precise enough to model the tradeoffs for the desired optimization.
Computing the optimal solution to an optimization problem allows:

1. Evaluation of the chosen model by using its optimal solution to verify its
performance impact on the final, compiler generated code.

2. Evaluation of different heuristics for the chosen model through comparisons
with the optimal solution.

Of course, the ideal situation for a compiler optimization would be an appro-
priate model with efficient optimal solutions. For some optimizations this ideal
situation may be achievable, as shown in the case of a variant of the automatic data
layout problem with dynamic remapping [13,14].

In the following section, integer programming is discussed as a tool to formulate
and solve NP—complete compilation problems. Integer programming technology has
the potential of being a tool to rapid prototype NP—complete compilation problems
in order to understand their mutual interaction in an overall system. In addition,
integer programming formulations may be efficient enough to provide optimal solu-
tions or a family of heuristics.

3 Integer Programming

Integer programming has been used to solve many real world problems that re-
quire the management and efficient use of scarce resources to improve productivity.
Examples of such problems are VLSI circuit design, airline crew scheduling, and
communication and transportation network design. An instance of an integer pro-
gramming problem consists of a set of variables, a set of inequality and equality con-
straints, and an objective function. A solution of the integer programming instance
assigns integral values to all variables such that the objective function is maxi-
mized or minimized while all constraints are respected. If the integrality restriction
is relaxed for some variables, the problem is called a mized integer programming
problem.

A (-1 linear integer programming problem is a special case of an integer pro-
gramming problem where variables can only be assigned the integral values 0 or
1, and all constraints are linear functions of the variables. Solving a 0-1 integer
programming problem has been shown to be NP—complete. An in-depth discussion
of integer programming can be found in [3].

For decades, the integer and combinatorical optimization community has been
working on methods to solve integer programming problems fast in practice. The
ability to solve integer programming problems has been remarkably improved over
the last five to ten years. The basic technique for solving integer programming
problems is to apply intelligent branch-and-bound using linear programming at
the nodes in the branch—and-bound tree. Important improvements have occurred
in three areas. First, linear programming codes are on average approximately two
orders of magnitude faster than they were five years ago, particularly for larger



problems [4]. Combined with the improvements in computing speed over that same
period these codes represent an approximate four to five orders of magnitude im-
provement in our ability to solve linear programming problems. Further algorithmic
improvements are expected in linear programming, in preprocessing, and in branch-
and-bound heuristics [5].

The second major development is in so-called cutting-plane technology. Moti-
vated by work of Dantzig, Johnson and Fulkerson in the 50’s [6], Padberg, Groetschel
and others have shown how cutting-plane techniques could be used to strengthen
the linear programming relaxations of many 0-1 integer programming problems [7].

The third major area of improvement has come in the application of parallel pro-
cessing to handle the branching when cutting planes do not succeed in sufficiently
strengthening the linear programming formulation. Parallelism is particularly ap-
propriate for current cutting-plane methods because cuts are computed not only at
the root node but at all nodes in the branching tree. The extra computation at
the nodes has the effect of making the computations sufficiently coarse grained that
communication costs need not be significant. Parallel versions of mixed-integer
programming tools have been developed in academia [8] and in industry by Silicon
Graphics Incorporation (SGI)®.

3.1 Prototyping and Model Evaluation

Advanced, experimental compilation systems and programming environments in-
cluding Stanford’s SUIF compiler and the D95 system currently under development
at Rice University use aggressive techniques such as integer programming (Omega
test [9]) to solve dependence analysis or code generation problems. These aggressive
techniques allow the evaluation of the entire system in a best case scenario where
no information is lost due to ad-hoc heuristics. Once the optimization problems
crucial for the overall performance have been identified through experimentation,
some optimization problems may have to be reformulated if they are found to be
ineffective. If effective, fast special-purpose techniques may be able to substitute
more expensive general-purpose techniques for particular problem instances, allow-
ing faster solutions in practice.

Therefore, integer programming is a promising candidate for “rapid prototyp-
ing” of NP—complete compilation problems. Instead of using an ad-hoc method to
compute an optimal solution, integer programming formulations can rely on fast
solution methods that have been developed in the combinatorial optimization com-
munity. In addition, using a common framework for NP—complete problems allows
a general classification of the problems according to the characteristics of their inte-
ger programming formulations. Compiler and programming environment designers
can use such a classification as a guideline to assess the solution complexities of new
optimization problems.

In addition to evaluating models for compiler optimizations, optimal integer
programming solutions can be used to assess the effectiveness of approximate so-
lutions generated by heuristics. Work along this line has been done by Rutten-

@ See http://www.sgi.com/Products/hardware/power/operations/perf.html



berg, Gao, Stoutchinin, and Lichtenstein in the context of software pipelining [10],
and by Goodwin and Wilken for global register allocation [11]. Ruttenberg, Gao,
Stoutchinin, and Lichtenstein showed that the heuristics used in a SGI production
compiler are effective and close to optimal. However, they did not compute optimal
solutions in all cases due to a time bound imposed on the solution times of their
integer programming tool.

3.2 Practical Optimal Solutions and Solution Heuristics

Mixed integer programming and 0-1 integer programming is NP—complete. The
main argument against using optimal techniques such as 0-1 integer programming
in compilers and programming environments is the expected inefficiency. However,
problem instances that occur in practice may not exhibit the worst case behavior.
In addition, the notion of “efficiency” depends on the intended application scenario.

For a programming environment such as an automatic data layout tool for High
Performance Fortran (HPF), a response time in the order of minutes may be con-
sidered acceptable [12,13,14]. For a compiler, an expensive technique can be an
important tool if it is applied selectively, i.e., only in cases where the optimal solu-
tion is expected to result in a significant performance gain of the compiler generated
code. For instance, optimal register allocation and instruction scheduling techniques
could be used only for the most performance critical loops in a program.

Although using exact solutions for NP—complete problems is a rather new idea,
a few researchers have already recognized the potential benefits of using 0-1 integer
programming or general integer programming as part of a compiler or programming
environment. Pugh developed a dependence analysis test, called the Omega Test
based on an integer programming algorithm [9]. Using integer programming for
instruction scheduling under resource constraints for super-scalar machines has been
discussed by Feautrier [15], Ning, Govindarajan, Altman and Gao [16,17,18], and
Ruttenberg, Gao, Stoutchinin, and Lichtenstein [10]. Goodwin and Wilken used 0-1
integer programming for optimal and near—optimal register allocation [11]. Integer
programming techniques in the context of a distributed—memory compiler have been
discussed by Phillipsen [19] and Garcia, Ayguadé and Labarta [20,21]. The latter
two works have been based on the experience with 0-1 integer programming for
efficient solutions of NP—complete problems in an automatic data layout tool as
described by Bixby, Kennedy, and Kremer [12,13,14].

It is important to note that the actual formulation of the integer programming
problem in terms of the chosen variables and constraints is crucial for the efficiency
of the solution process. Typically, there are many possible integer programming
formulations for a given compiler optimization problem. However, their solution
times may be dramatically different, i.e., up to two orders of magnitude. It is
not true that a smaller problem formulation will necessarily lead to faster solution
times. A comparison of different 0-1 formulations for a NP—complete problem in
the context of automatic layout can be found in [12]. Goodwin and Wilken discuss
the impact of the choice of formulation in the context of global register allocation
[11]. Another example from outside the compiler domain is described in [22].



In the cases where computing the optimal solution is considered too expensive,
integer programming formulations can be used to create families of heuristics that
compute near—optimal solutions. Possible heuristics include:

e Return the best feasible solution within a given amount of time. Goodwin and
Wilken discuss first results based on this approach [11] and to some extent
Ruttenberg et al. as well [10].

e Return the first feasible solution within a specific percentage of optimal.

e Run 0-1 formulation and a “conventional” heuristic in parallel. When the con-
ventional heuristic terminates, compare result with the best feasible solution
found for the 0-1 formulation. Return the best of the two solutions.

In summary, the formulation of a NP—complete optimization problem as an
integer programming formulation has the advantage that it can provide optimal
and near-optimal solutions based on given solution time limits. Once an efficient
integer programming formulation has been found, its solution can directly benefit
from future algorithmic improvements in integer programming technology without
any further effort.

For example, solving a 01 integer programming instance with 14950 variables
and 4663 constraints for an automatic data layout problem took 357 seconds on a
Sparc—10 using CPLEXv3.0°[14]. CPLEX is a state—of-the—art linear integer pro-
gramming tool and library, partly developed by Robert Bixby at Rice University
[23]. CPLEX includes an implementation of a general-purpose branch—and-bound
code for mixed integer programming. Being general purpose, this code does not a
priori exploit the structural properties of a particular 0-1 problem. The same prob-
lem instance can now be solved on an UltraSparc-1 in 29 seconds using the new
version CPLEXwj.0. Approximately 50% of this improvement can be attributed
to algorithmic improvements in the presolver step of the tool [24]. Choosing the
CPLEX flag that selects a dual instead of the default primal simplex for the initial
LP relaxation results in a further reduction of the solution time to 3.4 seconds. It
is important to note that these dramatic speedups were achieved without modifica-
tions to the 0—1 integer programming problem instance.

4 Conclusion

Mixed-integer and 0-1 integer programming technology has improved dramatically
over the last few years. We have reached a point where this technology can be used
in optimizing compilers and advanced programming environments to formulate and
solve NP—complete optimization problems. Mixed—integer programming formula-
tions of NP—complete problems allow the evaluation of prototype systems and the
generation of optimal or families of near—optimal solutions in production compilers
and programming environments. The further assessment of the benefits of integer
programming technology for compiler and environment designers will be an exciting
future research field.

bCPLEX is a trademark of CPLEX Optimization, Inc.



5 References

1.

10.

11.

12.

13.

14.

15.

16.

17.

G. Chaitin. Register allocation and spilling via graph coloring. In Proceedings of
the SIGPLAN 82 Symposium on Compiler Construction, June 1982.

. P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University,

April 1992.

. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, 1988.

. R. Bixby. Progress in linear programming. ORSA Journal on Computing, 6(1),

1994.

. G. L. Nemhauser. The age of optimization: Solving large-scale real-world problems.

Operations Research, 42(1):5-13, January—February 1994.

. G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large scale traveling

salesman problem. Operations Research, 7:58-66, 1954.

. M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-

scale symmetric traveling salesman problems. SIAM Review, 33:60-100, 1991.

. R. Bixby, W. Cook, A. Cox, and E. K. Lee. Computational experience with parallel

mixed integer programming in a distributed environment. Technical Report CRPC-
TR95-554, Center for Research on Parallel Computation, Rice University, June 1995.

. W. Pugh. The Omega test: A fast and practical integer programming algorithm

for dependence analysis. In Proceedings of Supercomputing 91, Albuquerque, NM,
November 1991.

J. Ruttenberg, G. R. Gao, A. Stoutchinin, and W. Lichtenstein. Software pipelining
showdown: Optimal vs. heuristic methods in a production compiler. In Proceedings
of the SIGPLAN ’96 Conference on Programming Language Design and Implemen-
tation, Philadelphia, PA, May 1996.

D. W. Goodwin and K. D. Wilken. Optimal and near-optimal global register alloca-
tion using 0-1 integer programming. Software— Practice and Ezperience, 26(8):929—
965, August 1996.

R. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer
programming. In Proceedings of the International Conference on Parallel Architec-
tures and Compilation Techniques (PACT94), pages 111-122, Montreal, Canada,
August 1994.

K. Kennedy and U. Kremer. Automatic data layout for High Performance Fortran.
In Proceedings of Supercomputing ’95, San Diego, CA, December 1995.

U. Kremer. Automatic Data Layout for Distributed Memory Machines. PhD thesis,
Rice University, October 1995. Available as CRPC-TR95-559-8S.

P. Feautrier. Fine-grain scheduling under resource constraints. In Proceedings of
the Seventh Workshop on Languages and Compilers for Parallel Computing, Ithaca,
New York, August 1994.

Q. Ning and G. R. Gao. A novel framework of register allocation for software pipelin-
ing. In Proceedings of the Twentieth Annual ACM Symposium on the Principles of
Programming Languages, Albuquerque, NM, January 1993.

R. Govindarajan E. R. Altman and G. R. Gao. Minimizing register requirements
under resource-constrained rate-optimal software pipelining. In Proceedings of the
27th Annual International Symposium on Microarchitecture, San Jose, CA, Decem-
ber 1994.



18

19.

20.

21.

22.

23.

24.

E. R. Altman, R. Govindarajan, and G. R. Gao. Scheduling and mapping: Software
pipelining in the presence of structural hazards. In Proceedings of the SIGPLAN ’95
Conference on Programming Language Design and Implementation, La Jolla, CA,
June 1995.

M. Philippsen. Automatic alignment of array data and processes to reduce commu-
nication time on DMPPs. In Proceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programmaing, Santa Barbara, CA, July 1995.

J. Garcia, E. Ayguadé, and J. Labarta. A novel approach towards automatic data
distribution. In Proceedings of the Workshop on Automatic Data Layout and Per-
formance Prediction (AP’95), Houston, TX, April 1995.

J. Garcia. Automatic Data Distribution for Massively Parallel Processors. PhD
thesis, Universitat Politécnica de Catalunya, Barcelona, April 1997.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, B. Sigismondi, and P. Vance. For-
mulating a mixed integer programming problem to improve solvability. Operations
Research, 41(6):1013-1019, November—December 1993.

R. Bixby. Implementing the Simplex method: The initial basis. ORSA Journal on
Computing, 4(3), 1992.

Irv Lustig. Director of numerical optimization, CPLEX Optimization, Inc., private
communication, August 1996.



