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Autograding systems are being increasingly deployed to meet the challenges of teaching programming at
scale. Studies show that formative feedback can greatly help novices learn programming. This work extends
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semester when hints are given for the two assignments and one when hints are not given. Results show that
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three times greater when hints are given compared to when hints are not given. However, on average, even
when hints are provided, almost half of the students fail to correct their code so that it passes all the test
cases. The initial implementation of the framework focuses on the functional correctness of the programs as
reflected by the outcome of the test cases. In our future work, we will explore other kinds of feedback and
approaches to automatically generate feedback to better serve the educational needs of the students.
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1 INTRODUCTION
The current demand for computing professionals is unprecedented, with a short supply in the
US, and the gap between demand and supply is predicted to increase even more in the next few
years [1]. Correspondingly, universities are seeing tremendous enrollment growth in computing
classes and are faced with the challenge of teaching programming at scale [2].
Programming assignments are tools of choice in many computing classes, giving students

hands-on coding practice. However, as autograding systems are deployed to scale the grading of
programming assignments in increasingly large classes, providing meaningful feedback remains an
open problem. Many autograding systems, such as Web-CAT [3] and Autolab [4] do not provide
feedback by default. Even when feedback is available, it often does not assist students in correcting
errors and it does not address underlying misconceptions [5]. In this paper, we aim to answer these
specific research questions:
(1) Can we identify patterns of passed and failed test cases which point to logical errors in the

students’ code? Furthermore, can we partition the students’ code based on logical errors
using these patterns of passed and failed test cases?

(2) How accurate are these patterns of passed and failed test cases for partitioning the students’
code?

(3) If it is possible to partition the students’ code, can we write hints for an autograding system
to give meaningful feedback that actually helps students identify their errors and make
progress?

(4) How are the hints associated with each partition perceived by students and instructors?
Although these research questions have been explored in other works [6–8], in this paper we seek
to develop a systematic way for instructors to follow when designing assignments. We propose a
methodology that is similar in spirit to a previous approach [9], but, instead, focuses on linking
errors to the concepts and skills required for solving a programming assignment. Our work leverages
code testing, which is the most common method for grading and assessment in programming.
Since concepts and skills are shared among assignments, our approach offers the potential for
reusing some of the work done in previous assignments.1 Our approach relies on collecting and
analyzing assignment submissions to generate hints that can be used during future semesters. More
specifically, when designing an assignment using our approach, the instructor explicitly defines
the set of concepts and skills that students need to master to complete the assignment. After the
assignment has been written, a comprehensive test suite is developed to tease out programming
misconceptions and to test the correctness of the code for grading. Next, the assignment is released
and student submissions are collected. The instructor runs the test suite against the submissions and
manually inspects sets of submissions with the same outcome pattern (which we call the signature)
to identify errors. In this process, the test suite can also be refined as needed or desired. Finally, the
instructor maps the errors to specific concepts and skills and writes hints that are designed to guide
the students toward correcting their code and improving their understanding of the corresponding
concepts and skills. The obtained signatures can be used to produce a classifier that automatically
categorizes erroneous submissions, enabling the autograding system to provide hints as feedback
to the student code submissions.
The above methodology encapsulates two key ideas: (1) the instructor can identify high level

logical errors by inspecting sets of submissions with the same error signature if the error signatures
are generated using a comprehensive and well designed test suite, and (2) the mapping of errors to
concepts and skills can produce hints that encourage students to think about their code conceptually,
1Supporting the evolution of assignments while still making use of the collected data is an important extension that we
intend to explore in the near future.
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as opposed to suggesting local, code-specific changes that can lead to highly convoluted solutions,
such as solutions containing unnecessary nested conditional statements. Understanding common
errors in light of the concepts and skills they map to can also help the instructor adjust her classroom
teaching.
We applied our proposed methodology to two assignments in our Introduction to Computer

Science course and collected a large number of submissions for each assignment during three
semesters, Spring 2016, Spring 2017, and Spring 2018. We designed a test suite for each assignment
and used submissions from Spring 2016 to learn classes of common errors, produce classifiers for the
automatic error categorization of future submissions, and write hints. Then, we used the classifiers
to attach hints to the erroneous submissions from Spring 2017. Four researchers manually reviewed
the results of the classifiers and found that over 91% of the hints for the first assignment and over 87%
of the hints for the second assignment fully captured the errors in the corresponding submissions.
These percentages rose to over 96% for both assignments when we counted hints that partially
captured the errors. Based on these promising results, starting with Fall 2017, we deployed the
error categorization and corresponding hints for the two assignments. We compared submissions
from two semesters, one when hints were not provided (Spring 2017) and one when hints were
provided (Spring 2018), and found that when hints were provided, students submitted more often,
more students made progress, and the overall progress toward completing the assignment was
faster. For example, the percentage of students who successfully completed the assignments after
an initial erroneous submission was three times greater when hints were given compared to when
hints were not given.

Moreover, during Spring 2018, we asked students to complete a survey regarding the usefulness
of the hints. We report the students’ responses and their comments about the hints in Section 5.4.2.
Lastly, we asked the course instructors for feedback about the hints. We found that students and
instructors thought that the hints were helpful, but also that they could be improved, in particular
the information provided in the hints as well as their wording. These are highly debatable subjects
that go beyond the scope of our current research.

2 RELATEDWORK
Formative Feedback
Shute [10] reviews feedback given to learners with a focus on formative feedback and concludes
that “feedback used in educational contexts is generally regarded as crucial to improving knowledge
and skill acquisition.” Shute further defines formative feedback as “information communicated to the
learner that is intended to modify his or her thinking or behavior to improve learning.” According to
Ambrose et al. [11], “goal-directed practice coupled with targeted feedback are critical to learning.”
Hints provided by autograding systems can be an important source of formative feedback, but
their impact is not well understood. Marwan et al. [12] explore whether automatically generated
hints can lead to better outcomes for students and whether other forms of feedback such as textual
explanations and self-explanation prompts can improve hints. Our work is complementary to theirs
and their findings can be used to further improve the hints given to students.

Domain Model for Computer Programming
The ability to reason about a specific domain is at the heart of teaching and learning. The process of
autograding is based on using a submitted assignment to build a model of the students’ reasoning
about a specific problem. In CS, an autograder is a system that uses such a model to give students
an accurate grade and, potentially, feedback. Woolf [13] calls these models domain models and
defines them as qualitative representations of expert knowledge in a specific domain. Woolf further
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explains that compiling a domain model for computer programming is very challenging because
programming is a complex, ill-structured design domain. In the context of our class, what helps
alleviate this issue is that we study the assignments of students across semesters and in larger
groups. These larger groups of student share common errors and misconceptions as it has been
observed in prior research [6–8, 14].

Mayer et al. [15] explore the relationship between thinking skills and programming skills. Bren-
nan and Resnick [16] propose three dimensions of computational thinking: computational concepts,
computational practices, and computational perspectives. In this paper, we use a combination of
concepts and skills necessary to solve two programming assignments similar to [15, 16]. Program-
ming assignment problems vary in their difficulty, for example, in the number of solution strategies
they accept [17, 18]. The assignment problems we studied accept multiple solution implementations
and multiple solution strategies which correspond to classes 2 and 3 according to [17, 18].

Tools that Support Feedback at Scale
Several existing tools are designed to help instructors manage the large number of students enrolled
in introductory programming courses. Autograders, for example, are designed to automatically
grade the students’ programming assignments. In our Introduction to Computer Science course
we have adopted Web-CAT [3] and Autolab [4] . To employ these tools, the instructor provides a
grading scheme and an executable file which the systems use to grade the students’ code. Singh et
al. [19] offer an assignment-independent solution to grading by introducing a problem-independent
grammar of features. They use supervised learning to train a classifier on teacher-graded examples.
The classifier maps new student code submissions to grades. Similarly, our work explores the
extension of an autograding system to provide formative feedback by using the results of test cases
as features and a discrete hybrid (unsupervised and supervised) learning algorithm. There are three
categories of systems that provide feedback at scale: tools that support program repair at scale,
tools that generate next-step hints at scale, and tools that support instructor feedback at scale.
Next, we summarize related work in each of these categories. For an in-depth and comprehensive
comparison of various types of tools for automated programming hint generation, we recommend
a recent survey on the subject [20].

Tools that Support Program Repair Feedback at Scale. Providing automatically generated feedback
is a very attractive idea but also a very challenging one. The majority of existing tools can only
give program repair hints to students. Autograder [14] requires a reference solution and an error
model consisting of possible corrections to errors that students might make. Then, it tries to
find the smallest possible number of corrections to the students’ code using a constraint solving
program synthesis approach. Qlose [21] is similar to Autograder, except it does not require an error
model. Instead, it tries to find the best correction by minimizing both the syntactic and semantic
distances to the reference solution. Sarfgen [22] is a data driven program repair framework that
takes advantage of a large number of available student submissions and tries to find minimal fixes
by aligning incorrect programs with similar programs that are correct. MistakeBrowser [9] tries
out various previously seen transformations of the student’s code until the program is correct.
One extension to MistakeBrowser generates hints based on the synthesized correct program [23].
Although such systems have shown great potential in generating the program repair closest to
what a programmer would suggest, this kind of feedback does not cause students to think abstractly
about their solutions.

Tools that Generate Next-Step Hints at Scale. The main difference between the tools that generate
next-step hints and the tools that support program repair is in the granularity of the attempted fix.
While the tools for program repair attempt to fix the issues in the student’s program all at once,
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the tools that generate next-step hints use a step-by-step approach to fixing errors. Hint Factory
[24] uses peer data and a Markov Decision Process to produce next-step hints for the students.
A follow-up approach, the Continuous Hint Factory [25] uses the weighted sum of peer edits to
select the best next step. Zhi et al. [26] use features based on the code structure to extract worked
example pairs which are, then, offered as feedback to the students. Gerdes et al. [27] define a strategy
language that specifies how parts of a solution may be built up from others and uses it to generate
next steps rather than using existing steps from peer data. While the step-by-step approach may be
beneficial due to the breaking down of the complexity of the entire fix, the feedback produced is
very similar to the one generated using program repair.

Tools that Support Instructor Feedback at Scale. CodeOpticon [28] enables instructors to monitor
multiple students simultaneously as they code and give them assistance online. OverCode [29]
and Foobaz [30] cluster student code and report common and uncommon student choices on
syntax and style. AutoStyle [31] clusters correct submissions using the ABC software metric and
propagates hints to each cluster focused on writing simpler code. MistakeBrowser [9] gives teachers
a high-level overview of the students’ misconceptions and the bugs in their code. FixPropagator
[9] learns transformations from incorrect to correct code from teachers fixing bugs in incorrect
student submissions. Teachers can, then, write feedback to a single submission or to a cluster of
submissions and the feedback gets propagated to all submissions that can be fixed by the same
transformation. Our system uses a similar process to propagate the instructor’s feedback on one
submission to all the submissions with similar error signatures, but we use different features to
cluster submissions.

Lastly, a survey on the automated assessment of programming assignments found that many of
the existing tools are either not open to the public or too cumbersome to be adopted by instructors
[32]. In our approach, the instructor is the one designing the feedback by using testcases to assess
the students’ code, a flexible approach that should be easy to adopt.

Clustering Student Submissions and Bugs
Using Test Cases to Cluster Submissions. One approach [8] clusters bug fixes by failed test cases.
Web-CAT [3] includes a library that attaches a hint to each test case. When a submission fails a
test case, the associated hint is returned as feedback. In our experience, it is difficult to write hints
that are not overly specific or overly vague based on the result of one test case. Thus, our approach
uses results from an entire test suite to identify common errors and provide hints.

Using Other Methods to Cluster Submissions. Clustering similar student code submissions in a
robust, general way is challenging. Huang et al. [33] cluster student submissions using the abstract
syntax tree (AST) edit distance. Nguyen et al. [6] cluster functionally equivalent but syntactically
distinct code phrases using probabilistic semantic equivalence. Piech et al. [7] cluster submissions
using neural networks to learn program embeddings. Kaleeswaran et al. [34] cluster dynamic pro-
gramming (DP) submissions using static analysis to detect how students manipulate arrays. Rather
than clustering based on behavioral or syntactic similarity, MistakeBrowser and FixPropagator
[9] cluster incorrect submissions based on the transformation that corrects them. Finally, instead
of clustering code, HelpMeOut [35] clusters bug fixes by compiler error or runtime exceptions.
Our system clusters submissions based on the outcome of a test suite designed to detect common
misconceptions of the course material. Each cluster corresponds to a different set of logical errors
and gets assigned a hint which is returned to the student to assist in correcting her code and
misconceptions.
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Algorithmically Generating Feedback
Providing personalized feedback in Intelligent Tutoring Systems (ITS) is done via constraint-based
methods [36]. However, this approach requires teaching expertise and, often, assignment specific
implementations, which does not scale with the number of assignments. Data-driven procedures
improve existing methods. Newer approaches, ITAP [37] and Codewebs [6] leverage the statistical
properties of a large number of student submissions by extracting patterns that can be used for
refining the clustering and providing improved feedback. These works are complementary to ours
in that they provide automated techniques for providing feedback that could potentially reduce the
human effort required by our framework.
Our research is similar in spirit to other research efforts which support instructor feedback at

scale, in particular to FixPropagator [9]. One important benefit of our approach is that it explicitly
tries to bridge the teaching of abstract concepts with hands-on programming practice. This is
accomplished by linking student programming errors to the concepts and skills taught in the
class. Furthermore, we provide a systematic way to tease out both concepts and skills and the
student errors. This information can be used to further explore the relationship between teaching
programming concepts and student coding errors. For example, the instructors can easily tailor
their teaching of concepts and skills based on the students’ performance on the programming
assignments.

3 CONCEPT AND SKILLS BASED FEEDBACK GENERATION FRAMEWORK (CSF2)
We propose the Concepts and Skills based Feedback Generation Framework (CSF2) for designing
programming assignments based on the concepts and skills that students are required to master
having taken the class. These concepts and skills are used to generate hints for assisting students
in correcting errors. The approach is described as a sequence of steps, but the ordering can be
modified as discussed in Section 4.3. The proposed steps are as follows.
(1) Carefully list the set of concepts and skills that students need to master.
(2) Write the assignment to evaluate these concepts and skills.
(3) Design a test suite to assess student submissions. A full path coverage of a reference solution

is typically a good start (but will need expansion). To test a submission, each test case should
output a code representing the outcome of the test.

(4) Release the assignment and collect student submissions.
(5) Automatically run the test suite against the collected submissions and group submissions

into “buckets” based on their outcome signatures, where a signature is the concatenation of
the codes output by all the test cases in the test suite. Each signature may indicate one or
more logical errors. Our hypothesis is that submissions with the same signature are likely to
have similar logical errors.

(6) Manually inspect each bucket of submissions to see whether subsets of submissions have
different logical errors. If this is the case, then add test cases to the test suite to separate these
subsets into different buckets. The list of concepts and skills may also need to be refined (for
example, to include a concept that has to be mastered for the completion of the assignment
but was accidentally omitted in 1).

(7) Repeat 5 and 6 until submissions in each bucket have the same logical errors.
(8) Map the errors identified for each bucket to concepts and skills. Then, manually inspect

and combine buckets of submissions with the same errors or knowledge deficiencies. Our
hypothesis is that mapping errors to concepts and skills will help instructors reduce the
number of hints that will need to be written, as well as write hints that provide conceptual
guidance rather than very specific code changes.
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(9) Write a hint for each bucket. The outcome of Steps 8 and 9 is a classifier, manually trained
on past student submissions, that maps the outcome signatures of a well designed test suite
to meaningful hints.

(10) When the assignment is run again, the autograding system can use the classifier to au-
tomatically categorize errors and provide hints for submissions that fail one or more test
cases.

While thework in this paper is focused on generatingmeaningful autograding feedback, the above
process is also useful in gaining a better understanding of the students’ errors and misconceptions.
The instructor can use this information to improve the quality of classroom teaching, for example,
in identifying concepts and skills that should be reinforced, as well as adjusting the teaching of
more challenging concepts and skills.

As described above, CSF2 is most useful when an assignment is given during multiple semesters,
with previous submissions used to generate and improve hints for subsequent semesters. Currently,
CSF2 does not directly support the evolution of an assignment over time (for example, changes to
the assignment to discourage cheating or to improve the assignment), although we have success-
fully experimented with changing one of the assignments studied in this paper to an isomorphic
assignment while still making use of analysis results from previous submissions (Section 4.3). This
is an important challenge that we plan to address in the future.
Finally, while the manual inspection of assignments is labor intensive, it is possible to get help

from advanced undergraduate students when CSF2 is applied to early computing classes. As part of
our research, we had three undergraduate students who helped with our case studies.

4 CASE STUDIES
In this section, we describe the application of CSF2 to two programming assignments in the
Introduction to Computer Science course at a large public research university. Even though CSF2
proposes that an instructor start with a list of concepts and skills when designing an assignment,
our case studies start with existing assignments because all assignments are built on an implicit list
of concept and skills and we had already collected a large number of student submissions across
several semesters before the start of this research. In essence, we reversed the order of Steps 1 and
2 in CSF2, and extracted the concepts and skills from existing assignments.

4.1 Application of CSF2 to Two Programming Assignment
Steps 1 and 2: Extracting the Concepts and Skills
We studied two assignments, PayFriend, a class 2 assignment [18], which means that it has one
solution strategy with multiple possible implementations and TwoSmallest, a class 3 assignment,
which means that it has multiple solution strategies, as well as multiple possible implementations
for each strategy. PayFriend asks students to compute the fee associated with making an e-payment
when given a tiered fee structure, with different fees for four payment ranges.TwoSmallest asks the
students to read a sequence of floating point values that starts and ends with a sentinel value and
output the two smallest values in the sequence.
Each assignment requires that the solution be implemented as a method with a prescribed

signature. Students are also asked to submit code in a specific format, including predefined file
and class names and to omit all package and import statements. Failure to follow any of these
instructions results in compilation errors and a score of zero.
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Table 1. The mapping of common errors to concepts and skills for two programming assignments, PayFriend
and TwoSmallest. The base score is used for calculating grades as discussed in Section 5.1.

Code Error Base Score Concept or Skill
Both assignments

COMP has compilation errors 0 writing code that compiles
INS has errors regarding the required

formatting, for example, incorrect
file name

5 following instructions

IO has IO errors, for example, wrong
types of inputs or outputs

10-30 data representation, follow-
ing instructions

INF uses infinite loops 5-40 control flow
PayFriend

CF outputs only in some branches 50 control flow
COND uses incorrect conditional state-

ments
50 translating word problems

into conditional statements
FORM uses an incorrect calculation inside

an interval
50 translating word problems

into formulas
TwoSmallest

SEQ reads and processes incorrectly a
sequence of values

40 data representation, follow-
ing instructions

INIT initializes min values incorrectly 40 algorithmic thinking
UPDT updates min values incorrectly 40 algorithmic thinking

When we started this research, PayFriend and TwoSmallest had already been assigned during
several semesters. We worked with the lead instructor to determine the concepts and skills corre-
sponding to these assignments. Some of these concepts and skills are shown in the right column of
Table 1.

Step 3: Designing the Test Suites
We developed a reference solution for each assignment and designed 13 test cases for PayFriend
and 20 for TwoSmallest that led to a full path coverage of the corresponding reference solution.
Next, we considered more challenging inputs, especially for novice programmers. For example, it
is well known that many programming bugs involve an incorrect handling of boundary values.
Thus, for PayFriend, we designed test cases with input values close to the tier boundaries, as well as
values from the middle of the tiers. The process of designing a test suite was iterative (as discussed
in Steps 5–7 of CSF2). After all the refinements were made, the test suite for PayFriend contained
20 test cases and the one for TwoSmallest contained 30. When these assignments were used during
previous semesters, PayFriend and TwoSmallest were graded using 10 and 7 test cases, respectively.

Step 4: Collecting Student Submissions
We collected student submissions for the two assignments during the Spring 2016 semester using
Web-CAT [3] and during the Spring 2017 and 2018 semesters using Autolab [4]. Table 2 shows
information about our data sets. Each submission included anonymized student information,
a time stamp, and code. In this study, we looked at the submitted code—all submissions were
anonymized by removing all information, including comments, other than the actual code—and
used the anonymized student information to link submissions from each unique student in a
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Table 2. Summary of the data sets used in our study. During each semester, students were allowed to submit
each assignment without penalty up to five times during Spring 2016 and up to three times during Spring
2017 and 2018. The penalty for each subsequent submission was 5 points.

PayFriend TwoSmallest
Spring
2016

Spring
2017

Spring
2018

Spring
2016

Spring
2017

Spring
2018

Autograder used Web-
CAT Autolab Web-

CAT Autolab

Number of submissions 1152 719 936 1339 870 1071
Number of students who sub-
mitted at least once 511 432 487 488 423 476

Average number of submis-
sions per student 2.3 1.7 1.9 2.7 2.1 2.3

% of students who submitted at
least twice 62.0% 36.4% 53.0% 72.3% 54.1% 60.1%

semester (students can submit each assignment multiple times). The submissions from Spring 2016
were used for Steps 5–9 of CSF2 to build an error classifier and generate a set of hints for each
assignment (as detailed below). The submissions from Spring 2017 and Spring 2018 were used to
evaluate the accuracy of the classifiers and the effectiveness of the hints as described in Section 5.

Steps 5–7: Refining Tests and Partitioning Submissions
We used the test suite developed in Step 3 to test and generate the outcome signature for every
code submission. Then, submissions with the same signature were grouped in the same bucket.
Each signature could indicate one or more logical errors. A bucket could be mapped to two or more
independent errors with their own associated hints, but all the submissions in the same bucket
needed to have the same errors so that a meaningful corresponding hint could be generated. If, for
any given bucket, some of the submissions had one error while others had a different error, we
added test cases to separate submissions with different errors into different buckets.

We manually inspected the students’ code in each bucket to determine the main reason why the
code failed one or more test cases. For buckets containing submissions with different knowledge
deficiencies, we refined or extended our test suite to further partition the buckets. We iterated
through Steps 5–7 once for PayFriend and several times, making small refinements each time, for
TwoSmallest. We found that iterations with small refinements were easier to think about. By the
end of the process, we added 7 additional test cases for PayFriend and 10 for TwoSmallest. The final
test suites resulted in 109 non-empty buckets for PayFriend (using 20 test cases) and 137 non-empty
buckets for TwoSmallest (using 30 test cases).

Steps 8 and 9: Combining Buckets and Generating Hints
Next, we manually mapped the main reason for code failure in each bucket to a deficiency in a
concept or skill as shown in Table 1. As already mentioned, we found that many of the buckets were
different manifestations of similar knowledge deficiencies. We merged buckets accordingly, leading
to 8 “super-buckets” for PayFriend and 7 for TwoSmallest (Table 3). Clustering student submissions
for assignments in classes 2 and 3 [18] is a particularly challenging task because their solution
space can be large. Since unit testing mostly focuses on the functionality of the code rather than its
style, we were able to cluster stylistically different student submissions in the same bucket.
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Table 3. Final buckets (classes) of errors for PayFriend and TwoSmallest. The table shows statistics for errors
found in Spring 2017 submissions together with the accuracy of the error classification and hints. The latter
is discussed in Section 5.3.

Error Automatic Partially
Codes Classification Correct Correct

PayFriend
Total Count Count % of Total Count % of Total

COMP 34 34 100% 0 0%
INS 111 111 100% 0 0%
IO 119 114 95.8% 3 2.5%
INF 7 4 57.1% 3 42.9%
CF 38 26 68.4% 4 10.5%
COND 44 39 88.6% 4 9.1%
COND, FORM 91 82 90.1% 9 9.9%
FORM 83 72 86.7% 4 4.8%
Total 527 482 91.5% 27 5.1%

TwoSmallest
Total Count Count % of Total Count % of Total

COMP 39 39 100% 0 0%
INS 105 104 99% 1 1%
SEQ 51 47 92.2% 4 7.8%
INIT 67 56 91.8% 5 8.2%
UPDT 158 129 87.2% 19 12.8%
SEQ, INIT 157 137 91.9% 12 8.1%
SEQ, UPDT 176 145 85.8% 24 14.2%
Total 767 671 87.5% 65 8.5%

We used the clustering of the student submissions from Spring 2016 and the signatures for each
bucket to develop classifiers for every assignment. Then, we ran the classifiers on the student
submissions from Spring 2017 and manually evaluated their accuracy as described in Section 5.3.
Finally, we wrote a hint for each bucket. This hint was given to students after every submission,
based on the result of the assignment’s classifier. The next section provides examples of common
errors and the corresponding hints given to students during the Spring 2018 semester.

4.2 Examples of Common Errors and Hints
Example 1. For PayFriend, common errors include incorrect conditional expressions leading to
incorrect answers for boundary values and incorrect formulas for one or more fee tiers leading to
incorrect answers for entire tiers. It is useful to differentiate between the two errors when giving
students hints. We were able to make this distinction using the combined outputs of multiple test
cases.
More specifically, if a submission fails test cases with input values inside one tier, I, but passes

test cases with input values in other tiers, it is likely that the code does not correctly calculate the
fee for tier I. This signature leads to the following hint for tier ($100, $1000): “It seems that you
are not correctly calculating the fee for payments in the range (100, 1000) . Review the assignment
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instructions, check that your formula for computing the fee is correct, then follow the steps used in the
calculation of the fee in your code and make sure that they implement the correct formula.”
On the other hand, if the submission passes test cases with input values inside I, but fails test

cases with inputs near the upper or lower boundaries of I, it is likely that the code uses incorrect
conditional expressions. This may arise from a misunderstanding of conditional statements and
expressions, or a misunderstanding of the assignment instructions, or both, hence the mapping to
the skill translating word problems into conditional statements. For example, discriminating between
≥ and > in a conditional expression requires understanding boundary values and how they differ
among data types. For integers, x < 100 is equivalent to x ≤ 99, but this is not true for real values.
Thus, we wrote the following hint for this class of errors: “It seems that you did not split the input
intervals correctly, where some values at the boundary between intervals may have been included
under the wrong formula/rule; that is, your conditional expressions may be incorrect, for example you
may have ≥ 101 instead of > 100 which are not equivalent expressions for double values.”

Example 2. For TwoSmallest, given the material that has been taught in class, most students develop
algorithms that have two major steps: (1) initialize two variables for storing the two smallest values,
and (2) read the input sequence and update the variables correspondingly. Many students do not
consider what values they should use to initialize the variables and end up using improper initial
values such as 0. By using the results of several test cases with input values that are positive,
negative, and mixed, we can tell whether or not a submission has this mistake. We map this error
to algorithmic thinking, which reminds us to view the error in light of the student’s algorithmic
design effort. This leads to the hint: “It seems that you did not initialize the variables used to hold
the minimum and secondMinimum to reasonable values. Think about how the starting values would
affect your algorithm for finding the two smallest values. In particular, what would happen if the
input values in the sequence were greater, equal or less than the starting values for your minimum and
secondMinimum.”

Updating the two variables in TwoSmallest requires algorithmic thinking, and can be a challenge
for students new to programming. Many students tend to think about the update process in
fragmented, poorly coordinated pieces. To assess if the update of the variables is done correctly,
we test input sequences that are permutations of two and three given numbers. If the submitted
code passes all the test cases with a valid input of size two but fails the test cases where the third
value is less than the minimum value, then it is highly likely that the student is not updating the
minimum value correctly. The mapping of the error to “algorithmic thinking” leads us, again, to
a hint designed to steer students toward developing this skill: “It seems that you did not update
the variables holding the minimum and/or secondMinimum values correctly. Think carefully about
the algorithm that you are developing to update your variables. It may help to think about what
would happen if the sequence had the same number appearing multiple times; for example, all possible
permutations of 3 numbers with repetition.”

4.3 Discussion
CSF2 was developed in the context of an introductory course, but we believe that its design is
sufficiently flexible to be extended and adapted to serve the needs of other programming courses that
use autograding. It can assist instructors in various tasks from creating assignments to reviewing
course material and encouraging informal interactions between students through discussion of the
hints. In this section, we discuss possible modifications to CSF2 and to the use of the set of concepts
and skills for each of the assignments.

4.3.1 Modifications to the Framework. Top-down and bottom-up are two well known strategies of
information processing and knowledge ordering, and our framework can be modified to employ
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either of them. The top-down approach starts with the whole problem and decomposes it into
individual steps. The bottom-up approach pieces together individual parts into bigger parts. The
process described in Section 3 is meant to be a guideline for best practices. As written, it describes
a top-down approach to the design of assignments using specific sets of concepts and skills. The
advantage of this approach is that assignments are carefully and systematically written to target
specific course material. However, in practice, and as we saw in our case studies, instructors may
already have the assignments written and used. In these situations, a bottom-up approach can be
applied. This approach has a few advantages: previously collected submissions can be used to guide
the derivation of the set of concepts and skills that map to the specific assignment, it provides a way
to design or improve the test suite, and it gives instructors a way to generate the error classifiers
and hints.
Much of the manual work done for this research was labor intensive because we manually re-

viewed all the erroneous submissions for PayFriend and TwoSmallest. As an alternative to reviewing
all the submissions, it may be sufficient to use random subsets of varying sizes to determine how
the error categorization and hint generation change with sample size. We will consider this analysis
in our future work.

4.3.2 Using the Set of Concepts and Skills which map to Specific Assignments. One advantage of
using a specific set of concept and skills which map to an assignment and an error classifier is the
ability to query which concepts and skills students are struggling with, similar to the results shown
in Table 3. With this information, instructors can design interventions targeting specific knowledge
deficiencies. These interventions can be used prior to the administration of the assignment. Some
of these proposed interventions may include additional exercises, textbook references, or video
lessons.
Instructors can also take advantage of the set of concepts and skills when assigning partial

credit to autograded assignments. Traditionally, grading rules for autograders have been very
rigid, following the boundaries of unit testing and leading to a linearly scaled grade based on the
percentage of passed test cases. Relying on test cases alone to grade submissions has resulted in
some unexpected behaviors. For example, instructors at our university reported that students at
either end of the scoring spectrum (that is, those who received no credit and those who earned
nearly full credit despite still having important misconceptions and mistakes), gave up working
on and completing their programming assignments. With our proposed approach, instructors can
assign scores based on the importance they allot to each concept or skill. For example, for PayFriend
we weighed all the tested concepts. Students who understood the assignment but would have,
previously, received low grades due to failed test cases were assigned scores more fairly and the
scores better reflected their understanding of the problem and its solution. Conversely, we found
submissions that failed a few test cases covering core concepts and would have previously received
a nearly perfect score. The weighted scoring scheme lowered the scores of these submissions
because the test case failures showed important misunderstandings and served as a motivation for
students to improve their solutions.
Finally, the set of concepts and skills and buckets of common errors can aid in the generation

of isomorphic assignments while reusing the error classifier and hints. For example, during the
Fall 2017 semester, we modified TwoSmallest to TwoLargest, an assignment that asked students to
output the two largest values in a sequence. In this instance, we were able to reuse the test suite,
classifier, and hints with only small changes. This can be a starting point for extending CSF2 to
support the evolution of assignments over time (for example, to circumvent cheating) while reusing
the classifiers and hints.
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5 FINDINGS FROM CASE STUDIES
In this section, we present findings from our case studies. We first assess the accuracy of the
automatic error classification and whether the hints captured the errors in the code submissions
collected during Spring 2017. Recall that the classifiers were developed using the submissions
collected during Spring 2016 as described in the last section. Then, we used code submissions from
Spring 2017 and Spring 2018 together with results from a survey conducted in 2018 to assess the
usefulness of the hints.

5.1 Datasets, Feedback, and Grading
As mentioned before, Table 2 summarizes the data sets used in our evaluation, with submissions for
Spring 2016 collected using Web-CAT and submissions for Spring 2017 and Spring 2018 collected
using Autolab. Web-CAT was configured to test the students’ code using 10 test cases. Students
were allowed to submit each assignment multiple times - five times without penalty, then with
a 5 point penalty for each subsequent submission. For each submission, Web-CAT provided the
following feedback: a score, whether the submission passed each test t in the test suite, and, in case
of failure, a hint associated with the specific test case.2 The instructor wrote the test cases and the
hints at the same time. Scores were calculated as a weighted sum of the passed test cases.
Instructors made a few observations during Spring 2016 which led to changes during Spring

2017 and Spring 2018:
(1) when given feedback on which test cases passed and failed, students were guessing what

were the failed test cases and adjusted their code to correct for those specific test cases rather
than think about their overall solution.

(2) some students who had gotten a good start but whose code did not compile or whose code
failed all the test cases would give up because of a low score.

(3) some students who had gotten a sufficiently high score would stop working on their code
because they were more motivated by getting a “good enough” score than by arriving at a
complete solution.

For both semesters when it was used, Autolab was configured to test the students’ code using 20
test cases for PayFriend and 30 test cases for TwoSmallest, generated as described in Section 4.1.
Again, the students were allowed to submit each assignment three times without penalty, then with
a 5 point penalty for each subsequent submission. During Spring 2017, the only feedback that the
students received for their submission was a “progress signal” as described below. During Spring
2018, feedback for each submission included a progress signal and hints generated as described
in Section 4. In our assessment of the usefulness of the hints, we focused on comparing the two
semesters that were most similar, Spring 2017 and Spring 2018, although, for completeness, we also
include the data and results from Spring 2016.

The above observations lead to the following changes for the Spring 2017 and 2018 semesters:
(1) After each submission, students were given a progress signal instead of a score. Scores were

revealed only after the assignment due date when students were not allowed to submit
anymore.

(2) Scores were calculated using a scheme in which the weighted sum of the test results was
added to a base score (Table 1).

(3) During Spring 2018, as part of the feedback, students also received hints associated with the
error class corresponding to the errors in their submission.

2Students were not given information on the test cases themselves.
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Progress signal. To discourage students from targeting their code to specific test cases, starting
with Spring 2017, instructors changed the feedback given to students to a signal indicating overall
progress instead of an actual score or information about the number of passed and failed test cases.
In this scheme, a submission would be tagged with a red “light” for a score below 20, a yellow “light”
for a score between 20 and 60 for PayFriend and between 20 and 80 for TwoSmallest, and a green
“light” for a score above 60 for PayFriend and above 80 for TwoSmallest. Instructors explained to the
students that red meant that a submission was very far from a correct solution, yellow meant that
a submission was on the right track but was still giving the wrong answer for many test cases, and
green meant that the submission was definitely on the right track, but there was no guarantee of a
perfect score or that the submission had passed all the test cases. The latter was used to encourage
students to think about comprehensive test plans rather than gaming the system to try to get a
perfect score. The final scores were released to the students after the assignment deadline.

Scheme used for calculating scores. For each error class, instructors assigned a base score, shown
in Table 1. Scores for each submission were calculated by adding the base score associated with
the error class to the weighted sum of the passed test cases. The weights used for each passed test
case were 1 for PayFriend and 1.5 for TwoSmallest. For example, if a code submission for PayFriend
was labeled with COND and it passed 15 test cases, its score became 50 + 15 ∗ 1 = 65. This grading
scheme made the grades approximately follow a normal distribution because it moved the scores on
submissions that did not pass any test cases from zero to some partial credit and submissions that
were near completion from a near perfect score to a score that was less than 85 for each assignment.
This scheme increases the scores for early but significant efforts to encourage students to keep
trying and it also increases the value of “solving the few remaining bugs” to encourage students
who are doing well to keep trying.

5.2 Significance Test
In our analysis, we use Pearson’s χ 2 test to determine the significance of the difference between
two proportions, and the Kolmogorov-Smirnov test to determine the significance of the difference
between two cumulative distributions (e.g., comparing numbers from Spring 2017 and 2018). We
use a significance level of 0.05.

5.3 Accuracy of the Error Classification
We begin our evaluation by assessing the accuracy of the error classifiers. These classifiers were
produced from submissions collected during Spring 2016 and run on submissions from Spring
2017. After classifying Spring 2017 submissions, we asked three undergraduate students who had
previously taken our Introduction to Computer Science course to carefully review the submissions
and the errors produced by the classifiers and assess the accuracy of the classifications and the
potential efficacy of the corresponding hints. At the time this paper was written, these students
were enrolled in our computer science program or had recently graduated with a computer science
degree. We believe that having done the assignments themselves while taking the course gave
these students a good perspective in the evaluation of the automatic error classification.

Human evaluation approaches can be subject to biases (e.g., knowing categories ahead of time can
lead to conformity bias). We took some measures to reduce or minimize such biases. In particular,
we asked the evaluators to assess the code and write an appropriate hint before deciding if the
“autogenerated” hint was suitable. The hints they wrote were very similar to the autogenerated
hints. For example when a student got one of the formulas wrong, one of the evaluator’s hint was
“check your math.” Hints were not given when the evaluators took the class, and so they were not
biased that way. Finally, the evaluation presented here only provides evidence for the accuracy
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of the error classifiers. Ultimately, the impact of the error classification and of the corresponding
hints on the students, reported below, is the most important.

To evaluate the classifiers, each erroneous submission and its corresponding error class and hint
was labeled either Correct, Partially Correct, or Incorrect. The Correct label meant that the automatic
diagnosis and corresponding hint fully captured the logical errors in the submission, and so would
potentially provide useful guidance to the student. Note that we say “potentially” since the labeling
was done by people other than the owners of the submissions. The Partially Correct label meant
that the diagnosis and hint only partially captured the errors in the submission. Incorrect meant that
the errors were misdiagnosed and so the hint was misleading or would not have made sense. Each
submission was inspected and evaluated by at least two people. The results were analyzed by one
of the authors (who did not do the labeling) to resolve conflicts and to ensure consistency between
evaluations. We computed the inter-rater reliability score by assigning 1 to all the instances where
the reviewers agreed and 0 otherwise, summed for all the submissions and divided by the total
number of submissions. The inter-rater reliability score we obtained was 93%.

Table 3 summarizes the results of the manual evaluation of the accuracy of the error classification.
In particular, it shows that the classification was correct for 91.5% of the code submissions for
PayFriend and for 87.5% of the code submissions for TwoSmallest. Moreover, the manual inspection
of the submissions and their classification for both assignments revealed errors that would have
been difficult to detect with the gray box testing we used. We call it “gray box testing” because we
had limited knowledge about each student’s code at the time when the test cases were designed.
Furthermore, the test cases were designed for a full path coverage of the reference solution as
described in Section 4.1, which may or may not be close to the student solutions.

To demonstrate the inherent limitations of gray box testing for PayFriend, consider the student
code in Figure 1. This code passes only the test cases for inputs smaller than 100. The classifier
labels it as FORM (see Table 1), because it is using incorrect calculations inside three out of the four
intervals. The student seems to have a poor understanding of control flow and of the difference
between consecutive if s and if-else. An accurate hint would tell the student that, for payments
greater than 100, the code may change the fee multiple times which would be considered incorrect
behavior. The simplest fix is to add an else after each if and to put the following conditional
expressions inside that else. The code example in Figure 1 shows that, because of the semantic and
functional brittleness of code [38], slight deviations in the code’s block structure can result in an
error signature that the classifier is not able to properly label. As such, to improve the accuracy of
the classifier, we would need more powerful methods of assessment (for example, code analysis
techniques).

Despite the above limitations, the high accuracy of the error classification and corresponding hints
provides strong evidence that they are appropriate for the vast majority of erroneous submissions.
Thus, we deployed the classifiers and corresponding hints during the Spring 2018 semester.

5.4 Usefulness of the hints
We compare the data from Spring 2017 and Spring 2018 because these two semesters are the most
similar – they used the same autograder, the same progress signal (“light” colors instead of scores),
the same grading scheme, and the same number of submissions allowed without penalty. The
difference between the two semesters was in whether students were given hints or not. We added
data from Spring 2016 for interest, but do not include it in the analysis of the usefulness of the
hints because the two semesters when students received hints (Spring 2016 and Spring 2018) were
very different. As explained above, during Spring 2016, a different autograding system was used
that associated a hint to each test case and a different formula was used to compute the score for
each submission. Note that the scores shown for Spring 2016 in this section are not the actual
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1 pu b l i c c l a s s PayFr i end {
2 pu b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
3 doub le payment=IO . readDoub le ( ) ;
4 doub le f e e =0 ;
5

6 i f ( payment >15000 ) {
7 f e e + = ( 1 0 0 0 0 ∗ 0 . 0 1 ) + ( 5 0 0 0 ∗ 0 . 0 2 ) + ( ( payment −15000 ) ∗ 0 . 0 3 ) +5 ;
8 }
9 i f ( payment >10000 ) {
10 f e e + = ( 1 0 0 0 0 ∗ 0 . 0 1 ) + ( ( payment −10000 ) ∗ 0 . 0 2 ) ;
11 }
12 i f ( payment >1000 ) {
13 i f ( ( payment ∗ 0 . 0 1 ) >15) {
14 f e e +=payment ∗ 0 . 0 1 ;
15 } e l s e {
16 f e e +=15 ;
17 }
18 }
19 i f ( payment >100 ) {
20 i f ( ( payment ∗ 0 . 0 3 ) >6) {
21 f e e +=payment ∗ 0 . 0 3 ;
22 } e l s e {
23 f e e +=6 ;
24 }
25 }
26 i f ( payment <100 ) {
27 f e e +=5 ;
28 }
29

30 IO . outputDoubleAnswer ( f e e ) ;
31 }
32 }
33

Fig. 1. Example of student code that was improperly labeled by our classifier.

scores that the students received, but rather the scores that students would have received with the
grading scheme from Spring 2017 and Spring 2018 (Section 5.1). Overall, the data from Spring 2016
is consistent with observations from the comparison between Spring 2017 and Spring 2018, that is, the
performance of students on programming assignments improves when they receive hints.
We use two measures to evaluate the usefulness of the hints generated using our framework:

empirical usefulness and perceived usefulness. We say that hints are empirically useful if there are
statistically significant differences between the semester when students did not receive hints (Spring
2017) and the semester when students received hints (Spring 2018) in terms of resubmission rate,
final score, score difference between the first and last submission, and score difference between
consecutive submissions. We determine whether hints are perceived as useful from the students’
responses to a survey completed at the end of the Spring 2018 semester. We examine the distribution
of student responses to specific questions, their comments in response to the hints, and anecdotal
information from instructors.
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5.4.1 Empirical usefulness of the hints. To assess the empirical usefulness of the hints, we analyzed
the differences between Spring 2017 and Spring 2018 in terms of the cumulative percentage of
students who resubmitted their assignment, the final scores, the score differences between the
students’ first and final submission, and the score difference between consecutive submissions.

Fig. 2. Cumulative distributions and histograms showing the percentage of submissions that are the nth

submission from a student out of all submissions. A “lower” CDF indicates higher percentages of later
submissions, corresponding to students submitting more times. For Spring 2016, students were allowed to
submit up to 5 times without penalty, compared to 3 times for 2017 and 2018, which is likely the reason for
the observed highest rates of re-submissions in 2016.

First, we observe an increase between Spring 2017 and Spring 2018 in the number of assignment
resubmissions, both in terms of the percentage of students who resubmitted (shown in the last
row of Table 2) and the cumulative distribution of the percentage of submissions that are the nth
submission from a student out of all submissions (shown in Figure 2). The last row in Table 2 shows
that the percentage of students who resubmitted increased between Spring 2017 and Spring 2018,
but the difference is statistically significant only for PayFriend. This increase is represented in a
rightward translation of the line, up to three submissions. Then, the lines converge because of
points being deducted after more than 3 submissions, that is 5 points of the student’s grade were
subtracted from the score for every submission after the third one. We believe that the higher
resubmission rate for Spring 2016 can be explained by the fact that students were able to submit
their code 5 times without a penalty instead of 3 times during the other semesters.

The rate of resubmissions is important but it gives only one piece of evidence for the usefulness
of the hints. We further look at additional usefulness indicators.
We define two other measures which we believe point to the empirical usefulness of the hints:

the efficacy of the hints as the overall progress students made between their first and last submission
measured as a difference in score and the efficiency of the hints as the progress with each resubmission
measured, again, as a difference in score. Our assumption is that the increase in overall score and
the increase in score with each resubmission are evidence of the usefulness of the hints.

Efficacy of the hints. We measured the efficacy of the hints by the progress students made toward
completing their assignment when they were given hints after each submission. We evaluated
progress by the percentage of students who successfully completed the assignment and by the
increase in score between the initial and final submissions.

We noticed a substantial difference between the percentages of students who successfully com-
pleted the assignment in one submission, the percentages of students who successfully completed
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Table 4. Percentages of students who completed (that is, received a prefect score for) each assignment and
the number or submissions it took (one or multiple). † marks a statistically significant change between Spring
2017 and Spring 2018.

PayFriend TwoSmallest
Spring Spring Spring Spring Spring Spring
2016 2017 2018 2016 2017 2018

Students who successfully
completed the assignment in
one submission

26.8% 30.4% 22.5% 15.6% 14.4% 22.5%

Students who successfully
completed the assignment
after resubmitting

34.4% 11.6% 31.8%† 30.9% 9.2% 28.8%†

Total students who success-
fully completed the assign-
ment

61.2% 42.0% 54.3% 46.5% 23.6% 51.3%†

Total students who did not
complete the assignment 38.8% 58.0% 45.7% 53.5% 76.4% 48.7%†

Fig. 3. The cumulative distribution of students’ final scores for each assignment along with the histogram
showing the distribution of grades in buckets of 10 points. For example, at 60, the bars show the percentages
of scores between 60 and 69. At 100, the bars indicate the percentages of scores equal to 100.

the assignment using multiple submissions, and the percentages of students who did not complete
the assignment (Table 4). Although we see some differences between the percentages of students
who successfully completed the assignments in one submission, analyzing them goes beyond the
scope of our study given that the two populations of students come from two different semesters.
These differences are also not statistically significant. When hints were provided, the percentage of
students who successfully completed their assignment after resubmitting almost tripled for both
assignments compared to the semester during which no hints were provided (these numbers are
shown in the second row of Table 4), and the difference is statistically significant.

Figures 3 and 4 show the distributions of the students’ final scores. In particular, for students who
submitted multiple times (Figure 4), for PayFriend, about 5% more students received a final score
between 20 and 55 and about 20% more students received scores above 70 during Spring 2018 than
during Spring 2017. This difference is statistically significant. Interestingly, the CDFs for PayFriend
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Fig. 4. The cumulative distribution of final scores for students who submitted multiple times along with the
histogram showing the distribution of grades in buckets of 10 points. For example, at 60, the bars show the
percentages of scores between 60 and 69. At 100, the bars indicate the percentages of scores equal to 100.

Fig. 5. Cumulative distributions and histograms of differences in score between the final and first submissions
for all students who submitted multiple times. Numbers are shown for 20 percentage point increments (for
example, at 30, the bars show the percentages of students with a difference in score between 20 and 40. The
x-axis indicates the score difference and the y-axis indicates the percentage of students whose score difference
matches x.

show sharp rises around 20, 60 and 100. We believe that these sharp rises (and the relative flatness
in between) can be attributed to the fact that: (1) the assignment is simple, and so students tend
to earn points in large chunks, and (2) 20 and 60 are boundary scores when the progress signal
changes from red to yellow and from yellow to green for Spring 2017 and Spring 2018. Many of the
students stopped working on their code when they received the green light signal, even though
the instructors explained that getting a green light did not guarantee a perfect score. Students
understood this guideline much better for TwoSmallest, which explains why more students received
higher scores in the “green light” range for the second assignment. For TwoSmallest, we see a similar
trend with about 10-20% more students receiving final scores above 85 during Spring 2018 than
during Spring 2017. These differences in the cumulative distribution of the students’ final scores
suggest that the hints were useful.
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Table 5. Percentages of students who were able to fix all their errors after one resubmission (out of all the
students who did not achieve a perfect score on their first submission). † marks a statistically significant
difference between Spring 2017 and Spring 2018.

PayFriend† TwoSmallest
Spring 2016 27.34% 19.86%
Spring 2017 22.83% 21.00%
Spring 2018 37.62% 23.90%

Figure 5 shows, for each assignment, three cumulative distributions, one for each semester of
interest, of the differences in score between the final and first submissions. During the semester
when hints were given, a higher percentage of students made moderate progress as reflected in an
increase in their score between 30 and 45 for PayFriend and between 20 and 40 for TwoSmallest.

Finally, we note that it appears that hints are most useful for students who are close to getting a
perfect score. In addition, for PayFriend, the hints seem to also help students with a score between
20 and 30. These are students who do not use the IO module properly; the IO module is an interface
for receiving input and supplying output.

Efficiency of the hints. Intuitively, the efficiency of the hints has to do with how much quicker
students make progress toward completing the assignment when they receive hints compared
to when they do not receive hints.More specifically, for all the students who submitted multiple
times, we used their submission history to create pairs (i,i+1) of consecutive submissions. Next, we
counted all the pairs for which the first submission i and the following submission i+1 were labeled
with the same error class. We show the results in Table 5 and Figure 6.

Firstly, we observe an increase in the probability that a student will complete their assignment
(that is, their submitted code will pass all the test cases) with every resubmission as reflected by
an increase in the percentage of students who fixed all their errors in one resubmission for the
semester when hints were provided, which is statistically significant for PayFriend. In Table 5, for
each assignment, we show the percentages of students who fixed all their errors in one resubmission,
by assignment. To calculate these percentages, we counted all the pairs of consecutive submissions
for which the first submission i was labeled with an error class and the following submission i+1
had no error. During the semester with hints, more students were able to complete their assignment
after one round of hints, but only for PayFriend was the difference between semesters statistically
significant.

Secondly, we see a decrease between Spring 2017 and Spring 2018 in the percentages of submis-
sions that were stuck in the same error class from one submission to the next except for INS and
COND for PayFriend and COMP and UPDT for TwoSmallest as shown in Figure 6. We calculated
the percentage of submissions stuck in each error class by using the number of pairs of submissions
which started and ended in that error class and divided it by the number of all the pairs of submis-
sions for which the first submission was in that error class. For PayFriend, we see progress for all
error classes, except for INS, which is the error class in which the student’s code was saved under
the wrong filename, the class or method names were wrong, and COND, which is the error class in
which the student’s code failed one or multiple test cases for boundary values. It is difficult to point
out these errors without giving away the answer or revealing the test cases, which we are trying to
avoid. For TwoSmallest, we see a smaller progress for the majority of the error classes, with a slight
increase for UPDT and a bigger increase for COMP. We think the smaller progress is linked to the
greater complexity of the assignment. For TwoSmallest, the solution strategy comprises three main
tasks: differentiate valid entries from terminating values (SEQ), initialize the variables to store the
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Fig. 6. Histograms showing the distribution of submissions stuck in an error class from one submission to the
next. The x-axis indicates the error class and the y-axis indicates the percentage of students who were not
able to make progress from the previous submission. For Spring 2016, COMP column looks like it’s missing
because of the graph scale and the fact that it is only 1%.

minimum values (INIT), and update these variables (UPDT). INIT and UPDT point to parts of the
strategy that are separate, that is INIT ends when the first two valid values are read, and UPDT
starts with the third valid value. SEQ points to the part of the strategy that is interleaved with
INIT and UPDT, but the behavior of SEQ changes from INIT to UPDT as follows: during INIT, the
terminating values are discarded and new values are being read, whereas during UPDT, the read
stops when the terminating value is read. To test for errors in the class INIT, students need to test
for all the possible combinations of two numbers with repetition, that is 3 or 4 test cases; the two
numbers represent the first two valid entries in the sequence. For the error class UPDT, in the least,
students need to test for all the possible combinations of three numbers with repetition (three or
more, anything more than two), that is 12 or more different test cases. Finally, an additional four or
more test cases are required to test the behavior of UPDT (incorrect update of min values, Table 1),
using number sequences with additional terminating values interleaved between the first input
(the terminating value), and the first valid input (different from the terminating value), and number
sequences with additional terminating values between the first two valid entries. This analysis
shows that TwoSmallest is far more complex than PayFriend. However, for both assignments, we
see that fewer submissions were stuck in the same error classes during Spring 2018 than during
Spring 2017.
Finally, we note that hints appear to be helping at least some of the students make progress in

addressing errors in their code. As shown above, for the semester with hints, there was a decrease
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Table 6. Assignment completion rates for all students and for students who completed the TAM survey. “One
submission” encompasses students who have submitted each assignment only once; “multiple submissions”
means that students submitted at least one of the assignments multiple times.

Assignment completion All Students
(459 total)

Survey Respondents
(287 total)PayFriend TwoSmallest

One Submission

yes yes 22 (4.8%) 15 (5.2%)
yes no 16 (3.5%) 9 (3.2%)
no yes 23 (5.0%) 13 (4.5%)
no no 34 (7.4%) 14 (4.9%)

Multiple Submissions

yes yes 135 (29.4%) 99 (34.5%)
yes no 77 (16.8%) 43 (15.0%)
no yes 59 (12.9%) 41 (14.3%)
no no 93 (20.3%) 53 (18.3%)

Fig. 7. The distribution of student answers to questions in our survey: Learn - The hints provided by Autolab
helped me learn, Learn Java - The hints provided by Autolab were useful for learning to program in Java, Diff
Assign - The hints provided by Autolab were helpful when I was working on a difficult assignment, Autolab -
Autolab improved my abilities as a Java programmer, Correct Errs - The hints provided by Autolab helped me
correct my errors, Correct Sols - The hints provided by Autolab helped me write correct assignment solutions,
Overall - Overall, I found the hints provided by Autolab very useful.

in the percentage of students who were stuck in the same error class, and more students were able
to complete their assignment after resubmitting just once, compared to the semester without hints.

In conclusion, the hint system we implemented in Autolab as proof of concept for our proposed
framework appears to help students make progress from one submission to the next, as well as
improve their final grade. However, they do not seem to help students equally: it appears to provide
more help to students whose code is in certain error classes and those who are near the completion
of their assignment.

5.4.2 Perceived usefulness of the hints. To assess the perceived usefulness of the hints, we look
at the distribution of the students’ responses to a survey completed at the end of the Spring 2018
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Fig. 8. Perceived usefulness of Autolab and the hints, as reflected by the responses to the TAM survey; The
plot shows what Autolab features students thought could be improved: 1 - Having more help when learning
how to use Autolab, 2 - Having more assistance when having difficulties with Autolab, 3 - Having more help
when something goes wrong in Autolab, 4 - Not having to use the IO module, 5 - The wording of the hints, 6 -
The information provided by the hints, 7 - other, typed by the student.

Table 7. Percentage of students who agreed with survey statements. “One Submission” means that students
submitted each assignment once and “Multiple Assignments” means that students submitted at least one
assignment multiple times. Note that students submitting just once would still have gotten hints unless they
received a perfect score.

One Submission Multiple Submissions
Neither

Completed
Completed
One or Both

Having more help when learning how
to use Autolab 35.3% 35.8% 21.3%

Having more assistance when having
difficulties with Autolab 45.1% 50.9% 39.3%

Having more help when something
goes wrong in Autolab 47.1% 56.6% 44.8%

Not having to use the IO module 29.4% 28.3% 30.1%
The wording of the hints 60.8% 67.9% 71.6%
The information provided by the hints 60.8% 69.8% 82.0%
Other 5.9% 9.4% 3.3%
No Answer 0.0% 0.0% 1.1%

semester, their comments on the hints in Autolab, and the anecdotal information provided by the
instructors of the course.

Survey Results. We built a survey using the Technology Assessment Model (TAM) [39] to assess
the perceived usefulness and ease of use of Autolab, with focus on the hints.3 At the end of the
Spring 2018 semester, we asked the students to complete this survey for a small credit toward their
3A copy of the survey can be found here: https://drive.google.com/file/d/1rX5tmIY38Eb3NqmKO4xo_7d3V8ZkdkEx/view?
usp=sharing
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final grade. Out of the 459 students who submitted at least one of the assignments in Autolab, 287
students completed the survey. Table 6 shows assignment completion rates for survey respondents
and for all students. An assignment is considered complete when it passes all the test cases and
receives a score of 100. Given that the two distributions (“All Students” and “Survey Respondents”)
are similar, we conclude that the sample of survey respondents is representative of the student
population who submitted their assignments to Autolab during Spring 2018. Next, we present
results from the analysis of the students responses.
We start by using 7 of the survey questions, 6 of them asking about the hints and one of them

asking how much the students agreed that Autolab improved their abilities as Java programmers
(Figure 7). Our first observation is that nearly two thirds of the students agreed that Autolab
improved their abilities as Java programmers, whereas only between about one third and about one
half of the students agreed that the hints were useful. Among questions about the usefulness of
hints, a slightly higher number of students (about 10% more) agreed that the hints were useful for
correcting errors and for writing correct assignment solutions. It is unclear whether students who
did not find the hints useful had that perception because they were looking for more detailed and
explicit feedback. Such feedback would be against the spirit of our approach: we want to give hints
that enable students to think about the problem and then make progress, rather than follow detailed
instructions on how to correct their code. It would be interesting to obtain more information about
the students’ thoughts on this matter in the future.
Secondly, we observe that about two thirds of the students thought that the wording of the

hints and the information provided by them needed improvement (Figure 8). When combining
the percentage of students who agreed with the survey statements broken down by number of
submissions (one vs multiple) and the assignment completion rates shown in Table 7, we see
that the most selected options for improvement could be categorized as: those regarding using
the autograding system and those regarding the hints. Students who submitted multiple times
but did not complete any of the assignments expressed more often that the autograding system
needed improvement, whereas students who completed at least one of the assignments more
often expressed that the language of the hints and the information provided by the hints needed
improvement. Finally, fourteen students selected Other to answer the question of what needed
improvement and typed their suggestions: five students mentioned the way files were uploaded
in Autolab, five students mentioned the color “lights” shown instead of scores, three students
wrote that test cases would have been more useful feedback than the color “lights”, and finally
two students mentioned that Autolab was slow, especially when approaching the assignment
submission deadlines.
Thirdly, in Figure 9, we see that the likelihood that a student perceived the hints as helpful

increased with their score as shown in the graphs titled Learn and Correct Errs, and that more
students who obtained higher scores had neutral answers to the survey questions as shown in the
graph titled Neutral Answers. The score is shown as the light color corresponding to the average
between the student’s score on the final submission for PayFriend and the score on the final
submission for TwoSmallest. Moreover, we see that, as the average number of submissions increased,
students were more likely to agree that the hints were useful in correcting their errors (second row,
right side graph in Figure 9), and that fewer of them had neutral answers (forth row, right side
graph).

Students’ comments on hints. In Autolab, students had the option to write a comment or feedback
every time they received a hint. Students wrote 25 comments for PayFriend and 19 comments for
TwoSmallest. Most commonly, the students’ comments expressed disagreement with or confusion
about the hints. One student’s comment expressed that the error in the code had been correctly
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Fig. 9. Distribution of survey responses by average grades and by average number of submissions. The
first column shows the distributions of the average score between the final submissions for PayFriend
and TwoSmallest from lowest (red) to highest (green) by survey responses. The second column shows the
distribution of the average number of submissions by survey responses.
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identified by the hint. Most often, the students said that they disagreed with the hints they received
because their code had passed the test cases and they often asked for the test cases that their code
had failed. They also asked for more details about their errors, such as what was the line number
in their code containing the error. Finally, many students thought that the assignment descriptions
were not clear.

Anecdotal information from instructors. Overall, the instructors communicated that they found
the hints to be useful, but that they were not enough to correct the students’ thinking. They offered
suggestions for improving the hints such as: changing the wording of the hints, improving the
accuracy of the hints, and improving the content of the hints. For example, they thought that
providing failed test cases along with the wording of the hint would be very useful for the students.
However, figuring out what is the best information and the best way to present it to students is an
open question beyond the scope of this research. Our aim was to write hints that gave students
enough information to correct the logical errors in their code without giving away the answers.
Moreover, the hints were provided only for a subset of the assignments and instructors reported
that students were asking for hints for assignments that did not provide hints, suggesting that
students at least perceived the hints to be useful (whether they actually were or not).
In conclusion, both students and instructors were in agreement that the hints were useful, but

that they could be improved, in particular the information provided in them as well as their wording.
We plan to explore these directions in our future work.

6 CONCLUSIONS
In this paper, we presented a methodology that bridges the gap between autograding and the
knowledge assessment of programming assignments to provide meaningful feedback to students.
Our methodology asks the instructor to systematically analyze programming assignments with
respect to knowledge maps to ensure course cohesion between the specific challenges posed to
students by the programming assignments and the material taught in class. The methodology also
outlines an approach for finding common errors in a set of submissions for an assignment, and
generating an error classifier and hints that can be used by an autograder to give feedback on
future submissions. This process can also give instructors insight into how to adjust class material
to address knowledge deficiencies. We have applied our methodology to two assignments and
found some evidence suggesting that the hints provide useful feedback for many students to make
progress after submitting incorrect programs. The assignments used in our analysis are relatively
simple assignments used in an introductory computer science course. In our future work, we plan
to explore the application of our methodology to more complex programming assignments.
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A APPENDIX
A.1 Assignment Descriptions
Pay Friend. Write your code in the file PayFriend.java, your file has to have this exact name with
P and F capitalized. You must use the IO module to read the input and to output your answer.
Imagine that you work for a payment processing service called PayFriend. PayFriend charges
money receivers the following fees:
The first $100 has a flat fee of $5. Payments over $100 (but under $1000) have a fee of 3% or

$6, whichever is higher. Payments of $1,000 (but under $10,000) and over have a fee of 1% or $15,
whichever is higher. Payments of $10,000 and over are subject to (fees as follows): The first $10,000
have a fee of 1% The next $5,000 have an additional fee of 2% Anything more will demand an
additional fee of 3% For example, an payment of $40,000 would be subject to $950 fee: 1% on the
first $10,000 ($100 fee), 2% on the next $5,000 ($100 fee), and 3% on the last $25,000 ($750 tax).
Write a program that asks the user for the payment amount (real number) and outputs the fee

owned (real number).
Example: java PayFriend 450.0
RESULT: 13.5

Two Smallest. Write your code in the file TwoSmallest.java, your file has to have this exact name
with T and S capitalized. You must use the IO module to read inputs and to output your answers.
Write a program that takes a set of numbers and determines which are the two smallest numbers.
Ask the user for the following information, in this order: A terminating value (real number). The
user will enter this value again to indicate that he or she is finished providing input. A sequence
of real numbers. Keep asking for numbers until the terminating value is entered. Compute and
output the smallest and second-smallest real number, in that order. It is possible for the smallest
and second-smallest numbers to be the same (if the sequence contains duplicate numbers). There
must be at least 2 (two) numbers in the list of numbers that is not the terminating value. If the user
enters less than 2 (two) numbers, consider an error. Report the error input via IO.reportBadInput()
and RE-ASK the user for the input until it is correctly entered.

Example: java TwoSmallest 123 [this is the terminating value, not part of the set of numbers] 17.0
23.5 10.0 15.2 30.0 8.0 16.0 123 [this is the terminating value again, indicating that the user is done]

RESULTS TO OUTPUT (in this order): 8.0 10.0

A.2 Complete statics for hints efficiency
In this paper, we discuss the most relevant results regarding the movement of student submissions
throughout the different classes of errors in Section 5.4.1. For completion, in this section we include
the percentages of all the possible pairs of submissions for each of the two assignments, and for
each of the three semesters. In each table, the row label indicates the start error class and the column
label indicates the end error class for a pair of code submissions. We calculate each percentage by
counting the number of pairs and then diving it by the total number of pairs which started in the
same error class.
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Table 8. Movement between classes of error from one submission to another for PayFriend in spring 2016;
CM - does not compile, IN - failed to follow instructions, DR - failed data representation, CF - failed control
flow, FM - failed translating to formulas, CN - failed translating to conditional statements, NM - both CN
and FM, NO - no concept failed/ passed all tests

CM IN DR CF CN FM NM NO

CM 33.3% 4.2% 8.3% 20.8% 8.3% 4.2% 4.2% 16.7%
IN 4.4% 36.8% 9.6% 10.5% 7.9% 2.6% 12.3% 14.9%

DR 0.8% 2.1% 57.3% 3.4% 2.9% 1.7% 9.2% 21.8%
CF 1.5% 3.1% 0.0% 44.6% 13.9% 4.6% 6.2% 24.6%
CN 0.0% 3.5% 6.9% 6.9% 37.9% 0.0% 6.9% 34.5%

FM 4.4% 0.0% 0.0% 2.2% 0.0% 28.9% 0.0% 2.2%
NM 0.9% 1.7% 2.7% 1.8% 5.3% 5.3% 46.9% 35.4%

Table 9. Movement between classes of error from one submission to another for PayFriend in spring 2017

CM IN DR CF CN FM NM NO

CM 45.6% 0.0% 5.1% 0.0% 10.1% 7.6% 13.9% 17.7%
IN 3.7% 7.4% 3.7% 3.7% 0.0% 33.3% 29.6% 11.1%

DR 3.8% 0.0% 59.0% 0.0% 10.3% 1.3% 3.8% 21.8%
CF 25.0% 0.0% 0.0% 75.0% 0.0% 0.0% 0.0% 0.0%
CN 9.1% 0.0% 0.0% 9.1% 18.2% 9.1% 18.2% 18.2%

FM 0.0% 0.0% 0.0% 0.0% 0.0% 33.3% 0.0% 66.7%
NM 1.7% 1.7% 0.0% 0.0% 3.4% 5.2% 65.5% 22.4%

Table 10. Movement between classes of error from one submission to another for PayFriend in spring 2018

CM IN DR CF CN FM NM NO

CM 33.7% 2.2% 4.3% 8.7% 7.6% 2.2% 18.5% 21.7%
IN 14.6% 7.3% 0.0% 7.3% 9.8% 2.4% 26.8% 31.7%

DR 5.3% 0.0% 28.9% 5.3% 18.4% 2.6% 15.8% 21.1%
CF 2.4% 0.0% 2.4% 38.1% 9.5% 4.8% 16.7% 26.2%
CN 1.7% 0.0% 1.7% 5.0% 33.3% 1.7% 5.0% 51.7%

FM 0.0% 0.0% 0.0% 0.0% 2.9% 20.6% 20.6% 55.9%
NM 0.0% 0.0% 0.0% 3.7% 12.1% 5.6% 29.0% 49.5%
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Table 11. Movement between classes of error from one submission to another for TwoSmallest in spring 2016;
CM - does not compile, IS - failed to follow instructions, IL - infinite loop, SQ - failed to read sequence, IN -
failed to initialize min variables, UP - failed to update min variables, NO - no concept failed/ passed all tests

CM IS IL IN UP SQ SI SU NO

CM 0.0% 33.3% 13.3% 6.7% 0.0% 6.7% 0.0% 6.7% 33.3%
IS 2.4% 39.1% 17.8% 1.6% 5.1% 7.5% 12.7% 1.6% 12.3%
IL 0.0% 11.3% 58.6% 2.7% 4.1% 2.7% 6.8% 1.8% 12.2%
IN 0.0% 5.3% 5.3% 26.3% 21.1% 10.5% 0.0% 0.0% 31.6%
UP 0.00% 7.3% 19.5% 0.0% 29.3% 0.0% 0.00% 0.00% 43.9%
SQ 1.3% 14.1% 18.0% 1.3% 0.0% 21.8% 6.4% 0.0% 37.2%

SI 0.6% 10.7% 14.1% 2.8% 6.2% 9.0% 33.9% 4.5% 18.1%
SU 4.2% 8.3% 12.5% 0.00% 16.7% 0.0% 20.8% 16.7% 20.8%

Table 12. Movement between classes of error from one submission to another for TwoSmallest in spring 2017

CM IS IL IN UP SQ SI SU NO

CM 20.70% 0.00% 0.00% 3.40% 20.70% 13.80% 8.60% 1.70% 31.00%
IS 10.70% 25.00% 3.60% 0.00% 7.10% 28.60% 3.60% 3.60% 17.90%
IL 6.30% 0.00% 25.00% 6.30% 6.30% 31.30% 12.50% 0.00% 12.50%
IN 3.70% 0.00% 3.70% 44.40% 0.00% 3.70% 3.70% 3.70% 37.00%
UP 0.00% 0.00% 0.00% 8.70% 39.10% 4.30% 0.00% 0.00% 47.80%
SQ 6.10% 1.00% 3.00% 0.00% 4.00% 57.60% 14.10% 1.00% 13.10%

SI 2.80% 0.70% 0.70% 6.90% 5.50% 17.20% 42.10% 5.50% 18.60%
SU 2.70% 0.00% 0.00% 0.00% 16.20% 18.90% 10.80% 40.50% 10.80%
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Table 13. Movement between classes of error from one submission to another for TwoSmallest in spring 2018

CM IS IL IN UP SQ SI SU NO
CM 28.60% 3.90% 3.90% 9.10% 6.50% 14.30% 9.10% 3.90% 20.80%
IS 8.60% 14.30% 5.70% 17.10% 5.70% 20.00% 17.10% 0.00% 11.40%
IL 20.00% 8.00% 20.00% 4.00% 4.00% 24.00% 8.00% 4.00% 8.00%
IN 4.00% 4.00% 0.00% 18.00% 16.00% 8.00% 12.00% 2.00% 36.00%
UP 2.70% 1.40% 0.00% 2.70% 41.10% 1.40% 2.70% 2.70% 45.20%
SQ 4.00% 0.60% 0.00% 4.00% 6.30% 52.60% 7.40% 1.70% 23.40%

SI 6.20% 1.80% 0.90% 8.80% 12.40% 13.30% 32.70% 5.30% 18.60%
SU 2.90% 0.00% 2.90% 5.70% 40.00% 22.90% 0.00% 20.00% 5.70%
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