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Abstract

Dynamic voltage and frequency scaling of the CPU has
been identified as one of the most effective ways to re-
duce energy consumption of a program. This paper dis-
cusses a compilation strategy that identifies scaling op-
portunities without significant overall performance penalty.
Simulation results show CPU energy savings of 3.97%-
23.75% for the SPECfp95 benchmark suite with a per-
formance penalty of at most 2.53%.

1 Introduction

Modern architectures have a large gap between the speeds
of the memory and the processor. Techniques exist to
bridge this gap, including memory pipelines, cache hier-
archies, and large register sets. Most of these architec-
tural features exploit the fact that computations have
temporal and/or spatial locality. However, many com-
putations have limited locality, or even no locality at all.
In addition, the degree of locality may be different for
different program regions. Such computations may lead
to a significant mismatch between the actual machine
balance and computation balance, typically resulting in
long stalls of the processor waiting for the memory sub-
system to provide the data.

We will discuss the benefits of compile-time volt-
age and frequency scaling where the compiler identi-
fies promising program regions for CPU voltage and
CPU frequency scaling, and assigns clock frequencies
and voltage levels for their execution. The goal is to
provide similar overall performance while significantly
reducing the power/energy dissipation of the processor.
Opportunities for such an optimization are program re-
gions where the CPU is mostly idle.
∗This research was partially supported by NSF CAREER award
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Figure 1: The essence of voltage scheduling: slack elim-
ination

1.1 Background

The total execution time (T ) and energy consumption
(E) of a program can be estimated by

T ≈W · 1
f

and E ≈ C ·W · V 2

where W is the total number of execution cycles, f is the
clock frequency, C is the effective switching capacitance,
and V is the supply voltage. C and W are assumed to
be independent of frequency f . Since in dynamically
voltage scaled (DVS) systems V varies approximately
linearly with f (V ∝ f), the performance-energy trade-
off of frequency scaling can be expressed as

T ∝ 1
f

and E ∝ f2

Slowing down the clock frequency will result in energy
savings at the cost of decreased performance.

Recent related work has been focused on determin-
ing appropriate clock frequencies with respect to a pre-
defined deadline, using on-line and off-line algorithms
[28, 8, 6, 12, 21]. The basic idea is to recognize and
eliminate CPU slacks as illustrated in Figure 1. The
schedule on the right meets the same deadline but con-
sumes only 1/4 of the energy of the schedule on the left.
This figure also illustrates why slowing down the CPU
can save more energy than simply shutting it off.



1.2 Our Contributions
In previous work[11], we proposed a simple compile-time
model to select the appropriate clock frequency at the
cost of tunable performance penalty, and applied the
model to a set of kernels to show its effectiveness. This
paper extends our previous work to whole programs,
and discusses the benefits of voltage and frequency scal-
ing for programs in the SPECfp95 benchmark. Minimiz-
ing the power/energy dissipation of scientific computa-
tions leads to a reduction in heat dissipation and cooling
requirements, which in turn reduces design, packaging,
and operation costs of advanced architectures, including
power bills for air conditioning of computing and data
centers. While there is no opportunity of slowing down
the entire programs without incurring a significant per-
formance penalty, we discuss new techniques that iden-
tify certain profitable regions in the benchmarks and
select appropriate slow-down factors using our model.
Simulation results show that the CPU energy savings
of 3.97%-23.75% are achieved with an overall perfor-
mance penalty of at most 2.53%. A simple system en-
ergy model consisting of a CPU and memory has similar
results. (3.93%-23.25% energy savings across the bench-
mark).

1.3 Why at the Compiler Level?

Our model is based on quantifying the imbalance and
overlap between CPU and memory activities. In many
cases, a compiler is able to not only predict but also
shape these two factors in a program, giving compil-
ers an advantage over operating systems and hardware
techniques. Identifying program regions of large granu-
larity, and assigning efficient voltage and frequency lev-
els to such regions is crucial since the overhead for dy-
namic voltage and frequency can be significant. Investi-
gating reshape transformation to enable or improve the
opportunities for dynamic voltage and frequency scaling
is beyond the scope of this paper.

The rest of the paper is organized as follows: Sec-
tion 2 reviews the simple model proposed in [11], and
how it is modified to be region-based. The details of
the simulation settings, including the benchmark input
data, the modeling system, and the energy models, are
described in Section 3 together with the simulation re-
sults. Section 4 gives a brief summary of related work,
and Section 5 concludes the paper.

2 Compiler-Directed Frequency Scaling

In [11], we proposed to divide the total execution cycles
(W ) of a program into three segments

W = Wc +Wm +Wb

with the right-hand side entities defined as follows:
Wc,Wm,Wb denote the number of cycles in which the
CPU is busy and the memory is idle, the CPU is idle and
the memory is busy, and both the CPU and memory are
busy, respectively. Using the decomposition, with the
assumption that the program in any clock frequency
behaves exactly the same for every program step as the
program in the default frequency1, the total execution
cycles of the same program (W ′) when f is reduced by
a factor of δ can be estimated as

W ′ = δ ∗Wc + max(Wm +Wb, δ ∗Wb)

Enforcing

Wm +Wb ≥ δ ∗Wb (1)

we can then rewrite W ′ as

W ′ = (δ − 1) ∗Wc +W ≤ W + d (2)

where d is the performance penalty constraint. It is easy
to see that Wc has a strong impact on the performance
penalty of slowing down the CPU by δ. In addition,
even when Wc is relatively small, δ is bounded by the
degree of CPU slackness. We combine Conditions (1)
and (2) in Condition (3):

δ ≤ 1 + min(d/Wc,Wm/Wb) (3)

In order to avoid a potentially significant perfor-
mance decrease due to the mismatch of memory and
CPU cycle times [11], the model uses the following con-
dition to reflect the clock skew effects during synchro-
nization:

memory latency l is divisible by δ (4)

Finally, we restrict δ to be no less than 1.

1 ≤ δ (5)

Conditions (3)-(5) constitute the essence of δ-selection
algorithm presented in [11].

Applying this δ-selection algorithm to the SPECfp95
benchmark programs with the performance penalty con-
straint d/W = 1% showed that Wc for each benchmark
(14.78%-99.92%) is too large to allow a slow down of
the whole program with negligible performance impact.
A summary of the whole program results is shown in
Table 1. For example, in swim, Condition (3) leads to

δ ≤ 1 + min(
1%

16.25%
,

68.95%
14.80%

) = 1.06

1This may not be the case in practice, for instance due to out-of-

order instruction execution.
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benchmark Wc/W Wm/W Wb/W

tomcatv 33.19% 54.80% 12.00%

swim 16.25% 68.95% 14.80%

su2cor 34.43% 54.19% 11.38%

hydro2d 14.78% 70.50% 14.72%

mgrid 30.54% 58.93% 10.54%

applu 27.09% 60.25% 12.66%

turb3d 53.75% 38.51% 7.74%

apsi 35.47% 54.07% 10.46%

fpppp 99.92% 0.08% 0.00%

wave5 54.57% 35.28% 10.15%

Table 1: The decomposition of the total execution cycles
of SPECfp95 benchmark suite.

which prohibits a slow down factor δ of 5/4, 4/3, 2,
etc (given memory latency of l = 100 cycles). Thus,
instead of targeting the entire program, the compiler
will apply the δ-selection algorithm to isolated regions
of the program. The following section will describe this
variant, including the new adjusted conditions for the
region-based approach.

2.1 Region-based δ-Selection
Given a program region (R) and the overall performance
penalty constraint d, Condition (3) is adjusted as

δ ≤ 1 + min(d/WR
c ,W

R
m/W

R
b ) (6)

Consider the benchmark swim again. There is a region
R in the program such that WR/W = 32.66%,WR

c /W
R

= 2.99%, WR
m/W

R = 79.39%, and WR
b /W

R = 17.62%.
As a result, we can derive

δ ≤ 1 + min(
1%/32.66%

2.99%
,

79.39%
17.62%

) = 2.02

and slow down the execution of the region by half. Sim-
ulation result show that this selection saves 23.2% CPU
energy and only degrades the performance by 1.7%.

The algorithm can be extended to multiple regions
as well. It can be expressed as a minization problem:

minimize E =
∑
i

(
1
δi

)2 · W
Ri

W
(7)

such that

1 ≤ δi ≤ 1 +WRi
m /WRi

b ,∑
i

(δi − 1)WRi
c ≤ d, and

l ≡ (0 (mod δi))

where Expression (7) is a simple energy model that can
be replaced with more accurate models, if necessary. For

(1) Identify a single program regions R: process
the program in a top-down fashion based on its
structure; if no profitable region can be found
at the current level, refine regions and
continue search at the refined level.

(2) Model expected performance
(a) Determine WRi

c , WRi
m , and WRi

b

(b) Compute slow-down factor δi
using model discussed in Section 2.1

(3) Insert voltage/frequency setting instructions;
adjust performance optimizations, if necessary

Figure 2: Outline of basic compilation strategy.

instance, a more accurate model may take into account
the performance penalty due to voltage/frequency ad-
justments between regions. Note that the simulation
results discussed in Section 3 consider these penalties.

2.2 Basic Compilation Strategy
The basic compilation strategy is shown in Figure 2.

Program regions are evaluated in a top-down fashion
based on the program structure, starting with the en-
tire program as the single, outermost region. Regions
are evaluated based on their expected benefits in terms
of power/energy savings. For simplicity, our current ap-
proach selects only a single region.

The selected program region will be assigned a single
voltage and frequency. Dynamic changes of voltage and
frequency will occur only between the region and other
portions of the program. The granularity of the region
needs to be large enough to compensate for the over-
head of voltage and frequency adjustments. Initially,
we consider single or sequences of procedure calls, loop
nests, and if-then-else constructs as candidate regions.

Different strategies can be used to determine Wc,
Wm, and Wb. Static compile-time analysis, on- and off-
line performance monitoring, or a combination of both.
For this paper, we assume that these values are avail-
able.

We illustrate our compilation strategy using bench-
mark swim, as shown in Figure 3. For simplicity, we only
slow down one region if possible. Initially, four regions
R1 − R4 are considered. Knowing the WRi

c ,WRi
m ,WRi

b

values of each region as shown in Table 2, we compute
slow-down factor δi and potential energy savings (E),
and select region R4 to be slowed down. The next step
is to insert voltage/frequency setting instructions at the
entry and exit of the region. In our example, an instruc-
tion setting CPU speed by half is inserted right before
the IF and an instruction resuming the full speed is in-
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   CALL INITAL
90 NCYCLE=NCYCLE+1
   CALL CALC1
   CALL CALC2
   IF (NCYCLE >= ITMAX) STOP
   IF (NCYCLE <= 1) THEN
      CALL CALC3Z
   ELSE
      CALL CALC3
   ENDIF
   GO TO 90

R1

R2

R3

R4

Figure 3: The outermost program structure of bench-
mark swim with marked candidate regions.

R1 R2 R3 R4

WR/W 3.50% 31.10% 32.51% 32.66%

WR
c /W

R 76.82% 17.91% 21.31% 2.99%

WR
m/W

R 17.65% 66.45% 66/53% 79.39%

WR
b /W

R 5.53% 15.64% 12.16% 17.62%

δi 4/3 10/9 10/9 2

E 98.47% 94.09% 93.82% 75.51%

Table 2: The decomposition of total execution cycles for
regions of benchmark swim.

serted right after the ENDIF.

3 Experiments

3.1 SPECfp95 Benchmarks

We used SPECfp95 for our experiments. To reduce sim-
ulation time, we took as input Burger’s standard data
sets (std) [3] that have as few instructions as possible
while retain the behavior of the reference data sets.

3.2 Simulation Settings
All simulations are done through the SimpleScalar tool
set [4], with memory hierarchy extensions [5]. Sim-
pleScalar provides a cycle-accurate simulation environ-
ment for modern out-of-order superscalar processors with
5-stage pipelines and fairly accurate branch prediction
mechanism. While the original version supports a multi-
level non-blocking memory subsystem and captures lim-
ited memory bandwidth, the extensions model the limit-
edness of non-blocking caches through finite miss status
holding registers (MSHRs) [14]. Bus contention and ar-
bitration at all levels are also taken into account. What
is not considered are multi-bank memory organization,
page hits versus misses, precharging overhead, and re-
fresh cycles. Figure 4 gives the simulation parameters
used in the paper.

Simulation

parameters Value

frequency 1 GHz

fetch width 4 instructions/cycle

decode width 4 instructions/cycle

issue width 4 instructions/cycle, out-of-order

commit width 4 instructions/cycle

RUU size 64 instructions

LSQ size 32 instructions

FUs 4 intALUs, 1 intMULT,

4 fpALUs, 1 fpMULT,

2 memports

branch predictor gshare, 17-bit wide history

L1 D-cache 32KB, 1024-set, direct-mapped,

32-byte blocks, LRU, 1-cycle hit,

8 MSHRs, 4 targets

L1 I-cache as above

L1/L2 bus 256-bit wide, 1-cycle access,

1-cycle arbitration

L2 cache 512KB, 8192-set, direct-mapped,

64-byte blocks, LRU, 10-cycle hit,

8 MSHRs, 4 targets

L2/mem bus 128-bit wide, 4-cycle access,

1-cycle arbitration

memory 100-cycle hit, single bank

TLBs 128-entry, 4096-byte page

compiler gcc 2.7.2.3 -O3 -funroll-loops

Figure 4: System simulation parameters.

We added a new instruction into SimpleScalar’s ISA,
which takes an explicit value for the new CPU frequency
and implements the following 3-step semantics: (1) stop
fetching new instructions and wait until CPU enters the
ready state, i.e., the frequency scaling instruction is not
speculative, the pipeline is drained, all functional units
are idle, and all pending memory requests are satisfied,
(2) wait a fixed amount of cycles to model the process of
scaling up/down to the new frequency, and (3) resume
the course using the new frequency. Each step has an
associated performance penalty. In the simulation we
set the step (2) cost as 10,000 cycles (10 µs for a 1GHz
processor).

3.3 Analytical Energy Models
Due to the long simulation time, we use three simple
analytical energy models to access the benefits gained
from our compilation strategy. They model active CPU
energy, total CPU energy, and total system energy. All
these models are based on the same simple idea of as-
sociating with each cycle an energy cost.

Given a program in which region R is slowed down
by δ, we introduce four ”component” models:

E1 = (Wc +Wb) − (1− 1/δ2) · (WR
c +WR

b )
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E2 = ρ
cpu
i ·Wm

E3 = ρm/c · (Wb +Wm)/l
E4 = ρmemi ·Wc/r

where E1 models the total CPU energy usage when the
CPU is active, E2 models the total CPU energy usage
when the CPU is idle, E3 models the total memory en-
ergy usage when memory is active, and E4 models the
total memory energy usage when memory is idle. Pa-
rameter r is the refresh cycles, l is the memory latency,
and ρcpui , ρmemi , ρm/c are particular ratios with respect to
the energy cost of an active CPU cycle. In our evalu-
ation, we set ρpuci = 30%, ρm/c = 2, ρmemi = 2, and r
= 10,000, considering memory consuming 2/3 of total
energy.

3.4 Experimental Results
The profitable candidate regions of benchmarks are iden-
tified through simulating our basic compilation strategy
by hand. The implementation of the proposed strategy
is currently underway. For simplicity, we slowed down
one region in each benchmark. Therefore, the experi-
mental results are not necessarily optimal. The simula-
tion results are shown in Table 3.

All benchmarks, except fpppp, can be slowed down
to save 2.44%-16.09% of active CPU energy (E1), 3.97%-
23.75% of total CPU energy (E1 + E2), and 3.93%-
23.25% of the overall system energy (E1+E2+E3+E4),
at the performance penalty of 0.77%-2.53%. Benchmark
fpppp cannot benefit from our compiler strategy since
it is extremely CPU-bound.

The cost of scaling up/down the voltage and fre-
quency is linearly proportional to the number of repeti-
tions in std data sets. Given that benchmarks execute
0.73-15.62 billions of cycles and the repetitions is in the
range of 2-62, this dynamic scaling cost turns out to be
insignificant. Most of performance degradation comes
from the impact of CPU slow-down to the program ex-
ecution.

4 Related Work

There have been efforts in building up microproces-
sors capable of dynamic voltage and frequency scaling
(DVS), such as Transmeta’s Crusoe, Intel’s SA-2, and
[2, 23]. Besides saving power and energy at the expense
of performance loss, the scaling overheads can take as
long as 520µs ([2]) or 140µs ([23]), which suggests the
coarse speed control may be appropriate.

For DVS-capable processors, the voltage scheduling
problem involves deciding when to scale them up/down
and by how much. New scheduling algorithms at the
operating system level have been proposed, either task-
based [29, 12, 10, 20, 17, 25, 27] or interval-based [28,

8, 22, 26]. Grunwald et al. [9] evaluated some of the
interval-based schedulers through actual measurements
and observed noticeable performance loss.

Most inter-task scheduling algorithms use worst-case
assumption and thus fail to further exploit the CPU
slackness from actual execution. As a result, intra-task
scheduling algorithms [13, 19, 15, 24] are advocated.
Both [19] and [24] use compile-time analysis to instru-
ment the program to adapt to real execution behavior.

Other ways to optimize software for low power are
possible. For example, Ghiasi et al. [7] used specified
IPC rates to reconfigure processors, while Marculescu
[18] determined scaling points at micro-architectural level.
For further information, please refer to two excellent
surveys [16, 1].

5 Conclusion and Future Work

Dynamic frequency and voltage scaling is an effective
way to reduce power dissipation and energy consump-
tion of memory-bound program regions. This paper dis-
cussed a simple performance model that allows the selec-
tion of efficient slow-down factors. Experiments based
on the full SPECfp95 benchmark set and a simulator
for an advanced superscalar architecture indicate the
effectiveness of the model. The resulting CPU energy
savings of our compilation strategy are in the range of
3.97%-23.75% with a performance slow-down of 0.77%-
2.53%. The energy savings of the whole system case are
similar.

We are currently investigating the impact of aggres-
sive compiler optimizations for program performance
on the slow-down opportunities, and possible program
reshaping transformations to enable or enhance slow-
down opportunities. More benchmarking will be done
to further access the benefit of our compilation strat-
egy across a range of applications. Finally, we want
to point out that the slow-down opportunity is based
on the program imbalance and therefore slowing down
the memory subsystem to allow more energy savings in
computation-bound program regions is also possible.
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